1
|
Ryanto GRT, Suraya R, Nagano T. The Importance of Lung Innate Immunity During Health and Disease. Pathogens 2025; 14:91. [PMID: 39861052 PMCID: PMC11768135 DOI: 10.3390/pathogens14010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The lung is a vital organ for the body as the main source of oxygen input. Importantly, it is also an internal organ that has direct contact with the outside world. Innate immunity is a vital protective system in various organs, whereas, in the case of the lung, it helps maintain a healthy, functioning cellular and molecular environment and prevents any overt damage caused by pathogens or other inflammatory processes. Disturbances in lung innate immunity properties and processes, whether over-responsiveness of the process triggered by innate immunity or lack of responses due to dysfunctions in the immune cells that make up the innate immunity system of the lung, could be correlated to various pathological conditions. In this review, we discuss globally how the components of lung innate immunity are important not only for maintaining lung homeostasis but also during the pathophysiology of notable lung diseases beyond acute pulmonary infections, including chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Gusty Rizky Teguh Ryanto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Ratoe Suraya
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
2
|
Boedijono FS, Bood V, Eichhorn IA, Hansbro PM, Slebos DJ, van den Berge M, Faiz A, Pouwels SD. Identification of Genetic Factors Associated With DAMP Release in COPD Patients. Arch Bronconeumol 2024; 60:714-717. [PMID: 39034199 DOI: 10.1016/j.arbres.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/28/2024] [Indexed: 07/23/2024]
Affiliation(s)
- Fia Sabrina Boedijono
- Respiratory Bioinformatics and Molecular Biology Group, University of Technology Sydney, Australia; Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Verena Bood
- Department of Pulmonary Diseases, University Medical Center Groningen, The Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Ilse A Eichhorn
- Department of Pulmonary Diseases, University Medical Center Groningen, The Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Dirk-Jan Slebos
- Department of Pulmonary Diseases, University Medical Center Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonary Diseases, University Medical Center Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Alen Faiz
- Respiratory Bioinformatics and Molecular Biology Group, University of Technology Sydney, Australia
| | - Simon D Pouwels
- Department of Pulmonary Diseases, University Medical Center Groningen, The Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Zhang Y, Huang T, Wang J, Wang G, Luo F. Roles of gender and smoking in the associations between urinary phytoestrogens and asthma/wheeze and lung function: evidence from a cross-sectional study. BMJ Open Respir Res 2024; 11:e001708. [PMID: 38448045 PMCID: PMC10916099 DOI: 10.1136/bmjresp-2023-001708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND The role of phytoestrogens in asthma/wheeze and lung function remains controversial. Thus, we aimed to examine whether phytoestrogens have beneficial effects on asthma/wheeze, lung function for subgroups and mortality. METHODS Participants in this study were individuals aged 20 years or older from the National Health and Nutrition Examination Survey. Multivariate logistic regression models were fitted to examine the associations of urinary phytoestrogens with the risk of asthma/wheeze and lung function in individuals with and without asthma/wheeze. Cox proportional hazards regression was used to examine the relationship between urinary phytoestrogens and all-cause mortality. Stratified analyses were conducted based on gender and smoking status. RESULTS We included 2465 individuals in this study. Enterolactone levels in the highest quartile were associated with a lower risk of asthma than those in the lowest quartile. As compared with the lowest quartile, the highest quartile of enterodiol and enterolactone was associated with a lower risk of wheeze. Significant associations were observed between subtypes of phytoestrogens (equol and enterolactone) and lung function (forced vital capacity (FVC) and forced expiratory volume in 1 s). Besides, FVC was higher in individuals with higher levels of enterodiol. The results were consistent in subpopulations without asthma/wheeze, while the significant difference was not observed in individuals with asthma/wheeze. The stratified analyses revealed that the associations between phytoestrogens and lung function differed by gender and smoking status among subgroups. No significant association was found between urinary phytoestrogens and all-cause mortality. CONCLUSION In summary, subtypes of phytoestrogens were associated with lower risk of asthma/wheeze and beneficial for lung function improvement in individuals without asthma/wheeze. Furthermore, gender and smoking may interact in the relationship between phytoestrogens and asthma/wheeze, and lung function. Further researches are needed to confirm these associations and explain the results of stratified analyses.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Diseases, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Tingxuan Huang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ji Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Diseases, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Diseases, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Diseases, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Kapellos TS, Baßler K, Fujii W, Nalkurthi C, Schaar AC, Bonaguro L, Pecht T, Galvao I, Agrawal S, Saglam A, Dudkin E, Frishberg A, de Domenico E, Horne A, Donovan C, Kim RY, Gallego-Ortega D, Gillett TE, Ansari M, Schulte-Schrepping J, Offermann N, Antignano I, Sivri B, Lu W, Eapen MS, van Uelft M, Osei-Sarpong C, van den Berge M, Donker HC, Groen HJM, Sohal SS, Klein J, Schreiber T, Feißt A, Yildirim AÖ, Schiller HB, Nawijn MC, Becker M, Händler K, Beyer M, Capasso M, Ulas T, Hasenauer J, Pizarro C, Theis FJ, Hansbro PM, Skowasch D, Schultze JL. Systemic alterations in neutrophils and their precursors in early-stage chronic obstructive pulmonary disease. Cell Rep 2023; 42:112525. [PMID: 37243592 PMCID: PMC10320832 DOI: 10.1016/j.celrep.2023.112525] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/18/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023] Open
Abstract
Systemic inflammation is established as part of late-stage severe lung disease, but molecular, functional, and phenotypic changes in peripheral immune cells in early disease stages remain ill defined. Chronic obstructive pulmonary disease (COPD) is a major respiratory disease characterized by small-airway inflammation, emphysema, and severe breathing difficulties. Using single-cell analyses we demonstrate that blood neutrophils are already increased in early-stage COPD, and changes in molecular and functional neutrophil states correlate with lung function decline. Assessing neutrophils and their bone marrow precursors in a murine cigarette smoke exposure model identified similar molecular changes in blood neutrophils and precursor populations that also occur in the blood and lung. Our study shows that systemic molecular alterations in neutrophils and their precursors are part of early-stage COPD, a finding to be further explored for potential therapeutic targets and biomarkers for early diagnosis and patient stratification.
