1
|
Pietribiasi M, Leypoldt JK, Wieliczko M, Debowska M, Malyszko J, Waniewski J. Are there any session-to-session changes in ventilation during a weekly hemodialysis cycle? Int J Artif Organs 2025; 48:180-187. [PMID: 39885636 DOI: 10.1177/03913988251314664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Significant changes in pre-dialytic partial pressure of CO2 (pCO2) during a week-long cycle of hemodialysis (HD) can be an effect of the intermittent supplementation of bicarbonate to correct chronic acidosis in patients. Mathematical modeling efforts carried out using the same parameters before each HD session might fail to produce accurate predictions of pCO2 and plasma bicarbonate concentration (CBic) because of this variability. A numerical model describing acid-base equilibrium changes during HD was applied to predict pCO2, pH, and CBic in 24 chronic HD patients, using both fixed parameters for the whole week and estimating a new value of minute ventilation (VE) and net acid generation rate (GH) for each interdialytic interval. Dialysances of bicarbonate and dissolved CO2 were also estimated independently for each HD session. The error of the model compared to the pre-dialytic data of CBic and pCO2 significantly decreased when VE and GH were estimated piecewise throughout the week. To fit the data, VE changed from 3.9 ± 1.0 mL/min before HD1, to 3.8e1 mL/min after HD1, 3.6 ± 1.0 mL/min after HD2, and 3.9 ± 1.1 mL/min after HD3 (p < 0.05). GH changes after each session were not statistically significant. VE values strongly correlated with pre-dialytic pCO2 (Spearman's ρ = -0.97), but GH only weakly correlated with pre-dialytic CBic (ρ = -0.30). Acid-base equilibrium is extremely sensitive to respiratory regulation. When attempting to predict the evolution of pCO2 a CBic during the HD cycle, changes in the respiration parameters must be accounted for by the model, at the risk of a significant loss of prediction accuracy.
Collapse
Affiliation(s)
- Mauro Pietribiasi
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| | - John K Leypoldt
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| | - Monika Wieliczko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Debowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| | - Jolanta Malyszko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Jacek Waniewski
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Leypoldt JK, Pietribiasi M, Debowska M, Wieliczko M, Twardowska-Kawalec M, Malyszko J, Waniewski J. Evaluating hydrogen ion mobilization during hemodialysis using only predialysis and postdialysis blood bicarbonate concentrations. Int J Artif Organs 2024; 47:729-735. [PMID: 39149923 DOI: 10.1177/03913988241268026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
INTRODUCTION The hydrogen ion (H+) mobilization model has been previously shown to provide a quantitative description of intradialytic changes in blood bicarbonate (HCO3) concentration during hemodialysis (HD). The current study evaluated the accuracy of different methods for estimating the H+ mobilization parameter (Hm) from this model. METHODS The study compared estimates of the H+ mobilization parameter using predialysis, hourly during the HD treatment, and postdialysis blood HCO3 concentrations (Hm-full2) with those determined using only predialysis and postdialysis blood HCO3 concentrations assuming steady state conditions (Hm-SS2) during the midweek treatment in 24 chronic HD patients treated thrice weekly. RESULTS Estimated Hm-full2 values (0.163 ± 0.079 L/min [mean ± standard deviation]) were higher than, but not statistically different (p = 0.067) from, those of Hm-SS2 (0.152 ± 0.065 L/min); the values of Hm-full2 and Hm-SS2 were highly correlated with a correlation coefficient of 0.948 and a mean difference that was small (0.011 L/min). Further, the H+ mobilization parameter values calculated using only predialysis and postdialysis blood HCO3 concentrations during the first and third HD treatments of the week were not different from those calculated during the midweek treatment. CONCLUSIONS The H+ mobilization model can be used to provide estimates of the H+ mobilization parameter without the need to measure hourly intradialytic blood HCO3 concentrations.
