1
|
Alfahl Z, Einarsson GG, Elborn JS, Gilpin DF, O'Neill K, Ferguson K, Hill AT, Loebinger MR, Carroll M, Gatheral T, De Soyza A, Chalmers JD, Johnson C, Hurst JR, Brown JS, Bradley JM, Tunney MM. Airway total bacterial density, microbiota community composition and relationship with clinical parameters in bronchiectasis. Respir Med 2025; 236:107906. [PMID: 39643125 DOI: 10.1016/j.rmed.2024.107906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 10/28/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND AND OBJECTIVE This study explored the relationship between total bacterial density, airway microbiota composition and clinical parameters in bronchiectasis. We determined changes with time during clinical stability and following antibiotic treatment of a pulmonary exacerbation. METHODS We conducted a multicentre longitudinal cohort study of UK participants with CT confirmed bronchiectasis. Sputum samples and clinical parameters [FEV1% predicted, lung clearance index, C-reactive protein, white cell count and Quality of Life] were collected when participants were clinically stable and pre/post-antibiotic treatment of an exacerbation. Total bacterial density and microbiota community composition was measured by quantitative polymerase chain reaction and sequencing of the V4 region of bacterial 16S rRNA, respectively. RESULTS Among 105 participants at baseline, 65 (62 %) were female with a mean age of 65 years and FEV1 at 69 % predicted. In participants who remained clinically stable (n = 15), no significant changes were observed in bacterial density, microbiota diversity, richness, evenness, and dominance (p = 0.30, 0.45, 0.54, 0.23 and 0.43; respectively) across four time points over a 1-year period. Similarly, for participants with paired pre/post-antibiotic treatment samples (n = 19), no significant changes were observed (p = 0.30, 0.46, 0.44, 0.71 and 0.58; respectively). However, considerable fluctuation in community composition between samples was apparent for most patients. Total bacterial density and microbiota composition did not correlate with clinical parameters at baseline (n = 75). CONCLUSIONS Stability in bacterial density and microbiota diversity, richness, evenness and dominance was observed over time at a population level but considerable fluctuation was apparent in samples from individual patients.
Collapse
Affiliation(s)
- Zina Alfahl
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Gisli G Einarsson
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
| | - J Stuart Elborn
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
| | | | - Katherine O'Neill
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
| | - Kathryn Ferguson
- Northern Ireland Clinical Research Network, Belfast Health and Social Care Trust, Belfast, UK
| | - Adam T Hill
- Royal Infirmary and University of Edinburgh, Edinburgh, Scotland, UK
| | - Michael R Loebinger
- Host Defence Unit, Royal Brompton Hospital and NHLI, Imperial College London, London, UK
| | - Mary Carroll
- University Hospital Southampton NHS Foundation Trust, UK
| | - Timothy Gatheral
- Department of Respiratory Medicine, University Hospitals of Morcambe Bay NHS Foundation Trust, UK
| | - Anthony De Soyza
- Population and health Sciences Institute, Newcastle University and Freeman Hospital, Sir William Leech Research Centre, Respiratory Department, Newcastle upon Tyne, UK
| | | | | | - John R Hurst
- UCL Respiratory, University College London, London, UK
| | | | - Judy M Bradley
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
| | | |
Collapse
|
2
|
Abstract
Bronchiectasis is a final common pathway of a wide variety of underlying conditions including infectious, autoimmune, allergic, genetic and inflammatory conditions. Patients experience a chronic disease with variable clinical symptoms and course, but most experience cough, sputum production and recurrent exacerbations. Symptoms of bronchiectasis lead to poor quality of life and exacerbations are the major driver of morbidity and mortality. Patients are often chronically infected with bacteria with the most common being Pseudomonas aeruginosa and Haemophilus influenzae. Treatment of bronchiectasis includes standardised testing to identify the underlying cause with targeted treatment if immune deficiency, allergic bronchopulmonary aspergillosis or non-tuberculous mycobacterial infection, for example, are identified. Airway clearance is the mainstay of therapy for patients with symptoms of cough and sputum production. Frequently exacerbating patients may benefit from long term antibiotic or mucoactive therapies. Bronchiectasis is a heterogeneous disease and increasingly precision medicine approaches are advocated to target treatments most appropriately and to limit the emergence of antimicrobial resistance.