Collapse
Affiliation(s)
- Theodore S Kapellos
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Kevin Baßler
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Wataru Fujii
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Christina Nalkurthi
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Anna C Schaar
- Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, 85748 Garching, Germany
| | - Lorenzo Bonaguro
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany
| | - Tal Pecht
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Izabela Galvao
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Shobhit Agrawal
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Adem Saglam
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany
| | - Erica Dudkin
- Computational Life Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Amit Frishberg
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Elena de Domenico
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany
| | - Arik Horne
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Chantal Donovan
- University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia; Immune Health, Hunter Medical Research Institute, New Lambton and The University of Newcastle, Newcastle, NSW 2305, Australia
| | - Richard Y Kim
- University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia; Immune Health, Hunter Medical Research Institute, New Lambton and The University of Newcastle, Newcastle, NSW 2305, Australia
| | - David Gallego-Ortega
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Garvan Institute of Medical Research, and St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Tessa E Gillett
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; GRIAC Research Institute, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Jonas Schulte-Schrepping
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Nina Offermann
- Immunregulation, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Ignazio Antignano
- Immunregulation, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Burcu Sivri
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7250 TAS, Australia
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7250 TAS, Australia
| | - Martina van Uelft
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Collins Osei-Sarpong
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Maarten van den Berge
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Hylke C Donker
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Harry J M Groen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7250 TAS, Australia
| | - Johanna Klein
- Department of Internal Medicine II, Pneumology, University Hospital Bonn, 53127 Bonn, Germany
| | - Tina Schreiber
- Department of Internal Medicine II, Pneumology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andreas Feißt
- University Clinics for Radiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Martijn C Nawijn
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; GRIAC Research Institute, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Matthias Becker
- Modular HPC and AI, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Kristian Händler
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany; Institute of Human Genetics, University of Lübeck, 23562 Lübeck, Germany
| | - Marc Beyer
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany; Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Melania Capasso
- Immunregulation, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Thomas Ulas
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany
| | - Jan Hasenauer
- Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, 85748 Garching, Germany; Computational Life Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Carmen Pizarro
- Department of Internal Medicine II, Pneumology, University Hospital Bonn, 53127 Bonn, Germany
| | - Fabian J Theis
- Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, 85748 Garching, Germany
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia; University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Dirk Skowasch
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7250 TAS, Australia
| | - Joachim L Schultze
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, 85748 Garching, Germany.
| |
Collapse
|
5
|
Arora A, Singh A. Exploring the role of neutrophils in infectious and noninfectious pulmonary disorders. Int Rev Immunol 2023; 43:41-61. [PMID: 37353973 DOI: 10.1080/08830185.2023.2222769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/31/2023] [Indexed: 06/25/2023]
Abstract
With the change in global environment, respiratory disorders are becoming more threatening to the health of people all over the world. These diseases are closely linked to performance of immune system. Within the innate arm of immune system, Neutrophils are an important moiety to serve as an immune defense barrier. They are one of the first cells recruited to the site of infection and plays a critical role in pathogenesis of various pulmonary diseases. It is established that the migration and activation of neutrophils can lead to inflammation either directly or indirectly and this inflammation caused is very crucial for the clearance of pathogens and resolution of infection. However, the immunopathological mechanisms involved to carry out the same is very complex and not well understood. Despite there being studies concentrating on the role of neutrophils in multiple respiratory diseases, there is still a long way to go in order to completely understand the complexity of the participation of neutrophils and mechanisms involved in the development of these respiratory diseases. In the present article, we have reviewed the literature to comprehensively provide an insight in the current development and advancements about the role of neutrophils in infectious respiratory disorders including viral respiratory disorders such as Coronavirus disease (COVID-19) and bacterial pulmonary disorders with a focused review on pulmonary tuberculosis as well as in noninfectious disorders like Chronic obstructive pulmonary disease (COPD) and asthma. Also, future directions into research and therapeutic targets have been discussed for further exploration.
Collapse
Affiliation(s)
- Alisha Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Archana Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
6
|
Kokturk N, Khodayari N, Lascano J, Riley EL, Brantly ML. Lung Inflammation in alpha-1-antitrypsin deficient individuals with normal lung function. Respir Res 2023; 24:40. [PMID: 36732772 PMCID: PMC9893669 DOI: 10.1186/s12931-023-02343-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Alpha-1-antitrypsin deficient (AATD) individuals are prone to develop early age of onset chronic obstructive pulmonary disease (COPD) more severe than non-genetic COPD. Here, we investigated the characteristics of lower respiratory tract of AATD individuals prior to the onset of clinically significant COPD. METHODS Bronchoalveolar lavage was performed on 22 AATD with normal lung function and 14 healthy individuals. Cell counts and concentrations of proteases, alpha-1-antitrypsin and proinflammatory mediators were determined in the bronchoalveolar lavage fluid from study subjects. In order to determine the airway inflammation, we also analyzed immune cell components of the large airways from bronchial biopsies using immunohistochemistry in both study subjects. Finally, we made comparisons between airway inflammation and lung function rate of decline using four repeated lung function tests over one year in AATD individuals. RESULTS AATD individuals with normal lung function had 3 folds higher neutrophil counts, 2 folds increase in the proteases levels, and 2-4 folds higher levels of IL-8, IL-6, IL-1β, and leukotriene B4 in their epithelial lining fluid compared to controls. Neutrophil elastase levels showed a positive correlation with the levels of IL-8 and neutrophils in AATD epithelial lining fluid. AATD individuals also showed a negative correlation of baseline FEV1 with neutrophil count, neutrophil elastase, and cytokine levels in epithelial lining fluid (p < 0.05). In addition, we observed twofold increase in the number of lymphocytes, macrophages, neutrophils, and mast cells of AATD epithelial lining fluid as compared to controls. CONCLUSION Mild inflammation is present in the lower respiratory tract and airways of AATD individuals despite having normal lung function. A declining trend was also noticed in the lung function of AATD individuals which was correlated with pro-inflammatory phenotype of their lower respiratory tract. This results suggest the presence of proinflammatory phenotype in AATD lungs. Therefore, early anti-inflammatory therapies may be a potential strategy to prevent progression of lung disease in AATD individuals.