Collapse
Affiliation(s)
- John K Leypoldt
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warszawa, Poland
| | - Mauro Pietribiasi
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warszawa, Poland
| | - Malgorzata Debowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warszawa, Poland
| | | | | | | | - Jacek Waniewski
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warszawa, Poland
| |
Collapse
|
3
|
Wieliczko M, Twardowska-Kawalec M, Debowska M, Pietribiasi M, Bialonczyk U, Waniewski J, Leypoldt JK, Matuszkiewicz-Rowinska J, Malyszko J. Effect of time-dependent dialysate bicarbonate concentrations on acid-base and uremic solute kinetics during hemodialysis treatments. Sci Rep 2024; 14:2321. [PMID: 38281975 PMCID: PMC10822843 DOI: 10.1038/s41598-024-52757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024] Open
Abstract
Recent studies have suggested benefits for time-dependent dialysate bicarbonate concentrations (Dbic) during hemodialysis (HD). In this clinical trial, we compared for the first time in the same HD patients the effects of time-dependent changes with constant Dbic on acid-base and uremic solute kinetics. Blood acid-base and uremic solute concentration were measured in twenty chronic HD patients during 4-h treatments with A) constant Dbic of 35 mmol/L; B) Dbic of 35 mmol/L then 30 mmol/L; and C) Dbic of 30 mmol/L then 35 mmol/L (change of Dbic after two hours during Treatments B and C). Arterial blood samples were obtained predialysis, every hour during HD and one hour after HD, during second and third treatments of the week with each Dbic concentration profile. Blood bicarbonate concentration (blood [HCO3]) during Treatment C was lower only during the first three HD hours than in Treatment A. Overall blood [HCO3] was reduced during Treatment B in comparison to Treatment A at each time points. We conclude that a single change Dbic in the middle of HD can alter the rate of change in blood [HCO3] and pH during HD; time-dependent Dbic had no influence on uremic solute kinetics.
Collapse
Affiliation(s)
- Monika Wieliczko
- The Department of Nephrology, Dialysis and Internal Disease, Medical University of Warsaw, Warsaw, Poland.
| | | | - Malgorzata Debowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Mauro Pietribiasi
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Bialonczyk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Jacek Waniewski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - John K Leypoldt
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | | | - Jolanta Malyszko
- The Department of Nephrology, Dialysis and Internal Disease, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Leypoldt JK, Pietribiasi M, Debowska M, Wieliczko M, Twardowska-Kawalec M, Malyszko J, Waniewski J. Validity of the hydrogen ion mobilisation model during haemodialysis with time-dependent dialysate bicarbonate concentrations. Int J Artif Organs 2023; 46:507-513. [PMID: 37288535 DOI: 10.1177/03913988231179233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
BACKGROUND The hydrogen ion (H+) mobilisation model has been previously shown to accurately describe blood bicarbonate (HCO3) kinetics during haemodialysis (HD) when the dialysate bicarbonate concentration ([HCO3]) is constant throughout the treatment. This study evaluated the ability of the H+ mobilization model to describe blood HCO3 kinetics during HD treatments with a time-dependent dialysate [HCO3]. METHODS Data from a recent clinical study where blood [HCO3] was measured at the beginning of and every hour during 4-h treatments in 20 chronic, thrice-weekly HD patients with a constant (Treatment A), decreasing (Treatment B) and increasing (Treatment C) dialysate [HCO3] were evaluated. The H+ mobilization model was used to determine the model parameter (Hm) that provided the best fit of the model to the clinical data using nonlinear regression. A total of 114 HD treatments provided individual estimates of Hm. RESULTS Mean ± standard deviation estimates of Hm during Treatments A, B and C were 0.153 ± 0.069, 0.180 ± 0.109 and 0.205 ± 0.141 L/min (medians [interquartile ranges] were 0.145 [0.118,0.191], 0.159 [0.112,0.209], 0.169 [0.115,0.236] L/min), respectively; these estimates were not different from each other (p = 0.26). The sum of squared differences between the measured blood [HCO3] and that predicted by the model were not different during Treatments A, B and C (p = 0.50), suggesting a similar degree of model fit to the data. CONCLUSIONS This study supports the validity of the H+ mobilization model to describe intradialysis blood HCO3 kinetics during HD with a constant Hm value when using a time-dependent dialysate [HCO3].