Collapse
Affiliation(s)
- Miguel Barbosa
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK.
| |
Collapse
|
3
|
Hine C, Desai M, Davies J, Sapey E, Nagakumar P. A systematic review of lung clearance index in non-cystic fibrosis, non-primary ciliary dyskinesia bronchiectasis. Respir Med 2022; 201:106937. [DOI: 10.1016/j.rmed.2022.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 11/27/2022]
|
4
|
Vidaillac C, Chotirmall SH. Pseudomonas aeruginosa in bronchiectasis: infection, inflammation, and therapies. Expert Rev Respir Med 2021; 15:649-662. [PMID: 33736539 DOI: 10.1080/17476348.2021.1906225] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Bronchiectasis is a chronic endobronchial suppurative disease characterized by irreversibly dilated bronchi damaged by repeated polymicrobial infections and predominantly, neutrophilic airway inflammation. Some consider bronchiectasis a syndromic consequence of several different causes whilst others view it as an individual disease entity. In most patients, identifying an underlying cause remains challenging. The acquisition and colonization of affected airways by Pseudomonas aeruginosa represent a critical and adverse clinical consequence for its progression and management.Areas covered: In this review, we outline clinical and pre-clinical peer-reviewed research published in the last 5 years, focusing on the pathogenesis of bronchiectasis and the role of P. aeruginosa and its virulence in shaping host inflammatory and immune responses in the airway. We further detail its role in airway infection, the lung microbiome, and address therapeutic options in bronchiectasis.Expert opinion: P. aeruginosa represents a key pulmonary pathogen in bronchiectasis that causes acute and/or chronic airway infection. Eradication can prevent adverse clinical consequence and/or disease progression. Novel therapeutic strategies are emerging and include combination-based approaches. Addressing airway infection caused by P. aeruginosa in bronchiectasis is necessary to prevent airway damage, loss of lung function and exacerbations, all of which contribute to adverse clinical outcome.
Collapse
Affiliation(s)
- Celine Vidaillac
- Oxford University Clinical Research Unit, University of Oxford, Ho Chi Minh City, Vietnam.,Center for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
5
|
Tiew PY, Jaggi TK, Chan LLY, Chotirmall SH. The airway microbiome in COPD, bronchiectasis and bronchiectasis-COPD overlap. CLINICAL RESPIRATORY JOURNAL 2020; 15:123-133. [PMID: 33063421 DOI: 10.1111/crj.13294] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To review the airway microbiome in chronic obstructive pulmonary disease (COPD), bronchiectasis and bronchiectasis-COPD overlap (BCO). DATA SOURCE AND STUDY SELECTION Relevant studies were selected from PubMed, Google scholar, EMBASE and Web of Science. All studies involving human microbiomes, published in the English language, and using the search terms "COPD", "Chronic Obstructive Pulmonary Disease", "Bronchiectasis", "BCO" or "Bronchiectasis and COPD overlap", AND "microbiome", "mycobiome" or "metagenomics" were included. RESULTS Despite variability in sampling methods and specimen types used, microbiome composition remains relatively comparable in COPD and bronchiectasis with prominence of Proteobacteria, Firmicutes and Bacteroidetes. Alterations to airway microbiomes occur in association to disease severity and/or exacerbations in COPD and bronchiectasis. Decreased alpha diversity and Haemophilus-predominant microbiomes are associated with poorer survival in COPD, while, in bronchiectasis, Pseudomonas-predominant microbiomes demonstrate high exacerbation frequency and greater symptom burden while Aspergillus-dominant mycobiome profiles associate with exacerbations. The role of the microbiome in BCO remains understudied. CONCLUSION Use of next-generation sequencing has revolutionised our detection and understanding of the airway microbiome in chronic respiratory diseases such as COPD and bronchiectasis. Targeted amplicon sequencing reveals important associations between the respiratory microbiome and disease outcome while metagenomics may elucidate functional pathways. How best to apply this information into patient care, monitoring and treatment, however, remains challenging and necessitates further study.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Tavleen K Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Louisa L Y Chan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