Collapse
Affiliation(s)
- Nurdan Kokturk
- Division of Pulmonary, Critical Care and Sleep Medicine, J. Hillis Miller Health Science Center, University of Florida College of Medicine, P.O. Box 100225, Gainesville, FL, 32610-0225, USA
- Department of Pulmonary and Critical Care, Gazi University School of Medicine, Ankara, Turkey
| | - Nazli Khodayari
- Division of Pulmonary, Critical Care and Sleep Medicine, J. Hillis Miller Health Science Center, University of Florida College of Medicine, P.O. Box 100225, Gainesville, FL, 32610-0225, USA
| | - Jorge Lascano
- Division of Pulmonary, Critical Care and Sleep Medicine, J. Hillis Miller Health Science Center, University of Florida College of Medicine, P.O. Box 100225, Gainesville, FL, 32610-0225, USA
| | | | - Mark L Brantly
- Division of Pulmonary, Critical Care and Sleep Medicine, J. Hillis Miller Health Science Center, University of Florida College of Medicine, P.O. Box 100225, Gainesville, FL, 32610-0225, USA.
| |
Collapse
|
7
|
Wu Y, Di X, Zhao M, Li H, Bai L, Wang K. The role of the NLRP3 inflammasome in chronic inflammation in asthma and chronic obstructive pulmonary disease. Immun Inflamm Dis 2022; 10:e750. [PMID: 36444628 PMCID: PMC9695095 DOI: 10.1002/iid3.750] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are lung diseases characterized by airflow limitation and chronic inflammation. More and more studies have shown that the occurrence and development of asthma and COPD are related to abnormal immune responses caused by dysregulation of many genetic and environmental factors. The exact pathogenesis of the disease is still unclear. A large number of studies have shown that the NLRP3 inflammasome is involved in the process of chronic airway inflammation in asthma and COPD. Here, we summarize recent advances in the mechanism of NLRP3 inflammasome activation and regulation and its role in the pathogenesis of inflammatory lung diseases such as asthma and COPD. Meanwhile we propose possible therapeutic targets in asthma and COPD.
Collapse
Affiliation(s)
- Yaxin Wu
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Xin Di
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Min Zhao
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Haoran Li
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Li Bai
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Ke Wang
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
8
|
Kwak SB, Kim SJ, Kim J, Kang YL, Ko CW, Kim I, Park JW. Tumor regionalization after surgery: Roles of the tumor microenvironment and neutrophil extracellular traps. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:720-729. [PMID: 35764882 PMCID: PMC9256747 DOI: 10.1038/s12276-022-00784-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022]
Abstract
Surgery is unanimously regarded as the primary strategy to cure solid tumors in the early stages but is not always used in advanced cases. However, tumor surgery must be carefully considered because the risk of metastasis could be increased by the surgical procedure. Tumor surgery may result in a deep wound, which induces many biological responses favoring tumor metastasis. In particular, NETosis, which is the process of forming neutrophil extracellular traps (NETs), has received attention as a risk factor for surgery-induced metastasis. To reduce cancer mortality, researchers have made efforts to prevent secondary metastasis after resection of the primary tumor. From this point of view, a better understanding of surgery-induced metastasis might provide new strategies for more effective and safer surgical approaches. In this paper, recent insights into the surgical effects on metastasis will be reviewed. Moreover, in-depth opinions about the effects of NETs on metastasis will be discussed. Therapies that limit the formation of web-like structures formed by white cells known as neutrophils may lower the risk of cancer spread (metastasis) following surgical tumor removal. Removing solid tumors remains a key cancer treatment, but in some cases surgery itself increases the risk of metastasis. Jong-Wan Park at Seoul National University, South Korea, and co-workers reviewed current understanding of metastasis following surgery. Surgical removal destroys the architecture supporting cancer cells but this can release tumor cells into blood vessels. The stress of deep wounds also affects immune responses, most notably neutrophil extracellular traps (NETs), web-like structures formed by neutrophils to trap and kill pathogens. NETs have previously been implicated in metastasis. In a post-surgical environment enriched in neutrophils and pro-inflammatory cytokines, NET formation may help cancer cells thrive, promoting metastasis.
