1
|
Özkan H, Olğaç KT, Keçeli HH, Yazlık MO, Kaya U, Tırpan MB, Akçay E. Seminal plasma MicroRNA dynamics in stallion semen due to progressive motility and conception success. Anim Reprod Sci 2025; 278:107876. [PMID: 40449189 DOI: 10.1016/j.anireprosci.2025.107876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/27/2025] [Accepted: 05/29/2025] [Indexed: 06/03/2025]
Abstract
This study aims to investigate the expression patterns of miR-34b, miR-122, let-7a in seminal plasma of stallions in relation to progressive motility and conception success, and to evaluate their potential as biomarkers. Fifteen adult stallions were enrolled in study. One ml of seminal plasma was kept at -80 °C, 2 ml of fresh semen was sampled from each stallion for sperm analysis, and the rest were used for artificial insemination only for one mare. Two groups were formed as high progressive motility (HPM; n:8) and low progressive motility (LPM; n:7), based on progressive motility. Besides, two groups were formed as positive (n:8) and negative (n:7) pregnancy groups according to 14th day pregnancy results. Motility and progressive motility values determined by computer-assisted semen analyzer. Flow cytometry was used to evaluate the viability, HMMP, PMAI, non-capacitated sperm rate and LPO parameters. MicroRNAs were evaluated with qPCR. Prediction of targets, protein-protein interactions and functional enrichment analyses were also performed. Total (82.13 ± 3.04; p < 0.01) and progressive (45.88 ± 6.03; p < 0.001) motilities, and non-capacitated sperm rates (45.76 ± 3.92; p < 0.05) were greater in HPM. Compared to LPM, miR-34b (p < 0.05) and miR-122 (p < 0.05) were upregulated in HPM approximately 11- and 6-fold, respectively. miR-34b and total motility were positively correlated (0.674; p < 0.01). Target gene analysis revealed a network of 102 genes and 421 edges. Moreover, significant interaction networks involving 19 proteins were determined. Performed enrichment analysis showed selected miRNAs significantly regulate crucial pathways. Regulatory differences of miR-34b and miR-122 in seminal plasma might serve to determine the characteristics of stallion semen.
Collapse
Affiliation(s)
- Hüseyin Özkan
- Hatay Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Genetics, Türkiye
| | - Kemal Tuna Olğaç
- Ankara University, Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Türkiye.
| | - Hasan Hüseyin Keçeli
- Hatay Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Genetics, Türkiye
| | - Murat Onur Yazlık
- Ankara University, Faculty of Veterinary Medicine, Department of Obstetrics and Gyneacology, Türkiye
| | - Ufuk Kaya
- Hatay Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Biostatistics, Türkiye
| | - Mehmet Borga Tırpan
- Ankara University, Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Türkiye
| | - Ergun Akçay
- Ankara University, Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Türkiye
| |
Collapse
|
2
|
Serafini S, O'Flaherty C. Novel insights into the lipid signalling in human spermatozoa. Hum Reprod 2025:deaf085. [PMID: 40409756 DOI: 10.1093/humrep/deaf085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/23/2025] [Indexed: 05/25/2025] Open
Abstract
Infertility, affecting one in six couples worldwide, poses significant health and social challenges. While both male and female factors contribute to infertility, male infertility causes remain underexplored, with about 34% of cases classified as unexplained. A few studies focus on the role of lipids in male fertility, and some lipids are rising as key players in spermatozoa. This review highlights the importance of lipids, particularly phospholipids, neutral lipids, and glycolipids, in spermatozoa during capacitation and the acrosome reaction (AR). The dynamic lipid profile of human spermatozoa is crucial for their development, maturation, and fertilization capability. During epididymal maturation, sperm undergo crucial biochemical changes, including increased production of phosphatidylcholine and sphingomyelin, which enhance membrane integrity and mobility. Increased levels of ceramide affect membrane fluidity and signalling necessary for sperm function. As spermatozoa enter the female reproductive tract, they adjust their lipid content for capacitation and fertilization. Lipid signalling is crucial for human spermatozoa, influencing their viability and fertilization potential during transit through the female reproductive tract. Lysophosphatidic acid, abundant in seminal plasma, enhances sperm motility, facilitates the AR by promoting glycolysis and calcium influx, and is important for maintaining sperm viability. The remodelling of lipid rafts, enriched in cholesterol and sphingolipids, is essential for signal transduction and capacitation. Sphingolipids, particularly sphingosine 1-phosphate and ceramide, play significant roles in sperm capacitation and AR by promoting reactive oxygen species production and calcium signalling, respectively. Understanding these lipid dynamics will increase our knowledge of the complexity of sperm metabolism.
Collapse
Affiliation(s)
- Steven Serafini
- Experimental Medicine Division, Department of Medicine, McGill University, Montréal, QC, Canada
- Urology Division, Department of Surgery, McGill University, Montréal, QC, Canada
- The Research Institute, McGill University Health Centre, Montréal, QC, Canada
| | - Cristian O'Flaherty
- Experimental Medicine Division, Department of Medicine, McGill University, Montréal, QC, Canada
- Urology Division, Department of Surgery, McGill University, Montréal, QC, Canada
- The Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| |
Collapse
|
3
|
Pang F, Sheng Y, Gao L, Rushdi HE, Loor JJ, Tian Q, Liu S. Seminal plasma metabolomics and sperm lipidomics profiles of bull semen with different total progressive motile sperm count. J Anim Sci 2025; 103:skaf012. [PMID: 39887007 PMCID: PMC11914886 DOI: 10.1093/jas/skaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
Total progressive motile sperm count (TPMSC) is a reliable index of fecundity evaluation of bull semen. It is an important determinant of frozen semen yield and conception rate of females artificially inseminated. Seminal plasma metabolites and sperm lipids are closely related to sperm survival and motility, but their relationship with TPMSC is not well known. In the present study, Simmental bulls with higher (H, n = 6) or lower (L, n = 6) TPMSC (P < 0.01) were selected from a cohort of 100 animals aged 2 to 5 yr based on semen quality. Analysis of semen quality and biochemical markers of seminal plasma revealed that H bulls had greater ejaculate volume (P < 0.05), sperm motility, plasma membrane integrity rate (P < 0.01), seminal plasma neutral α-glucosidase (P < 0.05), alkaline phosphatase, acid phosphatase, cortisol and phosphatidylcholine (P < 0.01), and lower sperm malformation rate (P < 0.05) and reactive oxygen species (P < 0.01). Semen metabolites and sperm liposome profiles of H and L groups were compared using LC-MS/MS analysis. A total of 120 differentially abundant metabolites (VIP > 1; P < 0.05) and 59 differentially abundant lipids (VIP > 1; P < 0.05) were identified between H and L groups. Oxidative stress, sperm motility, and sperm plasma membrane integrity were among the enriched biological pathways. Cyclic ADP-ribose (cADPR), up-regulated in H bulls, is associated with energy for sperm motility and maintenance of membrane stability. Thymidineglycol (Tg), levanbiose, thymidine (Thd), and CE (3M5) were down-regulated in H bulls and may have negatively affected sperm motility. Correlation analyses revealed that TPMSC and sperm motility were significantly positively correlated with cADPR, while Tg, Levanbiose, Thd, and CE (3M5) were significantly negatively correlated with TPMSC and sperm motility. Thus, we speculate that these molecules may be exploited as potential biomarkers for non-invasive evaluation of TPMSC in bull semen.
Collapse
Affiliation(s)
- Fanglin Pang
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yuke Sheng
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - LiuTao Gao
- Henan Dingyuan Cattle Breeding Co., Ltd, Zhengzhou, China
| | - Hossam E Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Juan J Loor
- Department of Animal Science, Univ Illinois, Mammalian Nutr Physiol Genom, Urbana, IL 61801, USA
| | - QuanZhao Tian
- Henan Dingyuan Cattle Breeding Co., Ltd, Zhengzhou, China
| | - Shenhe Liu
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
An Z, Shi L, Zhou H, Hou G, Xun W. Exploratory Metabolomics and Lipidomics Profiling Contributes to Understanding How Curcumin Improves Quality of Goat Semen Stored at 16 °C in Tropical Areas. Int J Mol Sci 2024; 25:10200. [PMID: 39337684 PMCID: PMC11432619 DOI: 10.3390/ijms251810200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) exert a vital role in sperm quality during semen preservation, where excessive ROS leads to oxidative damage and undermines sperm integrity. Curcumin, a botanical extract, is capable of neutralizing ROS and enhancing the activity of antioxidant enzymes. This study was aimed at evaluating the effects of curcumin on sperm viability, acrosome integrity, and antioxidant levels, as well as metabolomic and lipidomic profiles. The results demonstrated that curcumin at 25 µmol/L significantly enhanced sperm motility, plasma membrane, and acrosome integrity, elevated the levels of antioxidant enzymes (T-AOC, CAT, SOD), and decreased ROS production (p < 0.05). Metabolomic analysis identified 93 distinct metabolites that showed significant differences between the control and curcumin-treated groups. KEGG pathways emphasized the participation of these metabolites in key metabolic processes such as the citric acid cycle, cholesterol metabolism, and fatty acid metabolism. Curcumin treatment brought about notable variations in lipid profiles, including increased levels of phosphatidylcholine, acylcarnitine, and triglyceride over the storage time, suggesting enhanced lipid anabolic activity. Overall, the supplementation of curcumin at 25 µmol/L effectively mitigates oxidative stress and prolongs the viability of semen storage at 16 °C by modulating specific metabolic and lipid profiles.
