4
|
Han Y, Ai L, Song L, Zhou Y, Chen D, Sha S, Ji R, Li Q, Bu Q, Pan X, Zhai X, Cui M, Duan J, Yang J, Chaudhury D, Hu A, Liu H, Han MH, Cao JL, Zhang H. Midbrain glutamatergic circuit mechanism of resilience to socially transferred allodynia in male mice. Nat Commun 2024; 15:4947. [PMID: 38858350 PMCID: PMC11164890 DOI: 10.1038/s41467-024-49340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
The potential brain mechanism underlying resilience to socially transferred allodynia remains unknown. Here, we utilize a well-established socially transferred allodynia paradigm to segregate male mice into pain-susceptible and pain-resilient subgroups. Brain screening results show that ventral tegmental area glutamatergic neurons are selectively activated in pain-resilient mice as compared to control and pain-susceptible mice. Chemogenetic manipulations demonstrate that activation and inhibition of ventral tegmental area glutamatergic neurons bi-directionally regulate resilience to socially transferred allodynia. Moreover, ventral tegmental area glutamatergic neurons that project specifically to the nucleus accumbens shell and lateral habenula regulate the development and maintenance of the pain-resilient phenotype, respectively. Together, we establish an approach to explore individual variations in pain response and identify ventral tegmental area glutamatergic neurons and related downstream circuits as critical targets for resilience to socially transferred allodynia and the development of conceptually innovative analgesics.
Collapse
Affiliation(s)
- Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Lin Ai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Lingzhen Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Yu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Dandan Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Sha Sha
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Ran Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Qize Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Qingyang Bu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Xiangyu Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Xiaojing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Jiawen Duan
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, PR China
| | - Junxia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Dipesh Chaudhury
- Division of Science, New York University Abu Dhabi (NYUAD), Saadiyat Island, 129188, United Arab Emirates
| | - Ankang Hu
- The Animal Facility of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - He Liu
- Department of Anesthesiology, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, PR China
| | - Ming-Hu Han
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, PR China.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
| |
Collapse
|
5
|
Kim HJ, Bang M, Pae C, Lee SH. Multimodal neural correlates of dispositional resilience among healthy individuals. Sci Rep 2024; 14:9875. [PMID: 38684873 PMCID: PMC11059361 DOI: 10.1038/s41598-024-60619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
Resilient individuals are less likely to develop psychiatric disorders despite extreme psychological distress. This study investigated the multimodal structural neural correlates of dispositional resilience among healthy individuals. Participants included 92 healthy individuals. The Korean version of the Connor-Davidson Resilience Scale and other psychological measures were used. Gray matter volumes (GMVs), cortical thickness, local gyrification index (LGI), and white matter (WM) microstructures were analyzed using voxel-based morphometry, FreeSurfer, and tract-based spatial statistics, respectively. Higher resilient individuals showed significantly higher GMVs in the inferior frontal gyrus (IFG), increased LGI in the insula, and lower fractional anisotropy values in the superior longitudinal fasciculus II (SLF II). These resilience's neural correlates were associated with good quality of life in physical functioning or general health and low levels of depression. Therefore, the GMVs in the IFG, LGI in the insula, and WM microstructures in the SLF II can be associated with resilience that contributes to emotional regulation, empathy, and social cognition.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-712, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-712, Republic of Korea
| | - Chongwon Pae
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-712, Republic of Korea.
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-712, Republic of Korea.
| |
Collapse
|
7
|
Li F, Jackson T. Psychophysiological correlates of pain resilience in anticipating, experiencing, and recovering from pain. Psychophysiology 2021; 59:e13962. [PMID: 34716607 DOI: 10.1111/psyp.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022]
Abstract
Although researchers have documented behavioral and brain structure correlates of pain resilience, associated physiological responses have received little consideration. In this study, we assessed psychophysiological differences between high (HPR), moderate (MPR), and low (LPR) pain resilience subgroups during anticipation, experiencing, and recovery from laboratory pain. In an initial pain anticipation task, participants (79 women, 32 man) viewed visual cues to signal possible mild or intense shocks prior to receiving these shocks. Subsequently, in a pain recovery task, participants received uncued mild and intense shocks. Subjective appraisals were assessed during each task in tandem with continuous recording of skin conductance level (SCL), heart rate variability (HRV), and corrugator electromyography (cEMG). On physiological indexes, HPR subgroup members displayed significantly lower SCL than MPR and LPR subgroups did during anticipation and experiencing of pain while no resilience group effects were found for HRV or cEMG. During pain recovery, HPR and LPR subgroups displayed weaker SCL than the MPR subgroup did in the immediate aftermath of shock. However, HPR members continued to display lower SCL than other groups did over an extended recovery period. On self-report measures, the LPR subgroup reported higher levels of anticipatory anxiety and expected pain than HPR and MPR subgroups did during the pain anticipation task. Together, results suggested higher pain resilience is characterized, in part, by comparatively reduced SCL during the course of anticipating, experiencing and recovering from painful shock.
Collapse
Affiliation(s)
- Fenghua Li
- Key Laboratory of Cognition & Personality, Southwest University, Chongqing, China
| | - Todd Jackson
- Key Laboratory of Cognition & Personality, Southwest University, Chongqing, China.,Department of Psychology, University of Macau, Taipa, Macau S.A.R., China
| |
Collapse
|