Collapse
Affiliation(s)
- Su-Bin Kwak
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Biomedical Science, BK21-plus Education Program, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Sang Jin Kim
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jiyoung Kim
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Ye-Lim Kang
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Biomedical Science, BK21-plus Education Program, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Chang Woo Ko
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Biomedical Science, BK21-plus Education Program, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Iljin Kim
- Department of Pharmacology, Inha University College of Medicine, Inha-ro, Michuhol-gu, Incheon, 22212, Korea
| | - Jong-Wan Park
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea. .,Department of Biomedical Science, BK21-plus Education Program, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea. .,Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
9
|
Pera T, Loblundo C, Penn RB. Pharmacological Management of Asthma and COPD. COMPREHENSIVE PHARMACOLOGY 2022:762-802. [DOI: 10.1016/b978-0-12-820472-6.00095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Effah CY, Drokow EK, Agboyibor C, Ding L, He S, Liu S, Akorli SY, Nuamah E, Sun T, Zhou X, Liu H, Xu Z, Feng F, Wu Y, Zhang X. Neutrophil-Dependent Immunity During Pulmonary Infections and Inflammations. Front Immunol 2021; 12:689866. [PMID: 34737734 PMCID: PMC8560714 DOI: 10.3389/fimmu.2021.689866] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Rapid recruitment of neutrophils to an inflamed site is one of the hallmarks of an effective host defense mechanism. The main pathway through which this happens is by the innate immune response. Neutrophils, which play an important part in innate immune defense, migrate into lungs through the modulation actions of chemokines to execute a variety of pro-inflammatory functions. Despite the importance of chemokines in host immunity, little has been discussed on their roles in host immunity. A holistic understanding of neutrophil recruitment, pattern recognition pathways, the roles of chemokines and the pathophysiological roles of neutrophils in host immunity may allow for new approaches in the treatment of infectious and inflammatory disease of the lung. Herein, this review aims at highlighting some of the developments in lung neutrophil-immunity by focusing on the functions and roles of CXC/CC chemokines and pattern recognition receptors in neutrophil immunity during pulmonary inflammations. The pathophysiological roles of neutrophils in COVID-19 and thromboembolism have also been summarized. We finally summarized various neutrophil biomarkers that can be utilized as prognostic molecules in pulmonary inflammations and discussed various neutrophil-targeted therapies for neutrophil-driven pulmonary inflammatory diseases.
Collapse
Affiliation(s)
| | - Emmanuel Kwateng Drokow
- Department of Radiation Oncology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shaohua Liu
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Senyo Yao Akorli
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Nuamah
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Tongwen Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolei Zhou
- Department of Respiratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Hong Liu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Xu
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
11
|
Dean MJ, Ochoa JB, Sanchez-Pino MD, Zabaleta J, Garai J, Del Valle L, Wyczechowska D, Baiamonte LB, Philbrook P, Majumder R, Vander Heide RS, Dunkenberger L, Thylur RP, Nossaman B, Roberts WM, Chapple AG, Wu J, Hicks C, Collins J, Luke B, Johnson R, Koul HK, Rees CA, Morris CR, Garcia-Diaz J, Ochoa AC. Severe COVID-19 Is Characterized by an Impaired Type I Interferon Response and Elevated Levels of Arginase Producing Granulocytic Myeloid Derived Suppressor Cells. Front Immunol 2021; 12:695972. [PMID: 34341659 PMCID: PMC8324422 DOI: 10.3389/fimmu.2021.695972] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 ranges from asymptomatic in 35% of cases to severe in 20% of patients. Differences in the type and degree of inflammation appear to determine the severity of the disease. Recent reports show an increase in circulating monocytic-myeloid-derived suppressor cells (M-MDSC) in severe COVID 19 that deplete arginine but are not associated with respiratory complications. Our data shows that differences in the type, function and transcriptome of granulocytic-MDSC (G-MDSC) may in part explain the severity COVID-19, in particular the association with pulmonary complications. Large infiltrates by Arginase 1+ G-MDSC (Arg+G-MDSC), expressing NOX-1 and NOX-2 (important for production of reactive oxygen species) were found in the lungs of patients who died from COVID-19 complications. Increased circulating Arg+G-MDSC depleted arginine, which impaired T cell receptor and endothelial cell function. Transcriptomic signatures of G-MDSC from patients with different stages of COVID-19, revealed that asymptomatic patients had increased expression of pathways and genes associated with type I interferon (IFN), while patients with severe COVID-19 had increased expression of genes associated with arginase production, and granulocyte degranulation and function. These results suggest that asymptomatic patients develop a protective type I IFN response, while patients with severe COVID-19 have an increased inflammatory response that depletes arginine, impairs T cell and endothelial cell function, and causes extensive pulmonary damage. Therefore, inhibition of arginase-1 and/or replenishment of arginine may be important in preventing/treating severe COVID-19.
