1
|
Thorp EB, Ananthakrishnan A, Lantz CW. Decoding immune cell interactions during cardiac allograft vasculopathy: insights derived from bioinformatic strategies. Front Cardiovasc Med 2025; 12:1568528. [PMID: 40342971 PMCID: PMC12058854 DOI: 10.3389/fcvm.2025.1568528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/04/2025] [Indexed: 05/11/2025] Open
Abstract
Chronic allograft vasculopathy (CAV) is a major cause of late graft failure in heart transplant recipients, characterized by progressive intimal thickening and diffuse narrowing of the coronary arteries. Unlike atherosclerosis, CAV exhibits a distinct cellular composition and lesion distribution, yet its pathogenesis remains incompletely understood. A major challenge in CAV research has been the limited application of advanced "-omics" technologies, which have revolutionized the study of other vascular diseases. Recent advancements in single-cell and spatial transcriptomics, proteomics, and metabolomics have begun to uncover the complex immune-endothelial-stromal interactions driving CAV progression. Notably, single-cell RNA sequencing has identified previously unrecognized immune cell populations and signaling pathways implicated in endothelial injury and vascular remodeling after heart transplantation. Despite these breakthroughs, studies applying these technologies to CAV remain sparse, limiting the translation of these insights into clinical practice. This review aims to bridge this gap by summarizing recent findings from single-cell and multi-omic approaches, highlighting key discoveries, and discussing their implications for understanding CAV pathogenesis.
Collapse
Affiliation(s)
- Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Aparnaa Ananthakrishnan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Connor W. Lantz
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
2
|
Aiyengar A, Romano M, Burch M, Lombardi G, Fanelli G. The potential of autologous regulatory T cell (Treg) therapy to prevent Cardiac Allograft Vasculopathy (CAV) in paediatric heart transplant recipients. Front Immunol 2024; 15:1444924. [PMID: 39315099 PMCID: PMC11416935 DOI: 10.3389/fimmu.2024.1444924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Paediatric heart transplant is an established treatment for end stage heart failure in children, however patients have to commit to lifelong medical surveillance and adhere to daily immunosuppressants to minimise the risk of rejection. Compliance with immunosuppressants can be burdensome with their toxic side effects and need for frequent blood monitoring especially in children. Though the incidence of early rejection episodes has significantly improved overtime, the long-term allograft health and survival is determined by Cardiac Allograft Vasculopathy (CAV) which affects a vast number of post-transplant patients. Once CAV has set in, there is no medical or surgical treatment to reverse it and graft survival is significantly compromised across all age groups. Current treatment strategies include novel immunosuppressant agents and drugs to lower blood lipid levels to address the underlying immunological pathophysiology and to manage traditional cardiac risk factors. Translational researchers are seeking novel immunological approaches that can lead to permanent acceptance of the allograft such as using regulatory T cell (Tregs) immunotherapy. Clinical trials in the setting of graft versus host disease, autoimmunity and kidney and liver transplantation using Tregs have shown the feasibility and safety of this strategy. This review will summarise current knowledge of the latest clinical therapies for CAV and pre-clinical evidence in support of Treg therapy for CAV. We will also discuss the different Treg sources and the considerations of translating this into a feasible immunotherapy in clinical practice in the paediatric population.
Collapse
Affiliation(s)
- Apoorva Aiyengar
- Department of Cardiology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
- Research Department of Children’s Cardiovascular Disease, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Marco Romano
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London, United Kingdom
| | - Michael Burch
- Department of Cardiology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London, United Kingdom
| | - Giorgia Fanelli
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London, United Kingdom
| |
Collapse
|
3
|
Short S, Lewik G, Issa F. An Immune Atlas of T Cells in Transplant Rejection: Pathways and Therapeutic Opportunities. Transplantation 2023; 107:2341-2352. [PMID: 37026708 PMCID: PMC10593150 DOI: 10.1097/tp.0000000000004572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 04/08/2023]
Abstract
Short-term outcomes in allotransplantation are excellent due to technical and pharmacological advances; however, improvement in long-term outcomes has been limited. Recurrent episodes of acute cellular rejection, a primarily T cell-mediated response to transplanted tissue, have been implicated in the development of chronic allograft dysfunction and loss. Although it is well established that acute cellular rejection is primarily a CD4 + and CD8 + T cell mediated response, significant heterogeneity exists within these cell compartments. During immune responses, naïve CD4 + T cells are activated and subsequently differentiate into specific T helper subsets under the influence of the local cytokine milieu. These subsets have distinct phenotypic and functional characteristics, with reported differences in their contribution to rejection responses specifically. Of particular relevance are the regulatory subsets and their potential to promote tolerance of allografts. Unraveling the specific contributions of these cell subsets in the context of transplantation is complex, but may reveal new avenues of therapeutic intervention for the prevention of rejection.