Collapse
Affiliation(s)
- Zhaoxiang An
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Liguang Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - Hanlin Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - Wenjuan Xun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Martínez-Díaz P, Parra A, Sanchez-López CM, Casas J, Lucas X, Marcilla A, Roca J, Barranco I. Small and Large Extracellular Vesicles of Porcine Seminal Plasma Differ in Lipid Profile. Int J Mol Sci 2024; 25:7492. [PMID: 39000599 PMCID: PMC11242203 DOI: 10.3390/ijms25137492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Seminal plasma contains a heterogeneous population of extracellular vesicles (sEVs) that remains poorly characterized. This study aimed to characterize the lipidomic profile of two subsets of differently sized sEVs, small (S-) and large (L-), isolated from porcine seminal plasma by size-exclusion chromatography and characterized by an orthogonal approach. High-performance liquid chromatography-high-resolution mass spectrometry was used for lipidomic analysis. A total of 157 lipid species from 14 lipid classes of 4 major categories (sphingolipids, glycerophospholipids, glycerolipids, and sterols) were identified. Qualitative differences were limited to two cholesteryl ester species present only in S-sEVs. L-sEVs had higher levels of all quantified lipid classes due to their larger membrane surface area. The distribution pattern was different, especially for sphingomyelins (more in S-sEVs) and ceramides (more in L-sEVs). In conclusion, this study reveals differences in the lipidomic profile of two subsets of porcine sEVs, suggesting that they differ in biogenesis and functionality.
Collapse
Affiliation(s)
- Pablo Martínez-Díaz
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Ana Parra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Christian M Sanchez-López
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, 46100 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de València, 46100 Valencia, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Institute for Advanced Chemistry (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, 46100 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de València, 46100 Valencia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
6
|
Thiangthientham P, Kallayanathum W, Juntautsa S, Leethongdee S. Sesame oil as a partial substitute for egg yolk in goat semen extenders. Anim Reprod Sci 2024; 266:107500. [PMID: 38820784 DOI: 10.1016/j.anireprosci.2024.107500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
This study aimed to evaluate the effects of replacing egg yolk extender with sesame oil on the quality of sperm in goats following incubation at 37°C, chilling at 4°C, and freezing. Semen samples were collected from four intact male goats. The individual semen sample was divided into six groups consisting of a control group and five treatment groups with different egg yolk-to-sesame oil ratios. Seminal plasma was removed, and the sperm pellet was diluted with experimental semen extenders. The control group contained an extender of 10 % egg yolk (SO0), and the experimental extenders were composed of 8.75 % egg yolk and 1.25 % sesame oil (SO1.25); 7.5 % egg yolk and 2.5 % sesame oil (SO2.5); 5 % egg yolk and 5 % sesame oil (SO5); 2.5 % egg yolk and 7.5 % sesame oil (SO7.5); and 10 % sesame oil (SO10). Each group of semen was divided into three groups, incubated at 37°C for 1 h, chilled at 4°C for 4 h, or frozen for 24 h. Five replicates were performed. Sperm quality was evaluated, including motility, viability, and functional membrane integrity. The SO1.25 group achieved the highest sperm quality rate among the treatment groups, and the extender did not have a negative effect compared to the control. However, the total replacement of egg yolk with sesame oil in an extender resulted in the lowest sperm quality. In conclusion, the ratios of egg yolk and sesame oil that were acceptable for goat semen cryopreservation were 8.75 % and 1.25 %, respectively.
Collapse
Affiliation(s)
- Pintira Thiangthientham
- The Reproduction in Domestic Animal Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham 44000, Thailand; Small Ruminant Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham 44000, Thailand.
| | - Wirakan Kallayanathum
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriluck Juntautsa
- Bioveterinary Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, MahaSarakham 44000, Thailand
| | - Sukanya Leethongdee
- The Reproduction in Domestic Animal Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham 44000, Thailand; Small Ruminant Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham 44000, Thailand.
| |
Collapse
|
7
|
Mogielnicka-Brzozowska M, Cichowska AW. Molecular Biomarkers of Canine Reproductive Functions. Curr Issues Mol Biol 2024; 46:6139-6168. [PMID: 38921038 PMCID: PMC11202846 DOI: 10.3390/cimb46060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of the current study is to review potential molecular biomarker substances selected so far as useful for assessing the quality of dog semen. Proteins, lipids, carbohydrates, and ions can serve as molecular biomarkers of reproductive functions (BRFs) for evaluating male reproductive health and identifying potential risk factors for infertility or reproductive disorders. Evaluation of BRF levels in semen samples or reproductive tissues may provide insights into the underlying causes of infertility, such as impaired sperm function, abnormal sperm-egg interaction, or dysfunction of the male reproductive tract. Molecular biomarker proteins may be divided into two groups: proteins that are well-studied, such as A-kinase anchoring proteins (AKAPs), albumins (ALBs), alkaline phosphatase (ALPL), clusterin (CLU), canine prostate-specific esterase (CPSE), cysteine-rich secretory protein 2 (CRISP2), lactotransferrin (LTF), metalloproteinases (MMPs), and osteopontin (OPN) and proteins that are not well-studied. Non-protein markers include lipid-based substances (fatty acids, phosphatidylcholine), carbohydrates (glycosaminoglycans), and ions (zinc, calcium). Assessing the levels of BRFs in semen samples may provide valuable information for breeding management and reproductive assessments in dogs. This review systematizes current knowledge that could serve as a starting point for developing practical tests with the use of biomarkers of canine reproductive functions and their predictive value for assisted reproductive technique outcomes and semen preservation.
Collapse
Affiliation(s)
- Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | | |
Collapse
|
8
|
Esin B, Kaya C, Akar M, Çevik M. Investigation of the protective effects of different forms of selenium in freezing dog semen: Comparison of nanoparticle selenium and sodium selenite. Reprod Domest Anim 2024; 59:e14652. [PMID: 38923052 DOI: 10.1111/rda.14652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/23/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
This study aimed to investigate the protective effects of nanoparticle selenium (SeNP) and sodium selenite (SS) on preventing oxidative stress during the freezing process of dog semen. A total of six dogs were used in the study. The ejaculate was collected from dogs three times at different times by massage method. A total of 18 ejaculates were used and each ejaculate was divided in five experimental groups. The experimental groups were designed to tris extender containing no antioxidants control, 1 μg/mL SeNP1, 2 μg/mL SeNP2, and 1 μg/mL SS1 and 2 μg/mL SS2. Extended semen were equilibrated for 1 h at 4°C, then frozen in liquid nitrogen vapour and stored in liquid nitrogen (~-196°C). After thawing, semen samples were evaluated in terms of CASA motility and kinematic parameters, spermatozoa plasma membrane integrity and viability (HE Test), spermatozoa morphology (SpermBlue) and DNA fragmentation (GoldCyto). Antioxidant enzyme activity (glutathione peroxidase; GPX, superoxide dismutase; SOD, catalase; CAT) and lipid peroxidation (malondialdehyde; MDA) were evaluated in frozen-thawed dog sperm. When the results were evaluated statistically, the progressive motility, VCL, and VAP kinematic parameters in the SeNP1 group were significantly higher than the control group after thawing (p < .05). The highest ratio of plasma membrane integrity and viable spermatozoa was observed in the SeNP1 group, but there was no statistical difference found between the groups (p > .05). Although the ratio of total morphological abnormality was observed to be lower in all groups to which different selenium forms were added, compared to the control group, no statistical difference was found. Spermatozoa tail abnormality was significantly lower in the SeNP1 group than in the control and SS2 group (p < .05). The lowest ratio of fragmented DNA was observed in the SeNP1 group, but there was no statistical difference was found between the groups (p > .05). Although there was no statistical difference between the groups in the evaluation of sperm antioxidant profile, the highest GPX, SOD and CAT values and the lowest lipid peroxidation values were obtained in the SeNP1 group. As a result, it was determined that 1 μg/mL dose of SeNP added to the tris-based extender in dog semen was beneficial on spermatological parameters, especially sperm kinematic properties and sperm morphology, and therefore nanoparticle selenium, a nanotechnology product, made a significant contribution to the freezing of dog semen.