Collapse
Affiliation(s)
- Matthew J. Dean
- Louisiana State University Cancer Center, New Orleans, LA, United States
| | - Juan B. Ochoa
- Department of Surgery, Ochsner Medical Center, New Orleans, LA, United States
| | - Maria Dulfary Sanchez-Pino
- Louisiana State University Cancer Center, New Orleans, LA, United States
- Department of Genetics, LSU Health, New Orleans, LA, United States
| | - Jovanny Zabaleta
- Louisiana State University Cancer Center, New Orleans, LA, United States
- Department of Pediatrics, LSU Health, New Orleans, LA, United States
| | - Jone Garai
- Louisiana State University Cancer Center, New Orleans, LA, United States
| | - Luis Del Valle
- Louisiana State University Cancer Center, New Orleans, LA, United States
- Department of Pathology LSU Health, New Orleans, LA, United States
| | | | | | - Phaethon Philbrook
- Louisiana State University Cancer Center, New Orleans, LA, United States
- Department of Genetics, LSU Health, New Orleans, LA, United States
| | - Rinku Majumder
- Department of Biochemistry, LSU Health, New Orleans, LA, United States
| | | | - Logan Dunkenberger
- Louisiana State University Cancer Center, New Orleans, LA, United States
| | | | - Bobby Nossaman
- Department of Surgery, Ochsner Medical Center, New Orleans, LA, United States
| | - W. Mark Roberts
- Department of Internal Medicine, Ochsner Medical Center, New Orleans, LA, United States
| | - Andrew G. Chapple
- Louisiana State University Cancer Center, New Orleans, LA, United States
- School of Public Health, LSU Health, New Orleans, LA, United States
| | - Jiande Wu
- Department of Genetics, LSU Health, New Orleans, LA, United States
| | - Chindo Hicks
- Department of Genetics, LSU Health, New Orleans, LA, United States
| | - Jack Collins
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Brian Luke
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Randall Johnson
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Hari K. Koul
- Louisiana State University Cancer Center, New Orleans, LA, United States
- Department of Biochemistry, LSU Health, New Orleans, LA, United States
| | - Chris A. Rees
- Division of Emergency Medicine, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Claudia R. Morris
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Julia Garcia-Diaz
- Tissue Biorepository, Ochsner Medical Center, New Orleans, LA, United States
| | - Augusto C. Ochoa
- Louisiana State University Cancer Center, New Orleans, LA, United States
- Department of Pediatrics, LSU Health, New Orleans, LA, United States
| |
Collapse
|
12
|
Zivkovic S, Ayazi M, Hammel G, Ren Y. For Better or for Worse: A Look Into Neutrophils in Traumatic Spinal Cord Injury. Front Cell Neurosci 2021; 15:648076. [PMID: 33967695 PMCID: PMC8100532 DOI: 10.3389/fncel.2021.648076] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are short-lived cells of the innate immune system and the first line of defense at the site of an infection and tissue injury. Pattern recognition receptors on neutrophils recognize pathogen-associated molecular patterns or danger-associated molecular patterns, which recruit them to the destined site. Neutrophils are professional phagocytes with efficient granular constituents that aid in the neutralization of pathogens. In addition to phagocytosis and degranulation, neutrophils are proficient in creating neutrophil extracellular traps (NETs) that immobilize pathogens to prevent their spread. Because of the cytotoxicity of the associated granular proteins within NETs, the microbes can be directly killed once immobilized by the NETs. The role of neutrophils in infection is well studied; however, there is less emphasis placed on the role of neutrophils in tissue injury, such as traumatic spinal cord injury. Upon the initial mechanical injury, the innate immune system is activated in response to the molecules produced by the resident cells of the injured spinal cord initiating the inflammatory cascade. This review provides an overview of the essential role of neutrophils and explores the contribution of neutrophils to the pathologic changes in the injured spinal cord.
Collapse
Affiliation(s)
- Sandra Zivkovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Maryam Ayazi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Grace Hammel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
13
|
Dean MJ, Ochoa JB, Sanchez-Pino M, Zabaleta J, Garai J, Del Valle L, Wyczechowska D, Buckner L, Philbrook P, Majumder R, Heide RV, Dunkenberger L, Thylur R, Nossaman R, Roberts WM, Chapple A, Collins J, Luke B, Johnson R, Koul H, Rees CA, Morris CR, Garcia-Diaz J, Ochoa AC. Transcriptome and Functions of Granulocytic Myeloid-Derived Suppressor Cells Determine their Association with Disease Severity of COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33791717 DOI: 10.1101/2021.03.26.21254441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
COVID-19 ranges from asymptomatic in 35% of cases to severe in 20% of patients. Differences in the type and degree of inflammation appear to determine the severity of the disease. Recent reports show an increase in circulating monocytic-myeloid-derived suppressor cells (M-MDSC) in severe COVID 19, that deplete arginine but are not associated with respiratory complications. Our data shows that differences in the type, function and transcriptome of Granulocytic-MDSC (G-MDSC) may in part explain the severity COVID-19, in particular the association with pulmonary complications. Large infiltrates by Arginase 1 + G-MDSC (Arg + G-MDSC), expressing NOX-1 and NOX-2 (important for production of reactive oxygen species) were found in the lungs of patients who died from COVID-19 complications. Increased circulating Arg + G-MDSC depleted arginine, which impaired T cell receptor and endothelial cell function. Transcriptomic signatures of G-MDSC from patients with different stages of COVID-19, revealed that asymptomatic patients had increased expression of pathways and genes associated with type I interferon (IFN), while patients with severe COVID-19 had increased expression of genes associated with arginase production, and granulocyte degranulation and function. These results suggest that asymptomatic patients develop a protective type I IFN response, while patients with severe COVID-19 have an increased inflammatory response that depletes arginine, impairs T cell and endothelial cell function, and causes extensive pulmonary damage. Therefore, inhibition of arginase-1 and/or replenishment of arginine may be important in preventing/treating severe COVID-19.