Collapse
Affiliation(s)
- John Kenneth Leypoldt
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Poland
| | - Mauro Pietribiasi
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Poland
| | - Malgorzata Debowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Poland
| | | | | | | | - Jacek Waniewski
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Poland
| |
Collapse
|
5
|
Pietribiasi M, Waniewski J, Leypoldt JK. Mathematical modelling of bicarbonate supplementation and acid-base chemistry in kidney failure patients on hemodialysis. PLoS One 2023; 18:e0282104. [PMID: 36827348 PMCID: PMC9955675 DOI: 10.1371/journal.pone.0282104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Acid-base regulation by the kidneys is largely missing in end-stage renal disease patients undergoing hemodialysis (HD). Bicarbonate is added to the dialysis fluid during HD to replenish the buffers in the body and neutralize interdialytic acid accumulation. Predicting HD outcomes with mathematical models can help select the optimal patient-specific dialysate composition, but the kinetics of bicarbonate are difficult to quantify, because of the many factors involved in the regulation of the bicarbonate buffer in bodily fluids. We implemented a mathematical model of dissolved CO2 and bicarbonate transport that describes the changes in acid-base equilibrium induced by HD to assess the kinetics of bicarbonate, dissolved CO2, and other buffers not only in plasma but also in erythrocytes, interstitial fluid, and tissue cells; the model also includes respiratory control over the partial pressures of CO2 and oxygen. Clinical data were used to fit the model and identify missing parameters used in theoretical simulations. Our results demonstrate the feasibility of the model in describing the changes to acid-base homeostasis typical of HD, and highlight the importance of respiratory regulation during HD.
Collapse
Affiliation(s)
- Mauro Pietribiasi
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| | - Jacek Waniewski
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| | - John K. Leypoldt
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Abstract
Introduction Abnormalities in blood bicarbonates (HCO3–) concentration are a common finding in patients with chronic kidney disease, especially at the end-stage renal failure. Initiating of hemodialysis does not completely solve this problem. The recommendations only formulate the target concentration of ≥22 mmol/L before hemodialysis but do not guide how to achieve it. The aim of the study was to assess the acid–base balance in everyday practice, the effect of hemodialysis session and possible correlations with clinical and biochemical parameters in stable hemodialysis patients. Material and methods We enrolled 75 stable hemodialysis patients (mean age 65.5 years, 34 women), from a single Department of Nephrology. We assessed blood pressure, and acid–base balance parameters before and after mid-week hemodialysis session. Results We found significant differences in pH, HCO3– pCO2, lactate before and after HD session in whole group (p < 0.001; p < 0.001; p < 0.001; p = 0.001, respectively). Buffer bicarbonate concentration had only statistically significant effect on the bicarbonate concentration after dialysis (p < 0.001). Both pre-HD acid–base parameters and post-HD pH were independent from buffer bicarbonate content. We observed significant inverse correlations between change in the serum bicarbonates and only two parameters: pH and HCO3– before hemodialysis (p = 0.013; p < 0.001, respectively). Conclusions Despite the improvement in hemodialysis techniques, acid–base balance still remains a challenge. The individual selection of bicarbonate in bath, based on previous single tests, does not improve permanently the acid–base balance in the population of hemodialysis patients. New guidelines how to correct acid–base disorders in hemodialysis patients are needed to have less ‘acidotic’ patients before hemodialysis and less ‘alkalotic’ patients after the session.
Collapse
Affiliation(s)
- Monika Wieliczko
- Department of Nephrology, Dialysis and Internal Disease, Medical University of Warsaw, Warsaw, Poland
| | - Jolanta Małyszko
- Department of Nephrology, Dialysis and Internal Disease, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Broseta JJ, Roca M, Rodríguez-Espinosa D, López-Romero LC, Gómez-Bori A, Cuadrado-Payán E, Devesa-Such R, Soldevila A, Bea-Granell S, Sánchez-Pérez P, Hernández-Jaras J. Impact of Acetate versus Citrate Dialysates on Intermediary Metabolism-A Targeted Metabolomics Approach. Int J Mol Sci 2022; 23:ijms231911693. [PMID: 36232995 PMCID: PMC9569767 DOI: 10.3390/ijms231911693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Acetate is widely used as a dialysate buffer to avoid the precipitation of bicarbonate salts. However, even at low concentrations that wouldn’t surpass the metabolic capacity of the Krebs tricarboxylic acid (TCA) cycle, other metabolic routes are activated, leading to undesirable clinical consequences by poorly understood mechanisms. This study aims to add information that could biologically explain the clinical improvements found in patients using citrate dialysate. A unicentric, cross-over, prospective targeted metabolomics study was designed to analyze the differences between two dialysates, one containing 4 mmol/L of acetate (AD) and the other 1 mmol/L of citrate (CD). Fifteen metabolites were studied to investigate changes induced in the TCA cycle, glycolysis, anaerobic metabolism, ketone bodies, and triglyceride and aminoacidic metabolism. Twenty-one patients completed the study. Citrate increased during the dialysis sessions when CD was used, without surpassing normal values. Other differences found in the next TCA cycle steps showed an increased substrate accumulation when using AD. While lactate decreased, pyruvate remained stable, and ketogenesis was boosted during dialysis. Acetylcarnitine and myo-inositol were reduced during dialysis, while glycerol remained constant. Lastly, glutamate and glutarate decreased due to the inhibition of amino acidic degradation. This study raises new hypotheses that need further investigation to understand better the biochemical processes that dialysis and the different dialysate buffers induce in the patient’s metabolism.