Collapse
Affiliation(s)
- Burcu Esin
- Department of Animal Reproduction and Artificial Insemination, University of Ondokuz Mayis, Samsun, Turkey
| | - Cumali Kaya
- Department of Animal Reproduction and Artificial Insemination, University of Ondokuz Mayis, Samsun, Turkey
| | - Melih Akar
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Mesut Çevik
- Department of Animal Reproduction and Artificial Insemination, University of Ondokuz Mayis, Samsun, Turkey
| |
Collapse
|
9
|
Xu Y, Sun S, Fu Y, Wang L, Ren C, Ling Y, Zhang Z, Cao H. Positive In Vitro Effect of ROCK Pathway Inhibitor Y-27632 on Qualitative Characteristics of Goat Sperm Stored at Low Temperatures. Animals (Basel) 2024; 14:1441. [PMID: 38791659 PMCID: PMC11117216 DOI: 10.3390/ani14101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Y-27632, as a cytoskeleton protector, is commonly used for low-temperature preservation of cells. Goat sperm are prone to damage to the cytoskeleton under low-temperature conditions, leading to a loss of sperm vitality. However, the Y-27632 small molecule has not yet been used in research on low-temperature preservation of goat semen. This study aims to address the issue of low temperature-induced loss of sperm motility in goats by using Y-27632, and explore the regulation of Y-27632 on goat sperm metabolism. At a low temperature of 4 °C, different concentrations of Y-27632 were added to the sperm diluent. The regulation of Y-27632 on the quality of low temperature-preserved goat semen was evaluated by detecting goat sperm motility, antioxidant capacity, mitochondrial activity, cholesterol levels, and metabolomics analysis. The results indicated that 20 µM Y-27632 significantly increased plasma membrane integrity (p < 0.05), and acrosome integrity (p < 0.05) and sperm motility (p < 0.05), increased levels of superoxide dismutase (SOD) and catalase (CAT) (p < 0.01), increased total antioxidant capacity (T-AOC) (p < 0.05), decreased levels of malondialdehyde (MDA) and reactive oxygen species (ROS) (p < 0.01), and significantly increased mitochondrial membrane potential (MMP). The levels of ATP, Ca2+, and TC in sperm increased (p < 0.01). Twenty metabolites with significant differences were identified, with six metabolic pathways having a significant impact, among which the D-glutamic acid and D-glutamine metabolic pathways had the most significant impact. The artificial insemination effect of goat semen treated with 20 μM Y-27632 was not significantly different from that of fresh semen. This study indicates that Y-27632 improves the quality of low-temperature preservation of sperm by protecting the sperm plasma membrane, enhancing sperm antioxidant capacity, regulating D-glutamine and D-glutamate metabolism, and promoting the application of low-temperature preservation of semen in artificial insemination technology.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Shixin Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Yu Fu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Hongguo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
10
|
Fan Y, Li X, Li J, Xiong X, Yin S, Fu W, Wang P, Liu J, Xiong Y. Differential metabolites screening in yak (Bos grunniens) seminal plasma after cryopreservation and the evaluation of the effect of galactose on post-thaw sperm motility. Theriogenology 2024; 215:249-258. [PMID: 38103402 DOI: 10.1016/j.theriogenology.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Sperm survival and activity depend on the provision of energy and nutrients from seminal plasma (SP). This study aimed to investigate the variations of metabolites within SP before and after freezing and subsequently explore the potential regulatory mechanisms affecting yak sperm cryodamage due to changes in metabolites in the SP. Untargeted metabolomics analysis was performed to screen for differential metabolites, followed by KEGG analysis to identify enriched signaling pathways. The combinatorial analysis of metabolomics and sperm proteomics revealed the influence of key SP metabolites on sperm proteins. Subsequently, the relevant differentially expressed proteins were verified by Western blot analysis. Finally, the mechanism underlying the positive effect of galactose on sperm motility was determined by assessing the change in ATP content in sperm before and after freezing and thawing. The data showed that a total of 425 and 269 metabolites were identified in the positive and negative ion modes, respectively. Freezing and thawing resulted in the up-regulation of 70 metabolites and the down-regulation of 29 metabolites in SP. The primary impact of freezing and thawing was observed in carbohydrate metabolism, including pyruvate metabolism, pentose phosphate pathway, galactose metabolism, the TCA cycle, and butanoate metabolism. In the combined analysis and Western blot results, a significant positive correlation was observed between galactose and Aldo-keto reductase family 1 member B1 (AKR1B1) (P < 0.05), which has the ability to convert galactose into galactol. Furthermore, the addition of galactose to thawed semen improved sperm motility by increasing AKR1B1 protein in sperm and was associated with the content of ATP. These data identify differential metabolites between fresh and frozen-thawed SP and suggest that galactose is a valuable additive for cryopreserved sperm, providing a theoretical basis for further exploration of the refrigerant formula for yak sperm cryopreservation.
Collapse
Affiliation(s)
- Yilin Fan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Xiaowei Li
- Longri Breeding Stock Farm of Sichuan Province, Dujiangyan, 611800, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China.
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Shi Yin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Peng Wang
- Sichuan Ganzi Tibetan Autonomous Prefecture, Institute of Animal Husbandry Science, Kangding, 626000, China
| | - Jun Liu
- Sichuan Ganzi Tibetan Autonomous Prefecture, Institute of Animal Husbandry Science, Kangding, 626000, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Sugai N, Werre S, Cecere JT, Balogh O. Comparing different sperm concentrations for optimizing cooled semen use in the dog. Front Vet Sci 2024; 10:1339840. [PMID: 38347887 PMCID: PMC10860413 DOI: 10.3389/fvets.2023.1339840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024] Open
Abstract
The use of shipping canine semen for artificial insemination has bloomed over the last 20 years. This allows for the spread of genetic material while overcoming geographical or time-related challenges. The optimal sperm concentration for cooled semen transport in the dog is unknown. Often canine semen is extended 1:3-5 vol:vol without standardized sperm concentrations for cooled shipment. We compared different sperm concentrations for cooled storage and hypothesized that lower concentrations would result in better semen quality. Semen was collected from healthy client-owned dogs (n = 8). Individual ejaculates were divided into a control aliquot (CON) extended 1:3 vol:vol with a commercial extender. The remaining sample was centrifuged and extended to 200 ×106 sperm/ml (C200), then serially diluted to 100, 50, and 25 ×106 sperm/ml concentrations (C100-C25). Aliquots were cooled for 24 h and then centrifuged and re-extended. Sperm concentration, plasma membrane integrity (PMI, %), motility (subjective total, STM; computer-assisted sperm analysis (CASA) total and progressive, TM, PM; %), and normal morphology (NM, %) were assessed in raw semen (T0), post-extension (T1), after 24 h of cooling (T2), and after processing at 24 h (T3). Cooling resulted in significant declines in STM and NM for all groups and in decreased PMI for CON and C25-50. After cooling (at T2), PMI was significantly lower for C25 compared with all the groups and higher for CON compared with C25-100 (p ≤ 0.038). Processing and re-extension after cooling further decreased the spermiogram parameters. At T3, PMI for CON was similar to C200 but significantly higher than C25-100, while C25 had the lowest PMI. For motility parameters and NM, C25 performed worse than all or most of the other groups. Comparing CON at T3 with C25-200 at T2, PMI, STM, and NM for CON were significantly lower than C25-200, C200, and C100-200, respectively. In conclusion, our results show that cooling canine semen for 24 h at 200 ×106 sperm/ml final concentration after processing or extending 1:3 vol:vol without centrifugation is preferred based on the highest PMI. If volume restrictions apply, processing raw semen and extending to the desired volume with higher sperm concentrations at the collection facility is superior to centrifugation and volume adjustment after 24 h of cooled storage.
Collapse
Affiliation(s)
- Nicole Sugai
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
| | - Stephen Werre
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
| | - Julie T. Cecere
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
| | - Orsolya Balogh
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
| |
Collapse
|
12
|
Fu J, Ma J, Feng Z, Song Y, Mabrouk I, Zhou Y, Wang Y, Fu X, Jin H, Zhang Y, Sun Y. Effect of DMSO combined with trehalose on cryopreservation of goose semen. JOURNAL OF APPLIED ANIMAL RESEARCH 2023. [DOI: 10.1080/09712119.2022.2161551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jinhong Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Jingyun Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Ziqiang Feng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yudong Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Xianou Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Honglei Jin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yuxin Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production, Ministry of Education, Product Quality and Security (Jilin Agricultural University), Changchun, People’s Republic of China
| |
Collapse
|
13
|
Horta Remedios M, Liang W, González LN, Li V, Da Ros VG, Cohen DJ, Zaremberg V. Ether lipids and a peroxisomal riddle in sperm. Front Cell Dev Biol 2023; 11:1166232. [PMID: 37397249 PMCID: PMC10309183 DOI: 10.3389/fcell.2023.1166232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Sperm are terminally differentiated cells that lack most of the membranous organelles, resulting in a high abundance of ether glycerolipids found across different species. Ether lipids include plasmalogens, platelet activating factor, GPI-anchors and seminolipid. These lipids play important roles in sperm function and performance, and thus are of special interest as potential fertility markers and therapeutic targets. In the present article, we first review the existing knowledge on the relevance of the different types of ether lipids for sperm production, maturation and function. To further understand ether-lipid metabolism in sperm, we then query available proteomic data from highly purified sperm, and produce a map of metabolic steps retained in these cells. Our analysis pinpoints the presence of a truncated ether lipid biosynthetic pathway that would be competent for the production of precursors through the initial peroxisomal core steps, but devoid of subsequent microsomal enzymes responsible for the final synthesis of all complex ether-lipids. Despite the widely accepted notion that sperm lack peroxisomes, the thorough analysis of published data conducted herein identifies nearly 70% of all known peroxisomal resident proteins as part of the sperm proteome. In view of this, we highlight open questions related to lipid metabolism and possible peroxisomal functions in sperm. We propose a repurposed role for the truncated peroxisomal ether-lipid pathway in detoxification of products from oxidative stress, which is known to critically influence sperm function. The likely presence of a peroxisomal-derived remnant compartment that could act as a sink for toxic fatty alcohols and fatty aldehydes generated by mitochondrial activity is discussed. With this perspective, our review provides a comprehensive metabolic map associated with ether-lipids and peroxisomal-related functions in sperm and offers new insights into potentially relevant antioxidant mechanisms that warrant further research.
Collapse
Affiliation(s)
| | - Weisheng Liang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Lucas N. González
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Victoria Li
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Vanina G. Da Ros
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Débora J. Cohen
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Zhang Y, Yuan W, Liu Y, Liu Y, Liang H, Xu Q, Liu Z, Weng X. Plasma membrane lipid composition and metabolomics analysis of Yorkshire boar sperms with high and low resistance to cryopreservation. Theriogenology 2023; 206:28-39. [PMID: 37178672 DOI: 10.1016/j.theriogenology.2023.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/01/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
The resistance of sperm to freezing varies widely among boars. The semen ejaculate of different boars can be grouped into poor freezability ejaculate (PFE) and good freezability ejaculate (GFE). In this study, five Yorkshire boars each of the GFE and PFE were selected by comparing the changes in sperm motility before and after cryopreservation. Firstly, we found that the sperm plasma membrane of the PFE group showed weak integrity after PI and 6-CFDA staining. Then the electron microscopy results verified that the plasma membrane condition of all segments of GFE was better than that of PFE segments. Furthermore, the lipid composition of sperm plasma membranes in GPE and PFE sperm was analyzed by using mass spectrometry, and 15 lipids showed differences between the two groups. Among those lipids, only phosphatidylcholine (PC) (14:0/20:4) and phosphatidylethanolamine (PE) (14:0/20:4) were higher in PFE. The remaining lipid contents, including those of dihydroceramide (18:0/18:0), four hexosylceramides (18:1/20:1, 18:0/22:1, 18:1/16:0, 18:1/18:0), lactosylceramide (18:1/16:0), two hemolyzed phosphatidylethanolamines (18:2, 20:2), five phosphatidylcholines (16:1/18:2, 18:2/16:1, 14:0/20:4, 16:0/18:3, 18:1/20:2), and two phosphatidylethanolamines (14:0/20:4, 18:1/18:3), were all positively correlated with resistance to cryopreservation (p < 0.05, r > 0.6). Moreover, we analyzed the metabolic profile of sperm using untarget metabolomic. KEGG annotation analysis revealed that the altered metabolites were mainly involved in fatty acid biosynthesis. Finally, we determined that the contents of oleic acid, oleamideetc, N8-acetylspermidine etc., were different between GFE and PFE sperm. In summary, the different lipid metabolism levels and long-chain polyunsaturated fatty acids (PUFAs) in plasma membrane may be key factors contributing to differences in sperm resistance to cryopreservation among boars.