Collapse
|
14
|
Trivedi A, Khan MA, Bade G, Talwar A. Orchestration of Neutrophil Extracellular Traps (Nets), a Unique Innate Immune Function during Chronic Obstructive Pulmonary Disease (COPD) Development. Biomedicines 2021; 9:53. [PMID: 33435568 PMCID: PMC7826777 DOI: 10.3390/biomedicines9010053] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
Morbidity, mortality and economic burden caused by chronic obstructive pulmonary disease (COPD) is a significant global concern. Surprisingly, COPD is already the third leading cause of death worldwide, something that WHO had not predicted to occur until 2030. It is characterized by persistent respiratory symptoms and airway limitation due to airway and/or alveolar abnormalities usually caused by significant exposure to noxious particles of gases. Neutrophil is one of the key infiltrated innate immune cells in the lung during the pathogenesis of COPD. Neutrophils during pathogenic attack or injury decide to undergo for a suicidal death by releasing decondensed chromatin entangled with antimicrobial peptides to trap and ensnare pathogens. Casting neutrophil extracellular traps (NETs) has been widely demonstrated to be an effective mechanism against invading microorganisms thus controlling overwhelming infections. However, aberrant and massive NETs formation has been reported in several pulmonary diseases, including chronic obstructive pulmonary disease. Moreover, NETs can directly induce epithelial and endothelial cell death resulting in impairing pulmonary function and accelerating the progression of the disease. Therefore, understanding the regulatory mechanism of NET formation is the need of the hour in order to use NETs for beneficial purpose and controlling their involvement in disease exacerbation. For example, DNA neutralization of NET proteins using protease inhibitors and disintegration with recombinant human DNase would be helpful in controlling excess NETs. Targeting CXC chemokine receptor 2 (CXCR2) would also reduce neutrophilic inflammation, mucus production and neutrophil-proteinase mediated tissue destruction in lung. In this review, we discuss the interplay of NETs in the development and pathophysiology of COPD and how these NETs associated therapies could be leveraged to disrupt NETopathic inflammation as observed in COPD, for better management of the disease.
Collapse
Affiliation(s)
- Anjali Trivedi
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.T.); (G.B.)
| | - Meraj A. Khan
- Translational Medicine, SickKids Research Institute, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Geetanjali Bade
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.T.); (G.B.)
| | - Anjana Talwar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.T.); (G.B.)
| |
Collapse
|
15
|
Govoni M, Bassi M, Vezzoli S, Lucci G, Emirova A, Nandeuil MA, Petruzzelli S, Jellema GL, Afolabi EK, Colgan B, Leaker B, Kornmann O, Beeh KM, Watz H, Singh D. Sputum and blood transcriptomics characterisation of the inhaled PDE4 inhibitor CHF6001 on top of triple therapy in patients with chronic bronchitis. Respir Res 2020; 21:72. [PMID: 32197620 PMCID: PMC7085203 DOI: 10.1186/s12931-020-1329-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
Background Although phosphodiesterase-4 (PDE4) inhibitors have been shown to reduce COPD exacerbation rate, their biological mechanism of action is not completely elucidated at the molecular level. We aimed to characterise the whole genome gene expression profile of the inhaled PDE4-inhibitor CHF6001 on top of triple therapy in sputum cells and whole blood of patients with COPD and chronic bronchitis. Methods Whole genome gene expression analysis was carried out by microarray in 54 patients before and after 32 days treatment with CHF6001 800 and 1600 μg and placebo twice daily (BID) in a randomised crossover study. Results CHF6001 had a strong effect in sputum, with 1471 and 2598 significantly differentially-expressed probe-sets relative to placebo (p-adjusted for False Discovery Rate < 0.05) with 800 and 1600 μg BID, respectively. Functional enrichment analysis showed significant modulation of key inflammatory pathways involved in cytokine activity, pathogen-associated-pattern-recognition activity, oxidative stress and vitamin D with associated inhibition of downstream inflammatory effectors. A large number of pro-inflammatory genes coding for cytokines and matrix-metalloproteinases were significantly differentially expressed for both doses; the majority (> 87%) were downregulated, including macrophage inflammatory protein-1-alpha and 1-beta, interleukin-27-beta, interleukin-12-beta, interleukin-32, tumour necrosis factor-alpha-induced-protein-8, ligand-superfamily-member-15, and matrix-metalloproteinases-7,12 and 14. The effect in blood was not significant. Conclusions Inhaled PDE4 inhibition by CHF6001 on top of triple therapy in patients with COPD and chronic bronchitis significantly modulated key inflammatory targets and pathways in the lung but not in blood. Mechanistically these findings support a targeted effect in the lung while minimising unwanted systemic class-effects. Trial registration ClinicalTrial.gov, EudraCT, 2015–005550-35. Registered 15 July 2016.
Collapse
Affiliation(s)
- Mirco Govoni
- Global Clinical Development, Personalised Medicine and Biomarkers, Chiesi, Parma, Italy.
| | - Michele Bassi
- Global Clinical Development, Personalised Medicine and Biomarkers, Chiesi, Parma, Italy
| | - Stefano Vezzoli
- Global Clinical Development, Personalised Medicine and Biomarkers, Chiesi, Parma, Italy
| | - Germano Lucci
- Global Clinical Development, Personalised Medicine and Biomarkers, Chiesi, Parma, Italy
| | - Aida Emirova
- Global Clinical Development, Personalised Medicine and Biomarkers, Chiesi, Parma, Italy
| | - Marie Anna Nandeuil
- Global Clinical Development, Personalised Medicine and Biomarkers, Chiesi, Parma, Italy
| | - Stefano Petruzzelli
- Global Clinical Development, Personalised Medicine and Biomarkers, Chiesi, Parma, Italy
| | | | | | | | | | - Oliver Kornmann
- IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany
| | | | - Henrik Watz
- Pulmonary Research Institute at Lung Clinic Grosshansdorf, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Dave Singh
- Medicines Evaluation Unit, The University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
16
|
Pouwels SD, Klont F, Bischoff R, Ten Hacken NHT. Confounding Factors Affecting sRAGE as a Biomarker for Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2020; 200:114. [PMID: 30888832 PMCID: PMC6603062 DOI: 10.1164/rccm.201902-0356le] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Simon D Pouwels
- 1 University Medical Center Groningen (UMCG) Groningen, the Netherlands
| | - Frank Klont
- 1 University Medical Center Groningen (UMCG) Groningen, the Netherlands
| | - Rainer Bischoff
- 1 University Medical Center Groningen (UMCG) Groningen, the Netherlands
| | | |
Collapse
|
17
|
Bu T, Wang LF, Yin YQ. How Do Innate Immune Cells Contribute to Airway Remodeling in COPD Progression? Int J Chron Obstruct Pulmon Dis 2020; 15:107-116. [PMID: 32021149 PMCID: PMC6966950 DOI: 10.2147/copd.s235054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Recently, the therapeutic potential of immune-modulation during the progression of chronic obstructive pulmonary disease (COPD) has been attracting increasing interest. However, chronic inflammatory response has been over-simplified in descriptions of the mechanism of COPD progression. As a form of first-line airway defense, epithelial cells exhibit phenotypic alteration, and participate in epithelial layer disorganization, mucus hypersecretion, and extracellular matrix deposition. Dendritic cells (DCs) exhibit attenuated antigen-presenting capacity in patients with advanced COPD. Immature DCs migrate into small airways, where they promote a pro-inflammatory microenvironment and bacterial colonization. In response to damage-associated molecular patterns (DAMPs) in lung tissue affected by COPD, neutrophils are excessively recruited and activated, where they promote a proteolytic microenvironment and fibrotic repair in small airways. Macrophages exhibit decreased phagocytosis in the large airways, while they demonstrate high pro-inflammatory potential in the small airways, and mediate alveolar destruction and chronic airway inflammation. Natural killer T (NKT) cells, eosinophils, and mast cells also play supplementary roles in COPD progression; however, their cellular activities are not yet entirely clear. Overall, during COPD progression, “exhausted” innate immune responses can be observed in the large airways. On the other hand, the innate immune response is enhanced in the small airways. Approaches that inhibit the inflammatory cascade, chemotaxis, or the activation of inflammatory cells could possibly delay the progression of airway remodeling in COPD, and may thus have potential clinical significance.