Collapse
Affiliation(s)
- José Jesús Broseta
- Department of Nephrology and Renal Transplantation, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-932275498
| | - Marta Roca
- Analytical Unit Platform, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Diana Rodríguez-Espinosa
- Department of Nephrology and Renal Transplantation, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
| | | | - Aina Gómez-Bori
- Department of Nephrology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Elena Cuadrado-Payán
- Department of Nephrology and Renal Transplantation, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
| | - Ramón Devesa-Such
- Department of Nephrology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Amparo Soldevila
- Department of Nephrology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Sergio Bea-Granell
- Department of Nephrology, Consorci Hospital General Universitari de València, 46014 Valencia, Spain
| | - Pilar Sánchez-Pérez
- Department of Nephrology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Julio Hernández-Jaras
- Department of Nephrology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| |
Collapse
|
8
|
Gennari FJ, Marano M, Marano S. Replenishing Alkali During Hemodialysis: Physiology-Based Approaches. Kidney Med 2022; 4:100523. [PMID: 36032503 PMCID: PMC9411655 DOI: 10.1016/j.xkme.2022.100523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The acid-base goal of intermittent hemodialysis is to replenish buffers consumed by endogenous acid production and expansion acidosis in the period between treatments. The amount of bicarbonate needed to achieve this goal has traditionally been determined empirically with a goal of obtaining a reasonable subsequent predialysis blood bicarbonate concentration ([HCO3-]). This approach has led to very disparate hemodialysis prescriptions around the world. The bath [HCO3-] usually chosen in the United States and Europe causes a rapid increase in blood [HCO3-] in the first 1-2 hours of treatment, with little change thereafter. New studies show that this abrupt increase in blood [HCO3-] elicits a buffer response that removes more bicarbonate from the extracellular compartment than is added in the second half of treatment, a futile and unnecessary event. We propose that changes in dialysis prescription be studied in an attempt to moderate the initial rate of increase in blood [HCO3-] and the magnitude of the body buffer response. These new approaches include either a much lower bath [HCO3-] coupled with an increase in the bath acetate concentration or a stepwise increase in the bath [HCO3-] during treatment. In a subset of patients with low endogenous acid production, we propose reducing the bath [HCO3-] as the sole intervention.
Collapse
|
9
|
Galuzio PP, Cherif A. Recent Advances and Future Perspectives in the Use of Machine Learning and Mathematical Models in Nephrology. Adv Chronic Kidney Dis 2022; 29:472-479. [PMID: 36253031 DOI: 10.1053/j.ackd.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 01/25/2023]
Abstract
We reviewed some of the latest advancements in the use of mathematical models in nephrology. We looked over 2 distinct categories of mathematical models that are widely used in biological research and pointed out some of their strengths and weaknesses when applied to health care, especially in the context of nephrology. A mechanistic dynamical system allows the representation of causal relations among the system variables but with a more complex and longer development/implementation phase. Artificial intelligence/machine learning provides predictive tools that allow identifying correlative patterns in large data sets, but they are usually harder-to-interpret black boxes. Chronic kidney disease (CKD), a major worldwide health problem, generates copious quantities of data that can be leveraged by choice of the appropriate model; also, there is a large number of dialysis parameters that need to be determined at every treatment session that can benefit from predictive mechanistic models. Following important steps in the use of mathematical methods in medical science might be in the intersection of seemingly antagonistic frameworks, by leveraging the strength of each to provide better care.