Collapse
Affiliation(s)
- Yuting Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Wenjing Yuan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Yuchen Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Yan Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Hanlin Liang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Qianqian Xu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Feeding of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China.
| | - Xiaogang Weng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Feeding of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China.
| |
Collapse
|
15
|
Sugai N, Werre S, Cecere J, Balogh O. Defining an Optimal Range of Centrifugation Parameters for Canine Semen Processing. Animals (Basel) 2023; 13:ani13081421. [PMID: 37106983 PMCID: PMC10135290 DOI: 10.3390/ani13081421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Our objective was to determine a clinically relevant range of centrifugation parameters for processing canine semen. We hypothesized that higher gravitational (g) force and longer time of centrifugation would result in improved spermatozoa recovery rate (RR) but poorer semen quality. Cooled storage under standard shipping conditions was used as a stressor to evaluate long-term treatment effects. Individual ejaculates collected from 14 healthy dogs were split into six treatment groups (400 g, 720 g, and 900 g for 5 or 10 min). Sperm RR (%) was calculated post-centrifugation, and plasma membrane integrity (%, Nucleocounter® SP-100™), total and progressive motility (%, subjective and computer-assisted sperm analysis), and morphology (%, eosin-nigrosin staining) were assessed on initial raw semen (T0), post-centrifugation (T1), and 24 h (T2) and 48 h (T3) after cooling. Sperm losses were minimal, and RRs were similar across treatment groups (median >98%, p ≥ 0.062). Spermatozoa membrane integrity was not different between centrifugation groups at any time point (p ≥ 0.38) but declined significantly during cooling (T1 vs. T2/T3, p ≤ 0.001). Similarly, total and progressive motility did not differ across treatments but declined in all groups from T1 to T3 (p ≤ 0.02). In conclusion, our study showed that centrifugation within a range of 400 g-900 g for 5-10 min is appropriate for processing canine semen.
Collapse
Affiliation(s)
- Nicole Sugai
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Stephen Werre
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Julie Cecere
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Orsolya Balogh
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| |
Collapse
|
16
|
Stanishevskaya OI, Silyukova Y, Fedorova E, Pleshanov N, Kurochkin A, Tereshina VM, Ianutsevich E. Effects of Trehalose Supplementation on Lipid Composition of Rooster Spermatozoa Membranes in a Freeze/Thaw Protocol. Animals (Basel) 2023; 13:ani13061023. [PMID: 36978564 PMCID: PMC10044598 DOI: 10.3390/ani13061023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The plasma membrane of spermatozoa plays an important role in the formation and maintenance of many functions of spermatozoa, including during cryopreservation. As a result of chromatographic analysis, the content of lipids and fatty acids in the membranes of spermatozoa of roosters of two breeds was determined under the influence of cryoprotective media containing trehalose LCM-control (0 mM), Treh20 (9.5 mM), and Treh30 (13.4 mM). The use of the cryoprotective diluent Treh20 made it possible to maintain a dynamic balance between the synthesis and degradation of phospholipids and sterols in the plasma membranes of frozen/thawed spermatozoa, close to that of native spermatozoa. This contributed to an increase in the preservation of frozen/thawed spermatozoa membranes from 48.3% to 52.2% in the egg breed and from 30.0% to 35.1% in the meat- and-egg breed. It was also noted that their kinetic apparatus (mobility indicators) remained at the level of 45.6% (egg breed) and 52.4% (meat-and-egg breed). An increase in the concentration of trehalose to 13.4 mM in a cryoprotective diluent for rooster sperm resulted in a decrease in the morphofunctional parameters of frozen/thawed spermatozoa.
Collapse
Affiliation(s)
- Olga I. Stanishevskaya
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the LK Ernst Federal Research Center for Animal Husbandry, Moskovskoe Shosse, 55a, Pushkin, 196625 St. Petersburg, Russia
| | - Yulia Silyukova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the LK Ernst Federal Research Center for Animal Husbandry, Moskovskoe Shosse, 55a, Pushkin, 196625 St. Petersburg, Russia
- Correspondence:
| | - Elena Fedorova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the LK Ernst Federal Research Center for Animal Husbandry, Moskovskoe Shosse, 55a, Pushkin, 196625 St. Petersburg, Russia
| | - Nikolai Pleshanov
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the LK Ernst Federal Research Center for Animal Husbandry, Moskovskoe Shosse, 55a, Pushkin, 196625 St. Petersburg, Russia
| | - Anton Kurochkin
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the LK Ernst Federal Research Center for Animal Husbandry, Moskovskoe Shosse, 55a, Pushkin, 196625 St. Petersburg, Russia
| | - Vera M. Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Elena Ianutsevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
17
|
Abdelnour SA, Sindi RA, Abd El-Hack ME, Khalifa NE, Khafaga AF, Noreldin AE, Samir H, Tufarelli V, Losacco C, Gamal M, Imam MS, Swelum AA. Quercetin: Putative effects on the function of cryopreserved sperms in domestic animals. Reprod Domest Anim 2023; 58:191-206. [PMID: 36337040 DOI: 10.1111/rda.14291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Quercetin is one of the most used antioxidant flavonoids and largely exists in many fruits and vegetables because of its capability to scavenge the free reactive oxygen species (ROSs) by repressing lipid peroxy radical fusion, metal ion chelating through enzyme inhibition, and adopting the repair mechanisms. It also exhibits various biological actions, including antioxidative, anti-inflammatory and antimicrobial activities. Furthermore, it contributes well to sustaining the endogenous cellular antioxidant defence system. The process of cryopreservation is associated with increased oxidative stress, and some steps are potential sources of ROSs, including the method of semen collection, handling, cryopreservation culture media, and thawing, which result in impaired sperm function. Several antioxidants have been proposed to counteract the harmful impact of ROS during semen cryopreservation. The antioxidant capability of quercetin has been verified in different animal species for providing valuable defence to sperm during the cryopreservation process. The beneficial properties of quercetin on various parameters of fresh and post-thaw sperm in different species are clarified in this review. More in-depth investigations are required to clarify quercetin's mechanism of action in different animal species.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ramya A Sindi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| | | | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Fuka, Matrouh University, Matrouh, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Ahmed E Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Vincenzo Tufarelli
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Bari, Italy
| | - Caterina Losacco
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Bari, Italy
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed S Imam
- Pharmacy Practice Department, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia.,Clinical Pharmacy Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
18
|
Xu B, Wang R, Wang Z, Liu H, Wang Z, Zhang W, Zhang Y, Su R, Liu Z, Liu Y, Li J, Zhang J. Evaluation of lipidomic change in goat sperm after cryopreservation. Front Vet Sci 2022; 9:1004683. [PMID: 36337197 PMCID: PMC9630556 DOI: 10.3389/fvets.2022.1004683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The current study aimed to detect the relationship between the spermatozoa cryotolerance and the post-thawed sperm lipidome. Ejaculates from 20 goats, and performed a uniform frozen-thawed procedure in this study. According to the total motility of thawed sperm of goats, semen samples were classified into HF group (High Freezers, n = 8) with >60% total motility and LF group (Low Freezers, n = 8) with < 45% total motility. The lipidomic analysis based on UHPLC-MS/MS was utilized to investigate the relationship between sperm cryotolerance and their lipid metabolites expression. The results showed that the cryotolerance of sperm from different individual goats were in great variation. The total motility of post-thawed sperm in HF group (60.93 ± 2.43%) is significantly higher than that in LF group (34.04 ± 3.41%, P < 0.01). And the post-thawed sperm in HF group exhibited significantly higher plasma membrane (59.06 ± 2.34%) and acrosome integrity (62.93 ± 1.15%) than that in LF group (34.06 ± 4.85%, 44.92 ± 2.19% respectively, P < 0.01). The total of 29 lipid subclasses and 1,133 lipid molecules in the post-thawed goat sperm were identified by lipidomics analysis. The lipid content of thawed sperm in HF group was higher than that in LF group, the lipid profile in HF group was significantly separated from LF group, which indicated that the difference in lipid composition and lipid metabolism mode of sperm between the two groups was existed, especially the expression of phosphatidylcholine and triglyceride molecules. In conclusion, the cryotolerance of sperm from different individual goats were in great variation. Sperm with high cryotolerance may be able to uptake more lipids during cryopreservation. The increase in phosphatidylcholine and triglyceride content of thawed. Sperm may relate to more active lipid anabolic processes.