Collapse
Affiliation(s)
- Tegeleqi Bu
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Li Fang Wang
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Yi Qing Yin
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
18
|
Stockley RA, Halpin D, Celli BR, Singh D. Reply to Pouwels et al.: Confounding Factors Affecting sRAGE as a Biomarker for Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2019; 200:114-115. [PMID: 30888843 PMCID: PMC6603060 DOI: 10.1164/rccm.201903-0573le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Robert A. Stockley
- University Hospitals Birmingham NHS Foundation TrustBirmingham, United Kingdom
| | - David Halpin
- Royal Devon & Exeter HospitalExeter, United Kingdom
| | | | - Dave Singh
- Manchester University NHS Foundation Hospital TrustManchester, United Kingdom
| |
Collapse
|
19
|
Su YC, Jalalvand F, Thegerström J, Riesbeck K. The Interplay Between Immune Response and Bacterial Infection in COPD: Focus Upon Non-typeable Haemophilus influenzae. Front Immunol 2018; 9:2530. [PMID: 30455693 PMCID: PMC6230626 DOI: 10.3389/fimmu.2018.02530] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating respiratory disease and one of the leading causes of morbidity and mortality worldwide. It is characterized by persistent respiratory symptoms and airflow limitation due to abnormalities in the lower airway following consistent exposure to noxious particles or gases. Acute exacerbations of COPD (AECOPD) are characterized by increased cough, purulent sputum production, and dyspnea. The AECOPD is mostly associated with infection caused by common cold viruses or bacteria, or co-infections. Chronic and persistent infection by non-typeable Haemophilus influenzae (NTHi), a Gram-negative coccobacillus, contributes to almost half of the infective exacerbations caused by bacteria. This is supported by reports that NTHi is commonly isolated in the sputum from COPD patients during exacerbations. Persistent colonization of NTHi in the lower airway requires a plethora of phenotypic adaptation and virulent mechanisms that are developed over time to cope with changing environmental pressures in the airway such as host immuno-inflammatory response. Chronic inhalation of noxious irritants in COPD causes a changed balance in the lung microbiome, abnormal inflammatory response, and an impaired airway immune system. These conditions significantly provide an opportunistic platform for NTHi colonization and infection resulting in a "vicious circle." Episodes of large inflammation as the consequences of multiple interactions between airway immune cells and NTHi, accumulatively contribute to COPD exacerbations and may result in worsening of the clinical status. In this review, we discuss in detail the interplay and crosstalk between airway immune residents and NTHi, and their effect in AECOPD for better understanding of NTHi pathogenesis in COPD patients.
Collapse
Affiliation(s)
- Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Farshid Jalalvand
- Department of Biology, Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - John Thegerström
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
20
|
Butler A, Walton GM, Sapey E. Neutrophilic Inflammation in the Pathogenesis of Chronic Obstructive Pulmonary Disease. COPD 2018; 15:392-404. [DOI: 10.1080/15412555.2018.1476475] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aidan Butler
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Georgia May Walton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
21
|
Dealing with Stress: Defective Metabolic Adaptation in Chronic Obstructive Pulmonary Disease Pathogenesis. Ann Am Thorac Soc 2018; 14:S374-S382. [PMID: 29161091 DOI: 10.1513/annalsats.201702-153aw] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mitochondrion is the main site of energy production and a hub of key signaling pathways. It is also central in stress-adaptive response due to its dynamic morphology and ability to interact with other organelles. In response to stress, mitochondria fuse into networks to increase bioenergetic efficiency and protect against oxidative damage. Mitochondrial damage triggers segregation of damaged mitochondria from the mitochondrial network through fission and their proteolytic degradation by mitophagy. Post-translational modifications of the mitochondrial proteome and nuclear cross-talk lead to reprogramming of metabolic gene expression to maintain energy production and redox balance. Chronic obstructive pulmonary disease (COPD) is caused by chronic exposure to oxidative stress arising from inhaled irritants, such as cigarette smoke. Impaired mitochondrial structure and function, due to oxidative stress-induced damage, may play a key role in causing COPD. Deregulated metabolic adaptation may contribute to the development and persistence of mitochondrial dysfunction in COPD. We discuss the evidence for deregulated metabolic adaptation and highlight important areas for investigation that will allow the identification of molecular targets for protecting the COPD lung from the effects of dysfunctional mitochondria.