Collapse
Affiliation(s)
| | - Alhaji Cherif
- Research Division, Renal Research Institute, New York, NY.
| |
Collapse
|
10
|
Pstras L, Stachowska-Pietka J, Debowska M, Pietribiasi M, Poleszczuk J, Waniewski J. Dialysis therapies: Investigation of transport and regulatory processes using mathematical modelling. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Abstract
This study contrasts the abilities and mechanisms of two physicochemical, mathematical models to predict experimental bicarbonate kinetics, hence, buffer transport, during a hemodialysis (HD) treatment in chronic renal failure patients. The existing Sargent model assumes that the body fluids can be described as a single, homogeneous extracellular fluid (EC) compartment whose volume decreases because of a constant ultrafiltration rate during HD. Bicarbonate and acetate transport between HD fluid and the EC compartment are by convection and diffusion with acetate metabolized in that compartment. The new model formulated in this study assumes the same conditions as Sargent et al., but constrains ion concentrations in the EC to be electrically neutral at all times. This constraint requires inclusion in the EC of other transportable small ions, Na+, K+, Cl- and unidentified, anionic organic acids in addition to an electrical charge on impermeable albumin. The findings are that the new electroneutrality model predicts plasma bicarbonate-concentration kinetics as closely as the Sargent model, but bicarbonate transport is an unlikely mechanism. Rather, the findings are better explained by rapid interconversion of CO2 and bicarbonate in this simplified EC compartment model. The results of this study bring into question the ability of the Sargent et al. hypothesized H+-mobilization model to explain buffer-transport kinetics during HD.
Collapse
Affiliation(s)
- Matthew B Wolf
- From the Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
12
|
|
13
|
Gennari FJ, Sargent JA. Acid-base events during hemodialysis. Am J Physiol Renal Physiol 2021; 320:F130-F131. [PMID: 33439106 DOI: 10.1152/ajprenal.00516.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- F John Gennari
- College of Medicine, University of Vermont, Burlington, Vermont
| | | |
Collapse
|
14
|
Modeling acid-base balance during continuous kidney replacement therapy. J Clin Monit Comput 2021; 36:179-189. [PMID: 33389356 DOI: 10.1007/s10877-020-00635-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
Clinical studies have suggested that use of bicarbonate-containing substitution and dialysis fluids during continuous kidney replacement therapy may result in excessive increases in the carbon dioxide concentration of blood; however, the technical parameters governing such changes are unclear. The current work used a mathematical model of acid-base chemistry of blood to predict its composition within and exiting the extracorporeal circuit during continuous veno-venous hemofiltration (CVVH) and continuous veno-venous hemodiafiltration (CVVHDF). Model predictions showed that a total substitution fluid infusion rate of 2 L/h (33% predilution) with a bicarbonate concentration of 32 mEq/L during CVVH at a blood flow rate of 200 mL/min resulted in only modest increases in plasma bicarbonate concentration by 2.0 mEq/L and partial pressure of dissolved carbon dioxide by 4.4 mmHg in blood exiting the extracorporeal circuit. The relative increase in bicarbonate concentration (9.7%) was similar to that in partial pressure of dissolved carbon dioxide (8.2%), resulting in no significant change in plasma pH in the blood exiting the CVVH circuit. The changes in plasma acid-base levels were larger with a higher infusion rate of substitution fluid but smaller with a higher blood flow rate or use of substitution fluid with a lower bicarbonate concentration (22 mEq/L). Under comparable flow conditions and substitution fluid composition, model predicted changes in acid-base levels during CVVHDF were similar, but smaller, than those during CVVH. The described mathematical model can predict the effect of operating conditions on acid-base balance within and exiting the extracorporeal circuit during continuous kidney replacement therapy.