6
|
Horsley AR, Alrumuh A, Bianco B, Bayfield K, Tomlinson J, Jones A, Maitra A, Cunningham S, Smith J, Fullwood C, Pandyan A, Gilchrist FJ. Lung clearance index in healthy volunteers, measured using a novel portable system with a closed circuit wash-in. PLoS One 2020; 15:e0229300. [PMID: 32097445 PMCID: PMC7041809 DOI: 10.1371/journal.pone.0229300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/03/2020] [Indexed: 11/18/2022] Open
Abstract
Introduction Lung clearance index (LCI) is a sensitive measure of early lung disease, but adoption into clinical practice has been slow. Challenges include the time taken to perform each test. We recently described a closed-circuit inert gas wash-in method that reduces overall testing time by decreasing the time to equilibration. The aim of this study was to define a normative range of LCI in healthy adults and children derived using this method. We were also interested in the feasibility of using this system to measure LCI in a community setting. Methods LCI was assessed in healthy volunteers at three hospital sites and in two local primary schools. Volunteers completed three washout repeats at a single visit using the closed circuit wash-in method (0.2% SF6 wash-in tracer gas to equilibrium, room air washout). Results 160 adult and paediatric subjects successfully completed LCI assessment (95%) (100 in hospital, 60 in primary schools). Median coefficient of variation was 3.4% for LCI repeats and 4.3% for FRC. Mean (SD) LCI for the analysis cohort (n = 53, age 5–39 years) was 6.10 (0.42), making the upper limit of normal LCI 6.8. There was no relationship between LCI and multiple demographic variables. Median (interquartile range) total test time was 18.7 (16.0–22.5) minutes. Conclusion The closed circuit method of LCI measurement can be successfully and reproducibly measured in healthy volunteers, including in out-of-hospital settings. Normal range appears stable up to 39 years. With few subjects older than 40 years, further work is required to define the normal limits above this age.
Collapse
Affiliation(s)
- Alex R. Horsley
- Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Adult CF Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- * E-mail:
| | - Amnah Alrumuh
- Institute of Applied Clinical Science, Keele University, Newcastle-under-Lyme, United Kingdom
- Royal Stoke University Hospital, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, United Kingdom
| | - Brooke Bianco
- Manchester Adult CF Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- NIHR Manchester Clinical Research Facility, Manchester, United Kingdom
| | - Katie Bayfield
- NIHR Manchester Clinical Research Facility, Manchester, United Kingdom
| | - Joanne Tomlinson
- Royal Stoke University Hospital, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, United Kingdom
| | - Andrew Jones
- Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Adult CF Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Anirban Maitra
- Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Steve Cunningham
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Jaclyn Smith
- Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Catherine Fullwood
- Research and Innovation, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Centre for Biostatistics, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Anand Pandyan
- Institute of Applied Clinical Science, Keele University, Newcastle-under-Lyme, United Kingdom
| | - Francis J. Gilchrist
- Institute of Applied Clinical Science, Keele University, Newcastle-under-Lyme, United Kingdom
- Royal Stoke University Hospital, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, United Kingdom
| |
Collapse
|
7
|
Smith AH, Chalmers JD. The microbiome in bronchiectasis: Cutting a lung story short. Respirology 2019; 25:43-44. [DOI: 10.1111/resp.13697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023]
Affiliation(s)
| | - James D. Chalmers
- Scottish Centre for Respiratory ResearchUniversity of Dundee, Ninewells Hospital and Medical School Dundee UK
| |
Collapse
|