Collapse
|
22
|
Benton MJ, Lim TK, Ko FWS, Kan-O K, Mak JCW. Year in review 2017: Chronic obstructive pulmonary disease and asthma. Respirology 2018; 23:538-545. [PMID: 29502339 DOI: 10.1111/resp.13285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Melissa J Benton
- Helen and Arthur E. Johnson Beth-El College of Nursing and Health Sciences, University of Colorado, Colorado Springs, CO, USA
| | - Tow Keang Lim
- Department of Medicine, National University Hospital, Singapore
| | - Fanny W S Ko
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Keiko Kan-O
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Judith C W Mak
- Department of Medicine, The University of Hong Kong, Hong Kong.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong
| |
Collapse
|
23
|
Lv XX, Liu SS, Li K, Cui B, Liu C, Hu ZW. Cigarette smoke promotes COPD by activating platelet-activating factor receptor and inducing neutrophil autophagic death in mice. Oncotarget 2017; 8:74720-74735. [PMID: 29088819 PMCID: PMC5650374 DOI: 10.18632/oncotarget.20353] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/13/2017] [Indexed: 01/19/2023] Open
Abstract
Neutrophils are the most important effector cells during the development of chronic obstructive pulmonary disease (COPD). Although neutrophil elastase is critical in cigarette smoke (CS)-induced lung parenchyma, the mechanism by which CS triggers elastase release from neutrophils remains unclear. Here we report that CS induction of autophagy in neutrophils by activating platelet- activating factor receptor (PAFR) promotes COPD progression in mouse. We found that the dead neutrophils were increased in bronchoalveolar lavage fluid from CS-exposed mice. Blocking PAFR suppressed the CS-induced autophagy in neutrophils, protected neutrophils from death, and reduced elastase release. Mechanistically, CS enhanced ROS production and High mobility group box 1 (HMGB1) expression through activation of PAFR. The elevated HMGB1 interacted with beclin1, which promoted the dissociation of Bcl-2 from beclin1 and the assembly of autophagy core complex. Moreover, the antagonism of PAFR by rupatadine, a prescription PAFR inhibitor, protected against the development of emphysema, and reduced the autophagic death of neutrophils after CS exposure. These results suggest that CS contributes to the pathogenesis of COPD partly by inducing a PAFR-dependent autophagic death of neutrophils. Therefore, PAFR may be a therapeutic target for COPD and inhibition of PAFR may provide potential therapeutic benefits in the treatment of patients with COPD.
Collapse
Affiliation(s)
- Xiao-Xi Lv
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China
| | - Shan-Shan Liu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China
| | - Bing Cui
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China
| | - Chang Liu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China
| | - Zhuo-Wei Hu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China
| |
Collapse
|
24
|
Advanced Role of Neutrophils in Common Respiratory Diseases. J Immunol Res 2017; 2017:6710278. [PMID: 28589151 PMCID: PMC5447318 DOI: 10.1155/2017/6710278] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/22/2017] [Accepted: 04/16/2017] [Indexed: 12/18/2022] Open
Abstract
Respiratory diseases, always being a threat towards the health of people all over the world, are most tightly associated with immune system. Neutrophils serve as an important component of immune defense barrier linking innate and adaptive immunity. They participate in the clearance of exogenous pathogens and endogenous cell debris and play an essential role in the pathogenesis of many respiratory diseases. However, the pathological mechanism of neutrophils remains complex and obscure. The traditional roles of neutrophils in severe asthma, chronic obstructive pulmonary diseases (COPD), pneumonia, lung cancer, pulmonary fibrosis, bronchitis, and bronchiolitis had already been reviewed. With the development of scientific research, the involvement of neutrophils in respiratory diseases is being brought to light with emerging data on neutrophil subsets, trafficking, and cell death mechanism (e.g., NETosis, apoptosis) in diseases. We reviewed all these recent studies here to provide you with the latest advances about the role of neutrophils in respiratory diseases.
Collapse
|
25
|
Lamonaca P, Prinzi G, Kisialiou A, Cardaci V, Fini M, Russo P. Metabolic Disorder in Chronic Obstructive Pulmonary Disease (COPD) Patients: Towards a Personalized Approach Using Marine Drug Derivatives. Mar Drugs 2017; 15:E81. [PMID: 28335527 PMCID: PMC5367038 DOI: 10.3390/md15030081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/23/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
Metabolic disorder has been frequently observed in chronic obstructive pulmonary disease (COPD) patients. However, the exact correlation between obesity, which is a complex metabolic disorder, and COPD remains controversial. The current study summarizes a variety of drugs from marine sources that have anti-obesity effects and proposed potential mechanisms by which lung function can be modulated with the anti-obesity activity. Considering the similar mechanism, such as inflammation, shared between obesity and COPD, the study suggests that marine derivatives that act on the adipose tissues to reduce inflammation may provide beneficial therapeutic effects in COPD subjects with high body mass index (BMI).
Collapse
Affiliation(s)
- Palma Lamonaca
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| | - Giulia Prinzi
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| | - Aliaksei Kisialiou
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| | - Vittorio Cardaci
- Department of Pulmonary Rehabilitation, IRCCS San Raffaele Pisana, Via della Pisana 235, I-00163 Rome, Italy.
| | - Massimo Fini
- Scientific Direction, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| | - Patrizia Russo
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| |
Collapse
|