Collapse
Affiliation(s)
- Bingbing Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Hongfu Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Zhen Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Weihang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Yongbin Liu
- Research Center for Animal Genetic Resources of Mongolian Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Jinlai Animal Husbandry Technology Co., Ltd., Hohhot, China
- *Correspondence: Jinquan Li
| | - Jiaxin Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
- Jiaxin Zhang
| |
Collapse
|
19
|
Carro M, Luquez JM, Peñalva DA, Buschiazzo J, Hozbor FA, Furland NE. PUFA-rich phospholipid classes and subclasses of ram spermatozoa are unevenly affected by cryopreservation with a soybean lecithin-based extender. Theriogenology 2022; 186:122-134. [PMID: 35468546 DOI: 10.1016/j.theriogenology.2022.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 01/10/2023]
Abstract
Cryopreservation is known to affect spermatozoa structure and function. Ram sperm are among the most highly sensitive mammalian gametes to freezing, due to their lipid composition, which limit their efficiency in artificial insemination programs. The aim of this study was to investigate the effects of cryopreservation with a chemically defined soybean lecithin-based extender on ram spermatozoa functionality on the one hand, and quantifiable changes in lipid and fatty acid profile on the other. Freeze-thawing decreased sperm quality, as indicated by post-thaw parameters related to membrane integrity, mitochondrial viability and sperm motility. The most relevant lipid change after cryopreservation was a remarkable loss of all glycerophospholipids containing 22:6n-3. Species of sphingomyelin with very long chain polyunsaturated fatty acids (VLC-PUFA), that are exclusively located in the sperm head, where responsible of its reduction after cryostorage. Freezing caused a reduction in mitochondrial function, which was confirmed by significantly decreased of mitochondrial membrane potential and by the generation of 4-HNE. Mitochondria damage was accompanied by a loss in cardiolipin with 18:2n-6 and phosphatidylethanolamine with 20:4n-6, two well-known lipids that are critical components for mitochondrial membrane functionality. Loss of sterols after cryopreservation occurred along with a decrease in the order of sperm membrane lipids. Our research provides new insights on deleterious effects of cryopreservation on PUFA-rich phospholipids of ram sperm and highlight their importance as biomarkers of ultrastructural, biochemical and functional damage that ram spermatozoa undergo after freezing-thawing.
Collapse
Affiliation(s)
- M Carro
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce, Argentina
| | - J M Luquez
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad Nacional del Sur (UNS), 8000, Bahía Blanca, Argentina
| | - D A Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad Nacional del Sur (UNS), 8000, Bahía Blanca, Argentina
| | - J Buschiazzo
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce, Argentina
| | - F A Hozbor
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce, Argentina
| | - N E Furland
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad Nacional del Sur (UNS), 8000, Bahía Blanca, Argentina.
| |
Collapse
|
20
|
Wang Z, Yu J, Zhong S, Fan Z, Wang F, Ji C, Wang Y, Lei C, Dang R, Zhao F. Metabolomic profiling of Dezhou donkey seminal plasma related to freezability. Reprod Domest Anim 2022; 57:1165-1175. [PMID: 35713115 DOI: 10.1111/rda.14187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/12/2022]
Abstract
Donkeys are indispensable livestock in China because they have transport function and medicinal value. With the popularization of artificial insemination on donkeys, semen cryopreservation technology has gradually become a research hotspot. Seminal plasma is a necessary medium for transporting sperm and provides energy and nutrition for sperm. Seminal plasma metabolites play an important role in the process of sperm freezing, and also have an important impact on sperm motility and fertilization rate after freezing and thawing. In this study, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was used to compare the metabolic characteristics of seminal plasma of high freezability (HF) and low freezability (LF) male donkeys. We identified 672 metabolites from donkey seminal plasma, of which 33 metabolites were significantly different between the two groups. Metabolites were identified and categorized according to their major chemical classes, including homogeneous non-metal compounds, nucleosides, nucleotides, and analogues, organosulphur compounds, phenylpropanoids and polyketide, organoheterocyclic compounds, organic oxygen compounds, benzenoids, organic acids and derivatives, lipids and lipid-like molecules, organooxygen compounds, alkaloids and derivatives, organic nitrogen compounds. The results showed that the contents of phosphatidylcholine, piceatannol and enkephalin in donkey semen of HF group were significantly higher than those of LF group (p < .05), while the contents of taurocholic and lysophosphatidic acid were significantly lower than those of LF group (p < .05). The different metabolites were mainly related to sperm biological pathway response and oxidative stress. These metabolites may be considered as candidate biomarkers for different fertility in jacks.
Collapse
Affiliation(s)
- Zhaofei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Jie Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China.,Dong-E-E-Jiao Co. Ltd., National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Done-E Country, China
| | - Shuai Zhong
- College of Pharmacy, Heze University, Heze, China
| | - Zhaobin Fan
- College of Pharmacy, Heze University, Heze, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Chuanliang Ji
- Dong-E-E-Jiao Co. Ltd., National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Done-E Country, China
| | - Yantao Wang
- Dong-E-E-Jiao Co. Ltd., National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Done-E Country, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Fuwei Zhao
- College of Pharmacy, Heze University, Heze, China
| |
Collapse
|
21
|
Dasgupta M, Kumaresan A, Saraf KK, Nag P, Sinha MK, Aslam M. K. M, Karthikkeyan G, Prasad TSK, Modi PK, Datta TK, Ramesha K, Manimaran A, Jeyakumar S. Deep Metabolomic Profiling Reveals Alterations in Fatty Acid Synthesis and Ketone Body Degradations in Spermatozoa and Seminal Plasma of Astheno-Oligozoospermic Bulls. Front Vet Sci 2022; 8:755560. [PMID: 35087889 PMCID: PMC8787163 DOI: 10.3389/fvets.2021.755560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Male fertility is extremely important in dairy animals because semen from a single bull is used to inseminate several thousand females. Asthenozoospermia (reduced sperm motility) and oligozoospermia (reduced sperm concentration) are the two important reasons cited for idiopathic infertility in crossbred bulls; however, the etiology remains elusive. In this study, using a non-targeted liquid chromatography with tandem mass spectrometry-based approach, we carried out a deep metabolomic analysis of spermatozoa and seminal plasma derived from normozoospermic and astheno-oligozoospermic bulls. Using bioinformatics tools, alterations in metabolites and metabolic pathways between normozoospermia and astheno-oligozoospermia were elucidated. A total of 299 and 167 metabolites in spermatozoa and 183 and 147 metabolites in seminal plasma were detected in astheno-oligozoospermic and normozoospermic bulls, respectively. Among the mapped metabolites, 75 sperm metabolites were common to both the groups, whereas 166 and 50 sperm metabolites were unique to astheno-oligozoospermic and normozoospermic bulls, respectively. Similarly, 86 metabolites were common to both the groups, whereas 45 and 37 seminal plasma metabolites were unique to astheno-oligozoospermic and normozoospermic bulls, respectively. Among the differentially expressed metabolites, 62 sperm metabolites and 56 seminal plasma metabolites were significantly dysregulated in astheno-oligozoospermic bulls. In spermatozoa, selenocysteine, deoxyuridine triphosphate, and nitroprusside showed significant enrichment in astheno-oligozoospermic bulls. In seminal plasma, malonic acid, 5-diphosphoinositol pentakisphosphate, D-cysteine, and nicotinamide adenine dinucleotide phosphate were significantly upregulated, whereas tetradecanoyl-CoA was significantly downregulated in the astheno-oligozoospermia. Spermatozoa from astheno-oligozoospermic bulls showed alterations in the metabolism of fatty acid and fatty acid elongation in mitochondria pathways, whereas seminal plasma from astheno-oligozoospermic bulls showed alterations in synthesis and degradation of ketone bodies, pyruvate metabolism, and inositol phosphate metabolism pathways. The present study revealed vital information related to semen metabolomic differences between astheno-oligozoospermic and normospermic crossbred breeding bulls. It is inferred that fatty acid synthesis and ketone body degradations are altered in the spermatozoa and seminal plasma of astheno-oligozoospermic crossbred bulls. These results open up new avenues for further research, and current findings can be applied for the modulation of identified pathways to restore sperm motility and concentration in astheno-oligozoospermic bulls.
Collapse
Affiliation(s)
- Mohua Dasgupta
- Theriogenology Laboratory, Southern Regional Station of Indian Council of Agricultural Research (ICAR)—National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of Indian Council of Agricultural Research (ICAR)—National Dairy Research Institute, Bengaluru, India
| | - Kaustubh Kishor Saraf
- Theriogenology Laboratory, Southern Regional Station of Indian Council of Agricultural Research (ICAR)—National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Theriogenology Laboratory, Southern Regional Station of Indian Council of Agricultural Research (ICAR)—National Dairy Research Institute, Bengaluru, India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of Indian Council of Agricultural Research (ICAR)—National Dairy Research Institute, Bengaluru, India
| | - Muhammad Aslam M. K.