Collapse
|
15
|
Sargent JA, Yamamoto T, Yamakawa T, De Waal D, Gennari FJ. Hemodialysis using a low bicarbonate dialysis bath: Implications for acid‐base homeostasis. Semin Dial 2020; 33:402-409. [DOI: 10.1111/sdi.12902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Leypoldt JK, Kraus MA, Collins AJ. Optimizing serum total carbon dioxide concentration during short and nocturnal frequent hemodialysis using lactate as dialysate buffer base. Hemodial Int 2020; 24:470-479. [PMID: 32779359 DOI: 10.1111/hdi.12864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/03/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Definitive clinical studies to determine the optimal dialysate lactate concentration to prescribe during frequent hemodialysis when using the NxStage System One dialysis delivery system at low dialysate flow rates have not been reported. METHODS We used clinical data from patients who transferred from in-center thrice-weekly hemodialysis (ICHD) to daily home hemodialysis using the NxStage System One and the H+ mobilization model to calculate acid generation rates in patient sub-groups during the FREEDOM study. Assuming those acid generation rates were representative, we then predicted using the H+ mobilization model the effect of using dialysate lactate concentrations of 40 and 45 mEq/L on predialysis serum total carbon dioxide (tCO2 ) concentrations in patients who transfer from ICHD to short and nocturnal frequent hemodialysis prescriptions used in current clinical practice; the prescriptions evaluated varied by treatment frequency, dialysate volume per treatment, and treatment times. FINDINGS With frequencies of four to six treatments per week and treatment times of 170 to 210 minutes per treatment, the effect of dialysate lactate concentration was primarily dependent on weekly dialysate volume. For weekly dialysate volumes of 150 to 160 L per week, use of dialysate lactate concentrations of 45 mEq/L, but not 40 mEq/L, resulted in an increase of predialysis serum tCO2 concentration. When longer treatment times typical of nocturnal frequent hemodialysis were evaluated, model predictions showed that the use of dialysate lactate concentration of 45 mEq/L may not be appropriate for many patients because of excessive increases in predialysis serum tCO2 concentration. Reducing dialysate volume from 60 to 30 L may limit the increase in predialysis serum tCO2 concentration when patients transfer from ICHD to nocturnal frequent hemodialysis. DISCUSSION Predictions from the H+ mobilization model show that dialysate lactate concentration and weekly dialysate volume are the primary prescription parameters for optimizing predialysis serum tCO2 concentration during short and nocturnal frequent hemodialysis.
Collapse
Affiliation(s)
- John K Leypoldt
- Nalecz Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw, Poland
| | - Michael A Kraus
- NxStage Medical, Inc. (Fresenius Medical Care), Lawrence, Massachusetts, USA
| | - Allan J Collins
- NxStage Medical, Inc. (Fresenius Medical Care), Lawrence, Massachusetts, USA.,Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
17
|
Marano S, Marano M, Pecchia L. Frontiers in hemodialysis part II: Toward personalized and optimized therapy. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.102029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Park S, Paredes W, Custodio M, Goel N, Sapkota D, Bandla A, Lynn RI, Reddy SM, Hostetter TH, Abramowitz MK. Intradialytic acid-base changes and organic anion production during high versus low bicarbonate hemodialysis. Am J Physiol Renal Physiol 2020; 318:F1418-F1429. [PMID: 32308019 PMCID: PMC7311706 DOI: 10.1152/ajprenal.00036.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 01/06/2023] Open
Abstract
The use of high dialysate bicarbonate for hemodialysis in end-stage renal disease is associated with increased mortality, but potential physiological mediators are poorly understood. Alkalinization due to high dialysate bicarbonate may stimulate organic acid generation, which could lead to poor outcomes. Using measurements of β-hydroxybutyrate (BHB) and lactate, we quantified organic anion (OA) balance in two single-arm studies comparing high and low bicarbonate prescriptions. In study 1 (n = 10), patients became alkalemic using 37 meq/L dialysate bicarbonate; in contrast, with the use of 27 meq/L dialysate, net bicarbonate loss occurred and blood bicarbonate decreased. Total OA losses were not higher with 37 meq/L dialysate bicarbonate (50.9 vs. 49.1 meq using 27 meq/L, P = 0.66); serum BHB increased in both treatments similarly (P = 0.27); and blood lactate was only slightly higher with the use of 37 meq/L dialysate (P = 0.048), differing by 0.2 meq/L at the end of hemodialysis. In study 2 (n = 7), patients achieved steady state on two bicarbonate prescriptions: they were significantly more acidemic when dialyzed against a 30 meq/L bicarbonate dialysate compared with 35 meq/L and, as in study 1, became alkalemic when dialyzed against the higher bicarbonate dialysate. OA losses were similar to those in study 1 and again did not differ between treatments (38.9 vs. 43.5 meq, P = 0.42). Finally, free fatty acid levels increased throughout hemodialysis and correlated with the change in serum BHB (r = 0.81, P < 0.001), implicating upregulation of lipolysis as the mechanism for increased ketone production. In conclusion, lowering dialysate bicarbonate does not meaningfully reduce organic acid generation during hemodialysis or modify organic anion losses into dialysate.