- Base Farm, Kerala Veterinary and Animal Sciences University, Kolahalamedu, India
| | - Gayathree Karthikkeyan
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - T. S. Keshava Prasad
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant Kumar Modi
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, Indian Council of Agricultural Research (ICAR)—National Dairy Research Institute, Karnal, India
| | - Kerekoppa Ramesha
- Dairy Production Section, Southern Regional Station of Indian Council of Agricultural Research (ICAR)—National Dairy Research Institute, Bengaluru, India
| | - Ayyasamy Manimaran
- Dairy Production Section, Southern Regional Station of Indian Council of Agricultural Research (ICAR)—National Dairy Research Institute, Bengaluru, India
| | - Sakthivel Jeyakumar
- Dairy Production Section, Southern Regional Station of Indian Council of Agricultural Research (ICAR)—National Dairy Research Institute, Bengaluru, India
| |
Collapse
|
22
|
Yan G, Tian F, Liu P, Sun J, Mao J, Han W, Mo R, Guo S, Yu Q. Sheng Jing Decoction Can Promote Spermatogenesis and Increase Sperm Motility of the Oligozoospermia Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3686494. [PMID: 34899947 PMCID: PMC8654543 DOI: 10.1155/2021/3686494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 01/23/2023]
Abstract
Sheng Jing Decoction (SJD), as a traditional Chinese medicine prescription, is mainly be used to treat male infertility. However, the pharmacological functions and molecular mechanisms of SJD are poorly understood. In this study, we investigated the functions of SJD on spermatogenesis and sperm motility and explored the potential mechanisms involved. Here, we demonstrated that high, medium, and low doses of SJD are effective in restoring the impairments of the whole body and testicular tissue by cyclophosphamide inducing and to rescue the damage of testicular tissue cells including Sertoli cells and germ cells. SJD can partly restore the decrease in sperm concentration, sperm vitality, sperm motility, and normal sperm morphology rate in oligozoospermic mouse models. Ki67 staining analyses confirm SJD can promote testicular tissue cell proliferation. Real-time RT-PCR analyses also reveal that SJD can upregulate the expression of proliferation-associated gene Lin28a and differentiation-associated genes Kit, Sohlh2, and Stra8. SJD can also reduce the impairment of mitochondrial membrane potential (MMP) and sperm plasma membrane integrity by cyclophosphamide inducing. Our results reveal that SJD is effective in improving both sperm quantity and quality by increasing the sperm concentration, sperm vitality, sperm motility, and normal sperm morphology rate. SJD can promote spermatogenesis by upregulating the expression of the proliferation-associated gene Lin28a and the differentiation-associated genes (Kit, Sohlh2, and Stra8). SJD can sustain MMP and sperm plasma membrane integrity to increase sperm motility.
Collapse
Affiliation(s)
- Guang Yan
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Fang Tian
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Peng Liu
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Jianming Sun
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Jianmin Mao
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Wenjun Han
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Ran Mo
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Shishuai Guo
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Quanyao Yu
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| |
Collapse
|
23
|
Association between Fatty Acid Composition, Cryotolerance and Fertility Competence of Progressively Motile Bovine Spermatozoa. Animals (Basel) 2021; 11:ani11102948. [PMID: 34679969 PMCID: PMC8532703 DOI: 10.3390/ani11102948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 01/01/2023] Open
Abstract
An association between progressive motility (PM) and spermatozoa fertility competence has been suggested. However, the mechanism that underlies PM is not clear enough. We examined physiological characteristics and fatty acid composition of fresh spermatozoa with high and low PM. Additional analysis of fatty acid composition and structural characteristics was performed on spermatozoa samples with high and low progressively motile spermatozoa's survival (PMSS), i.e., the ratio between the proportion of progressively motile spermatozoa after and before cryopreservation. Finally, a fertility field trial was conducted to examine the association between the number of PM spermatozoa within the insemination straw post thawing and conception rate. Analysis of fresh spermatozoa revealed a higher omega-6 to omega-3 ratio in ejaculates with low PM relative to those with high PM (p < 0.01). The proportion of polyunsaturated fatty acids was higher in low-PMSS fresh samples (p < 0.05) relative to their high-PMSS counterparts. Fresh samples with high-PMSS expressed a higher mitochondrial membrane potential (p < 0.05) and a higher proportion of viable cells that expressed reactive oxygen species (ROS; p < 0.05). Post-thawing evaluation revealed a reduced proportion of progressively motile sperm, with a prominent effect in samples with high PM relative to low PM, defined before freezing (p < 0.01). No differences in spermatozoa mitochondrial membrane potential or ROS level were found post-thawing. A fertility study revealed a positive correlation between the number of progressively motile spermatozoa within a standard insemination straw and conception rate (p < 0.05). Considering these, the bull PMSS is suggested to be taken into account at the time of straw preparation.
Collapse
|
24
|
Sperm Lipid Markers of Male Fertility in Mammals. Int J Mol Sci 2021; 22:ijms22168767. [PMID: 34445473 PMCID: PMC8395862 DOI: 10.3390/ijms22168767] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Sperm plasma membrane lipids are essential for the function and integrity of mammalian spermatozoa. Various lipid types are involved in each key step within the fertilization process in their own yet coordinated way. The balance between lipid metabolism is tightly regulated to ensure physiological cellular processes, especially referring to crucial steps such as sperm motility, capacitation, acrosome reaction or fusion. At the same time, it has been shown that male reproductive function depends on the homeostasis of sperm lipids. Here, we review the effects of phospholipid, neutral lipid and glycolipid homeostasis on sperm fertilization function and male fertility in mammals.
Collapse
|
25
|
Chen S, Wang M, Li L, Wang J, Ma X, Zhang H, Cai Y, Kang B, Huang J, Li B. High-coverage targeted lipidomics revealed dramatic lipid compositional changes in asthenozoospermic spermatozoa and inverse correlation of ganglioside GM3 with sperm motility. Reprod Biol Endocrinol 2021; 19:105. [PMID: 34233713 PMCID: PMC8262046 DOI: 10.1186/s12958-021-00792-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND It has been previously demonstrated that cholesterol content and cholesterol/phospholipid ratio were significantly higher in asthenozoospermia and oligoasthenoteratozoospermia. The majority of published studies have investigated the fatty acid composition of phospholipids rather than lipids themselves. This study evaluated the lipid composition of asthenozoospermic and normozoospermic spermatozoa, and identified the exact lipid species that correlated with sperm motility. METHODS A total of 12 infertile asthenozoospermia patients and 12 normozoospermia subjects with normal sperm motility values were tested for semen volume, sperm concentration, count, motility, vitality and morphology. High-coverage targeted lipidomics with 25 individual lipid classes was performed to analyze the sperm lipid components and establish the exact lipid species that correlated with sperm motility. RESULTS A total of 25 individual lipid classes and 479 lipid molecular species were identified and quantified. Asthenozoospermic spermatozoa showed an increase in the level of four lipid classes, including Cho, PE, LPI and GM3. A total of 48 lipid molecular species were significantly altered between normozoospermic and asthenozoospermic spermatozoa. Furthermore, the levels of total GM3 and six GM3 molecular species, which were altered in normozoospermic spermatozoa versus asthenozoospermic spermatozoa, were inversely correlated with sperm progressive and total motility. CONCLUSIONS Several unique lipid classes and lipid molecular species were significantly altered between asthenozoospermic and normozoospermic spermatozoa, revealing new possibilities for further mechanistic pursuits and highlighting the development needs of culture medium formulations to improve sperm motility.
Collapse
Affiliation(s)
- Shuqiang Chen
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Ming Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Li Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Xuhui Ma
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Hengde Zhang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Yang Cai
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Bin Kang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Jianlei Huang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China.
| | - Bo Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China.
| |
Collapse
|
26
|
Miller RR, Beranek F, Anderson AL, Johnston SD, Nixon B. Plasma and acrosomal membrane lipid content of saltwater crocodile spermatozoa. Reprod Fertil Dev 2021; 33:596-604. [PMID: 33941311 DOI: 10.1071/rd21007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
This study describes the chemical lipid composition of the sperm plasma and acrosomal membranes of the saltwater crocodile Crocodylus porosus with the aim of providing new insights into sperm physiology, particularly that associated with their preservation ex vivo . The specific fatty acid composition of the sperm plasma and acrosomal membranes is documented. The mean (±s.d.) ratio of unsaturated to saturated membrane fatty acids within the plasma membrane was 2.57±0.50, and was determined to be higher than a similar analysis of the lipids found in the acrosomal membrane (0.70±0.10). The saltwater crocodile sperm plasma membrane also contained remarkably high levels of cholesterol (mean (±s.d.) 40.7±4.5 nmol per 106 sperm cells) compared with the spermatozoa of other amniote species that have so far been documented. We suggest that this high cholesterol content could be conferring stability to the crocodile sperm membrane, allowing it to tolerate extreme osmotic fluxes and rapid changes in temperature. Our descriptive analysis now provides those interested in reptile and comparative sperm physiology an improved baseline database for interpreting biochemical changes associated with preservation pathology (e.g. cold shock and cryoinjury), epididymal sperm maturation and capacitation/acrosome reaction.
Collapse
Affiliation(s)
- R R Miller
- Department of Biology, Hillsdale College, 33 E. College Street, Hillsdale, MI 49242, USA
| | - F Beranek
- Department of Biology, Hillsdale College, 33 E. College Street, Hillsdale, MI 49242, USA; and Controls Group, Limbach Company, 926 Featherstone Street, Pontiac, MI 48342, USA
| | - A L Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - S D Johnston
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Qld 4343, Australia; and Corresponding author
| | - B Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
27
|
DasGupta M, Kumaresan A, Saraf KK, Karthikkeyan G, Prasad TSK, Modi PK, Ramesha K, Jeyakumar S, Manimaran A. Preliminary comparative deep metabolomic analysis of spermatozoa from zebu and crossbred cattle suggests associations between metabolites, sperm quality and fertility. Reprod Fertil Dev 2021; 33:427-436. [DOI: 10.1071/rd20304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/15/2021] [Indexed: 12/28/2022] Open
Abstract
Poor semen quality and infertility/subfertility are more frequent in crossbred than zebu bulls. Using a high-throughput liquid chromatography–tandem mass spectrometry (LC-MS/MS)-based approach, we established the preliminary metabolomic profile of crossbred and zebu bull spermatozoa (n=3 bulls each) and identified changes in sperm metabolomics between the two groups. In all, 1732 and 1240 metabolites were detected in zebu and crossbred bull spermatozoa respectively. After excluding exogenous metabolites, 115 and 87 metabolites were found to be unique to zebu and crossbred bull spermatozoa respectively whereas 71 metabolites were common to both. In the normalised data, 49 metabolites were found to be differentially expressed between zebu and crossbred bull spermatozoa. The significantly enriched (P<0.05) pathways in spermatozoa were taurine and hypotaurine metabolism (observed metabolites taurine and hypotaurine) in zebu and glycerophospholipid metabolism (observed metabolites phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine) in crossbred bulls. The abundance of nitroprusside (variable importance in projection (VIP) score >1.5) was downregulated, whereas that of l-cysteine, acetyl coenzyme A and 2′-deoxyribonucleoside 5′-diphosphate (VIP scores >1.0) was upregulated in crossbred bull spermatozoa. In conclusion, this study established the metabolomic profile of zebu and crossbred bull spermatozoa and suggests that aberrations in taurine, hypotaurine and glycerophospholipid metabolism may be associated with the higher incidence of infertility/subfertility in crossbred bulls.
Collapse
|
28
|
Dalmazzo A, Losano JDA, Angrimani DSR, Pereira IVA, Goissis MD, Francischini MCP, Lopes E, Minazaki CK, Blank MH, Cogliati B, Pereira RJG, Barnabe VH, Nichi M. Immunolocalisation and expression of oxytocin receptors and sex hormone-binding globulin in the testis and epididymis of dogs: correlation with sperm function. Reprod Fertil Dev 2020; 31:1434-1443. [PMID: 31046900 DOI: 10.1071/rd18452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 02/25/2019] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to confirm gene and protein expression of oxytocin receptor (OTR) and sex hormone-binding globulin (SHBG) in the testis and epididymis of dogs, correlating these data with sperm quality and production and testosterone concentrations. Positive correlations were found between OTR and SHBG expression in both the testis and epididymis. Testicular OTR expression was positively associated with plasma membrane and acrosome integrity in canine spermatozoa, whereas SHBG expression in the testis was positively correlated with various sperm characteristics, such as sperm concentration, total and progressive motility, plasma membrane integrity and acrosome integrity. Testicular expression of both OTR and SHBG was negatively correlated with low sperm mitochondrial activity. In the epididymis, SHBG expression was only positively correlated with plasma membrane integrity. Analysis of protein expression revealed that testicular OTR was positively correlated with testosterone concentrations and negatively correlated with the absence of sperm mitochondrial activity. In addition, SHBG expression in the testes was associated with epididymis SHBG expression and morphologically normal cells. Immunohistochemical (IHC) analysis revealed the presence of both OTR and SHBG in testicular smooth muscles and Leydig cells. However, in the epididymis, OTR was only located in smooth muscle cells, whereas neither IHC nor western blotting detected SHBG. Together, the results of this study suggest that OTR and SHBG play key roles in spermatogenesis and sperm maturation, being essential for male reproductive success.
Collapse
Affiliation(s)
- Andressa Dalmazzo
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - João D A Losano
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Daniel S R Angrimani
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Isabel V A Pereira
- Department of Pathology, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Marcelo D Goissis
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Maria C P Francischini
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Everton Lopes
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | | | - Marcel H Blank
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Bruno Cogliati
- Department of Pathology, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Ricardo J G Pereira
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Valquiria H Barnabe
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Marcilio Nichi
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil; and Corresponding author.
| |
Collapse
|
29
|
Engel KM, Jakop U, Müller K, Grunewald S, Paasch U, Schiller J. MALDI MS Analysis to Investigate the Lipid Composition of Sperm. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411014666181030123256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The sperm plasma membrane meets the requirements of sperm transit
through the female genital tract and subsequent fertilization. Commonly, the (phospho)lipid composition
of sperm is characterized by tremendous amounts of highly unsaturated fatty acyl residues such
as docosahexaenoic and docosapentaenoic acid. While human sperm contain almost exclusively diacyl
lipids, many animal sperm additionally contain significant amounts of ether lipids such as alkylacyl-
and alkenyl-acyl lipids (plasmalogens).
Hypothesis/Objective:
It is suggested that deviations from the typical lipid composition are indicative
of pathological changes. Therefore, simple methods to elucidate the sperm lipid composition are essential.
Method:
Matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS) is a fast
and simple method. Since the selection of the most suitable matrix is a crucial step in MALDI MS,
this topic will be highlighted. It will also be shown that MALDI MS can be easily combined with
thin-layer chromatography to overcome ion suppression effects.
Results:
The lipid composition of sperm from different species can be elucidated by MALDI MS.
However, different matrix compounds have to be used to record positive and negative ion mass spectra.
Since some sperm (glyco)lipids are characterized by the presence of sulfate residues which suppress
the detection of less acidic lipids in the negative ion mode, previous separation is often necessary.
It will be also emphasized that plasmalogens can be easily identified by either enzymatic digestion
or treatment with acids.
Conclusion:
MALDI MS is a reliable method to obtain sperm lipid fingerprints in a simple and convenient
way.
Collapse
Affiliation(s)
- Kathrin M. Engel
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Ulrike Jakop
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - Karin Müller
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - Sonja Grunewald
- Dermatology, Venerology and Allergology Clinic, Andrological Unit, University Hospital Leipzig, Philipp-Rosenthal- Straße 23, D-04103, Leipzig, Germany
| | - Uwe Paasch
- Dermatology, Venerology and Allergology Clinic, Andrological Unit, University Hospital Leipzig, Philipp-Rosenthal- Straße 23, D-04103, Leipzig, Germany
| | - Jürgen Schiller
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| |
Collapse
|
30
|
Chłopik A, Wysokińska A. Canine spermatozoa-What do we know about their morphology and physiology? An overview. Reprod Domest Anim 2019; 55:113-126. [PMID: 31782838 DOI: 10.1111/rda.13596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/25/2019] [Indexed: 11/27/2022]
Abstract
Spermatozoa are unique cells because of their morphological and physiological characteristics. They are produced during the process called spermatogenesis. Spermatogenesis consists of three phases: spermatocytogenesis, spermiogenesis and spermiation, during which spermatozoa undergo several changes. Spermatogenesis takes place within the seminiferous tubules containing two types of cells-the germ cells and the Sertoli cells-that alongside the Leydig cells, which play an important role when it comes to normal fertility. Everything is regulated by the hypothalamic-pituitary-gonadal axis and specific hormones due to multi-hormonal feedback systems. Spermatozoa possess morphological and physiological features, which are sometimes completely different from what is observed in various somatic cells. What is more, canine spermatozoa have specific characteristics making them special compared to the spermatozoa of other mammalian species. The metabolic energy production, which is crucial for the appropriate functioning of spermatozoa, can be fuelled by different metabolic pathways utilizing different chemical substrates. Inseparable from the oxidative phosphorylation process is the production of reactive oxygen species, which are both essential and toxic to spermatozoa. Furthermore, epididymis is a very important structure, responsible for the transport and maturation of spermatozoa, which are then stored in the last segment of epididymis-the epididymal cauda. Moreover, the retrieval of spermatozoa from the epididymides is crucial for the development of assisted reproduction techniques and sperm cryopreservation methods. The information gained from the research on domestic dogs might be transferred to their wild relatives, especially those species categorized as endangered.
Collapse
Affiliation(s)
- Angelika Chłopik
- Department of Animal Reproduction and Hygiene, Faculty of Life Sciences, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Anna Wysokińska
- Department of Animal Reproduction and Hygiene, Faculty of Life Sciences, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| |
Collapse
|
31
|
Hernández-Avilés C, Ruíz-Cristancho A, Vergara-Galván M, Zambrano-Varón J, Jiménez-Escobar C. The Effect of N-N-Dimethylformamide on the Membrane Characteristics of Canine Spermatozoa After Cryopreservation, and its Relationship With Post-Thaw Motility. Top Companion Anim Med 2019; 38:100372. [PMID: 32115080 DOI: 10.1016/j.tcam.2019.100372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 11/29/2022]
Abstract
Some studies have demonstrated that glycerol is superior to amides in preserving sperm motion characteristics of canine sperm; however, little is known about the effect of these cryoprotectants on the membrane characteristics of canine spermatozoa after freezing/thawing. In this study, the effects of using either N-N-dimethylformamide (DMF) or glycerol (GLY) on the integrity and function of the canine sperm, after cryopreservation were determined. We hypothesized that the use of a multiparametric approach for assessing the effect of DMF on the membranes of canine sperm would explain the lower values reported for post-thaw motility. Ejaculates from 12 dogs were collected, split into 2 groups, and frozen using a tris-fructose-citrate-egg yolk-based extender containing either 7% (v/v) GLY or 7% (v/v) DMF. Frozen straws (n = 120) were thawed and analyzed for subjectively-assessed sperm progressive motility, normal morphology, plasma membrane integrity, plasma membrane function (HOST+), acrosome membrane integrity, high mitochondrial membrane potential, and simultaneous assessment of sperm membrane integrity and function by a triple-staining fluorescent procedure. Overall, sperm motility and membrane intactness/function were higher when GLY was used as a cryoprotectant, as compared to DMF (P < .05). A model to explain the variation in progressive motility using the values obtained from the sperm integrity and function parameters was designed. The percent HOST+ sperm and high mitochondrial membrane potential sperm were mostly associated with the changes observed in the progressive motility (r2 = 0.84; P = .043) when either GLY or DMF were used as cryoprotectants. These results may explain the overall reduced sperm quality observed after cryopreservation, as a reflection of sublethal damage sustained by the sperm membranes.