Collapse
Affiliation(s)
- Sarah Park
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - William Paredes
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Matthew Custodio
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Narender Goel
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Deepak Sapkota
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Anusha Bandla
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Robert I Lynn
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Kidney Medical Associates, Bronx, New York
| | | | - Thomas H Hostetter
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Matthew K Abramowitz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
19
|
Leypoldt JK, Pietribiasi M, Ebinger A, Kraus MA, Collins A, Waniewski J. Acid-base kinetics during hemodialysis using bicarbonate and lactate as dialysate buffer bases based on the H + mobilization model. Int J Artif Organs 2020; 43:645-652. [PMID: 32126870 DOI: 10.1177/0391398820906524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The H+ mobilization model has been recently reported to accurately describe intradialytic kinetics of plasma bicarbonate concentration; however, the ability of this model to predict changing bicarbonate kinetics after altering the hemodialysis treatment prescription is unclear. METHODS We considered the H+ mobilization model as a pseudo-one-compartment model and showed theoretically that it can be used to determine the acid generation (or production) rate for hemodialysis patients at steady state. It was then demonstrated how changes in predialytic, intradialytic, and immediate postdialytic plasma bicarbonate (or total carbon dioxide) concentrations can be calculated after altering the hemodialysis treatment prescription. RESULTS Example calculations showed that the H+ mobilization model when considered as a pseudo-one-compartment model predicted increases or decreases in plasma total carbon dioxide concentrations throughout the entire treatment when the dialysate bicarbonate concentration is increased or decreased, respectively, during conventional thrice weekly hemodialysis treatments. It was further shown that this model allowed prediction of the change in plasma total carbon dioxide concentration after transfer of patients from conventional thrice weekly to daily hemodialysis using both bicarbonate and lactate as dialysate buffer bases. CONCLUSION The H+ mobilization model can predict changes in plasma bicarbonate or total carbon dioxide concentration during hemodialysis after altering the hemodialysis treatment prescription.
Collapse
Affiliation(s)
- John K Leypoldt
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Mauro Pietribiasi
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Ebinger
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Michael A Kraus
- NxStage Medical, Inc. (Fresenius Medical Care), Lawrence, MA, USA
| | - Allan Collins
- NxStage Medical, Inc. (Fresenius Medical Care), Lawrence, MA, USA.,Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Jacek Waniewski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
20
|
Adrogué HJ, Madias NE. Alkali Therapy for Respiratory Acidosis: A Medical Controversy. Am J Kidney Dis 2020; 75:265-271. [DOI: 10.1053/j.ajkd.2019.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/27/2019] [Indexed: 12/22/2022]
|
21
|
Waniewski J, Poleszczuk J, Pietribiasi M, Debowska M, Wojcik-Zaluska A, Zaluska W. Impact of solute exchange between erythrocytes and plasma on hemodialyzer clearance. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Marano S, Marano M. Frontiers in hemodialysis: Solutions and implications of mathematical models for bicarbonate restoring. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Sargent JA, Marano M, Marano S, Gennari FJ. Changing dialysate composition to optimize acid‐base therapy. Semin Dial 2019; 32:248-254. [DOI: 10.1111/sdi.12779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Marco Marano
- Hemodialysis Unit Maria Rosaria Clinic Pompeii, Naples Italy
| | - Stefano Marano
- Department of Information and Electrical Engineering and Applied Mathematics University of Salerno Fisciano, Salerno Italy
| | - F. John Gennari
- University of Vermont College of Medicine Burlington Vermont
| |
Collapse
|