Collapse
Affiliation(s)
- Camilo Hernández-Avilés
- Reproductive Biotechnology Laboratory, Section of Theriogenology and Herd Health, Department of Animal Health, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogota, DC, Colombia
| | - Andrea Ruíz-Cristancho
- Reproductive Biotechnology Laboratory, Section of Theriogenology and Herd Health, Department of Animal Health, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogota, DC, Colombia
| | - Mónica Vergara-Galván
- Reproductive Biotechnology Laboratory, Section of Theriogenology and Herd Health, Department of Animal Health, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogota, DC, Colombia
| | - Jorge Zambrano-Varón
- Reproductive Biotechnology Laboratory, Section of Theriogenology and Herd Health, Department of Animal Health, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogota, DC, Colombia
| | - Claudia Jiménez-Escobar
- Reproductive Biotechnology Laboratory, Section of Theriogenology and Herd Health, Department of Animal Health, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogota, DC, Colombia.
| |
Collapse
|
32
|
Yang M, Hu J, Xia M, Wang Y, Tian F, Li W, Sun Y, Zhou Z. Zinc pyrithione induces immobilization of human spermatozoa and suppresses the response of the cAMP/PKA signaling pathway. Eur J Pharm Sci 2019; 137:104984. [PMID: 31276740 DOI: 10.1016/j.ejps.2019.104984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 11/29/2022]
Abstract
Zinc pyrithione (ZPT), a zinc coordination complex, is used as an antimicrobial agent. This study investigated the molecular mechanisms underlying ZPT-induced spermatozoa immobilization by examining plasma membrane integrity, mitochondrial dysfunction, and the cAMP/PKA signaling pathway response. ZPT inhibited spermatozoa motility and movement patterns in a concentration-dependent manner. The 100% effective concentration (EC100) and median effective concentration (EC50) at which ZPT-induced spermatozoa immobilization at 20 s were 40 μmol/L and 16.19 μmol/L, respectively. ZPT did not significantly disrupt spermatozoa plasma membranes, but it exerted a strong and significant effect on the depolarization of mitochondria. In addition, ZPT exposure induced intracellular H+ accumulation and Ca2+ dissipation in spermatozoa, accompanied by suppression of the cAMP/PKA signaling pathway. Thus, ZPT induces spermatozoa immobilization without significant plasma membrane injury and so could be a candidate microbicidal spermicide.
Collapse
Affiliation(s)
- Mingjun Yang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Jingying Hu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Minjie Xia
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Yuzhu Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Fang Tian
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Weihua Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China.
| | - Yinqiang Sun
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory of Public Health Safety of Ministry of Education/NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| |
Collapse
|
33
|
Ferreira G, Costa C, Bassaizteguy V, Santos M, Cardozo R, Montes J, Settineri R, Nicolson GL. Incubation of human sperm with micelles made from glycerophospholipid mixtures increases sperm motility and resistance to oxidative stress. PLoS One 2018; 13:e0197897. [PMID: 29856778 PMCID: PMC5984032 DOI: 10.1371/journal.pone.0197897] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/10/2018] [Indexed: 12/31/2022] Open
Abstract
Membrane integrity is essential in maintaining sperm viability, signaling, and motility, which are essential for fertilization. Sperm are highly susceptible to oxidative stress, as they are rich in sensitive polyunsaturated fatty acids (PUFA), and are unable to synthesize and repair many essential membrane constituents. Because of this, sperm cellular membranes are important targets of this process. Membrane Lipid Replacement (MLR) with glycerophospholipid mixtures (GPL) has been shown to ameliorate oxidative stress in cells, restore their cellular membranes, and prevent loss of function. Therefore, we tested the effects of MLR on sperm by tracking and monitoring GPL incorporation into their membrane systems and studying their effects on sperm motility and viability under different experimental conditions. Incubation of sperm with mixtures of exogenous, unoxidized GPL results in their incorporation into sperm membranes, as shown by the use of fluorescent dyes attached to GPL. The percent overall (total) sperm motility was increased from 52±2.5% to 68±1.34% after adding GPL to the incubation media, and overall sperm motility was recovered from 7±2% after H2O2 treatment to 58±2.5%)(n = 8, p<0.01) by the incorporation of GPL into sperm membranes. When sperm were exposed to H2O2, the mitochondrial inner membrane potential (MIMP), monitored using the MIMP tracker dye JC-1 in flow cytometry, diminished, whereas the addition of GPL prevented the decrease in MIMP. Confocal microscopy with Rhodamine-123 and JC-1 confirmed the mitochondrial localization of the dyes. We conclude that incubation of human sperm with glycerolphospholipids into the membranes of sperm improves sperm viability, motility, and resistance to oxidizing agents like H2O2. This suggests that human sperm might be useful to test innovative new treatments like MLR, since such treatments could improve fertility when it is adversely affected by increased oxidative stress.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Departamento de Biofísica, Laboratorio de Canales Iónicos y Señalización Celular, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carlos Costa
- Departamento de Biofísica, Laboratorio de Canales Iónicos y Señalización Celular, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Verónica Bassaizteguy
- Departamento de Biofísica, Laboratorio de Canales Iónicos y Señalización Celular, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Marcelo Santos
- Departamento de Biofísica, Laboratorio de Canales Iónicos y Señalización Celular, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Romina Cardozo
- Departamento de Biofísica, Laboratorio de Canales Iónicos y Señalización Celular, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | - Robert Settineri
- Sierra Productions Research, LLC, Irvine, California, United States of America
| | - Garth L. Nicolson
- Dept. of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, California, United States of America
| |
Collapse
|
34
|
Tufarelli V, Rizzo A, Lacalandra GM, Guaricci AC, Laudadio V, Valentini L. Effects of the supplementation with an high-polyphenols extra-virgin olive oil on kinetic sperm features and seminal plasma oxidative status in healthy dogs. Reprod Domest Anim 2018; 53:582-587. [PMID: 29383768 DOI: 10.1111/rda.13145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/07/2018] [Indexed: 02/04/2023]
Abstract
The aim of this work was to evaluate the effects of the supplementation of two extra-virgin olive oils (EVOO) having different polyphenols content, on canine spermatozoa kinetic parameters and seminal plasma oxidative status. The study was conducted on 12 clinically healthy dogs of different breeds (2-7 years, 5-48 kg of body weight) divided into two groups: an experimental group supplemented with EVOO (Coratina cultivar) high in polyphenols (H-P) and a control group fed EVOO (Cima di Bitonto cultivar) low in polyphenols (L-P). The oil was daily administered per os (1 ml/3 kg BW) before meal. Semen collection was made twice at 15 days distance (D01 and D02 ) and then at 30 (D30), 60 (D60) and 90 (D90) days. Semen concentration and kinetic parameters were measured using computer-assisted sperm analysis (CASA) system to evaluate: sperm total count, sperm motile (MOT%), progressive motility (PROGR%) and its fractions, straight-line velocity (VSL, μm/s), curvilinear velocity (VCL, μm/s), average path velocity (VAP, μm/s), amplitude of lateral head displacement (ALH, μm), beat cross frequency (BCF, Hz), straightness (STR%) and linearity (LIN%). On seminal plasma, reactive oxygen species (ROS) and biological antioxidant potential (BAP) were tested. From findings, no differences were found for sperm MOT, VSL, VCL, VAP, ALH, BCF, STR, LIN and BAP. A gradual enhancement of PROGR% was observed in H-P group (p < .01). The ROS levels were higher in dogs H-P compared to the other group (p < .05). In conclusion, our results highlight the positive effects of EVOO polyphenols on sperm PROGR% in healthy dogs.
Collapse
Affiliation(s)
- V Tufarelli
- Department of Emergency and Organ Transplantation (DETO), Section of Veterinary Clinics and Animal Production, University of Bari 'Aldo Moro', Valenzano, BA, Italy
| | - A Rizzo
- Department of Emergency and Organ Transplantation (DETO), Section of Veterinary Clinics and Animal Production, University of Bari 'Aldo Moro', Valenzano, BA, Italy
| | - G M Lacalandra
- Department of Emergency and Organ Transplantation (DETO), Section of Veterinary Clinics and Animal Production, University of Bari 'Aldo Moro', Valenzano, BA, Italy
| | - A C Guaricci
- Department of Emergency and Organ Transplantation (DETO), Section of Veterinary Clinics and Animal Production, University of Bari 'Aldo Moro', Valenzano, BA, Italy
| | - V Laudadio
- Department of Emergency and Organ Transplantation (DETO), Section of Veterinary Clinics and Animal Production, University of Bari 'Aldo Moro', Valenzano, BA, Italy
| | - L Valentini
- Department of Emergency and Organ Transplantation (DETO), Section of Veterinary Clinics and Animal Production, University of Bari 'Aldo Moro', Valenzano, BA, Italy
| |
Collapse
|
35
|
Zhang Y, Guan Y, Fan X, Wu L, Wang Z. Bisphenol A regulates rare minnow testicular vitellogenin expression via reducing its promoter Er recruitment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:423-429. [PMID: 28888792 DOI: 10.1016/j.ecoenv.2017.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/27/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Vitellogenins (Vtgs) are major precursor of the egg-yolk proteins. They are synthesized in liver of adult female ovipara, but normally silent in males. For their sensitive response to estrogen, Vtgs are usually used as biomarkers for environmental estrogenic compounds. In the present study, three vtg subtypes (vtg1, vtg2 and vtg3) were proved to present in the testis of rare minnow Gobiocypris rarus for the first time. Immunohistochemistry result showed that Vtg proteins mainly deposit in spermatogonium and spermatocytes. Following 225μg/L bisphenol A (BPA) exposure 1, 3 and 9 weeks, testicular vtg mRNAs were mostly significantly decreased. The further chromatin immunoprecipitation showed that BPA could decrease estrogen receptor (Er) recruitment in vtg promoter, which possibly reduced Er's transcription activation effect on vtgs. However, different from the continuously decreased vtg mRNA levels, testicular Vtg protein levels were recovered at week 9. Considering the induced hepatic Vtg expression, testicular Vtgs may be replenished by the induced hepatic Vtgs under BPA exposure.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Lang Wu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|