Collapse
Affiliation(s)
- Sarah Short
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Guido Lewik
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
4
|
Giri S, Meitei HT, Mishra A, Lal G. +Vγ2+ γδ T cells in the presence of anti-CD40L control surgical inflammation and promote skin allograft survival. J Invest Dermatol 2022; 142:2706-2714.e3. [DOI: 10.1016/j.jid.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
|
5
|
Gan X, Gu J, Ju Z, Lu L. Diverse Roles of Immune Cells in Transplant Rejection and Immune Tolerance. ENGINEERING 2022; 10:44-56. [DOI: 10.1016/j.eng.2021.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
6
|
McCallion O, Hester J, Issa F. Deciphering the Contribution of γδ T Cells to Outcomes in Transplantation. Transplantation 2018; 102:1983-1993. [PMID: 29994977 PMCID: PMC6215479 DOI: 10.1097/tp.0000000000002335] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
γδ T cells are a subpopulation of lymphocytes expressing heterodimeric T-cell receptors composed of γ and δ chains. They are morphologically and functionally heterogeneous, innate yet also adaptive in behavior, and exhibit diverse activities spanning immunosurveillance, immunomodulation, and direct cytotoxicity. The specific responses of γδ T cells to allografts are yet to be fully elucidated with evidence of both detrimental and tolerogenic roles in different settings. Here we present an overview of γδ T-cell literature, consider ways in which their functional heterogeneity contributes to the outcomes after transplantation, and reflect on methods to harness their beneficial properties.
Collapse
Affiliation(s)
- Oliver McCallion
- Transplantation Research Immunology Group, University of Oxford, Oxford, United Kingdom
| | - Joanna Hester
- Transplantation Research Immunology Group, University of Oxford, Oxford, United Kingdom
| | - Fadi Issa
- Transplantation Research Immunology Group, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Kwok C, Pavlosky A, Lian D, Jiang J, Huang X, Yin Z, Liu W, Haig A, Jevnikar AM, Zhang ZX. Necroptosis Is Involved in CD4+ T Cell-Mediated Microvascular Endothelial Cell Death and Chronic Cardiac Allograft Rejection. Transplantation 2017; 101:2026-2037. [PMID: 29633982 DOI: 10.1097/tp.0000000000001578] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Despite advances in immunosuppressive therapies, the rate of chronic transplant loss remains substantial. Organ injury involves various forms of cell death including apoptosis and necrosis. We now recognize that early injury of cardiac transplants involves a newly described form of programmed necrotic cell death, termed necroptosis. Because this involves receptor-interacting protein (RIP) kinase 1/3, this study aimed to establish the role of RIP3 in chronic cardiac allograft rejection. METHODS We used major histocompatibility complex class II mismatched C57BL/6N (H-2; B6) or B6.RIP3 (H-2; RIP3) mice to B6.C-H-2 (H2-Ab1; bm12) mouse cardiac transplantation. Microvascular endothelial cells (MVEC) were developed from B6 and RIP3 cardiac grafts. RESULT CD4 T cell-mediated cardiac graft rejection is inhibited using RIP3 deficient donor grafts, with reduced cellular infiltration and vasculopathy compared with wild type cardiac grafts. Alloreactive CD4 T cell-mediated MVEC death involves TNFα, Fas ligand (FasL) and granzyme B. Although necroptosis and release of danger molecule high-mobility group box 1 are eliminated by the absence of RIP3, CD4 T cells had attenuated MVEC death through granzyme B and FasL. CONCLUSIONS CD4 T cell-mediated MVEC death involves in TNFα, FasL and granzyme B. Necroptotic cell death and release of the danger molecule may promote inflammatory responses and transplant rejection. Although loss of RIP3 does not eliminate alloimmune responses, chronic graft injury is reduced. RIP3 is an important therapeutic target but additional granzyme and caspases inhibition is required for sufficiently improving long-term graft survival.
Collapse
Affiliation(s)
- Cecilia Kwok
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
- Departments of Medicine, Pathology, Immunology, University of Western Ontario, London, Ontario, Canada
| | - Alexander Pavlosky
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
- Departments of Medicine, Pathology, Immunology, University of Western Ontario, London, Ontario, Canada
| | - Dameng Lian
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
| | - Jifu Jiang
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
| | - Xuyan Huang
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
| | - Ziqin Yin
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
| | - Weihua Liu
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
- Departments of Medicine, Pathology, Immunology, University of Western Ontario, London, Ontario, Canada
| | - Aaron Haig
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
- Departments of Medicine, Pathology, Immunology, University of Western Ontario, London, Ontario, Canada
| | - Anthony M Jevnikar
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
- Departments of Medicine, Pathology, Immunology, University of Western Ontario, London, Ontario, Canada
| | - Zhu-Xu Zhang
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
- Departments of Medicine, Pathology, Immunology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
8
|
Li Y, Huang Z, Yan R, Liu M, Bai Y, Liang G, Zhang X, Hu X, Chen J, Huang C, Liu B, Luo G, Wu J, He W. Vγ4 γδ T Cells Provide an Early Source of IL-17A and Accelerate Skin Graft Rejection. J Invest Dermatol 2017; 137:2513-2522. [PMID: 28733202 DOI: 10.1016/j.jid.2017.03.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 01/12/2023]
Abstract
Activated γδ T cells have been shown to accelerate allograft rejection. However, the precise role of skin-resident γδ T cells and their subsets-Vγ5 (epidermis), Vγ1, and Vγ4 (dermis)-in skin graft rejection have not been identified. Here, using a male to female skin transplantation model, we demonstrated that Vγ4 T cells, rather than Vγ1 or Vγ5 T cells, accelerated skin graft rejection and that IL-17A was essential for Vγ4 T-cell-mediated skin graft rejection. Moreover, we found that Vγ4 T cells were required for early IL-17A production in the transplanted area, both in skin grafts and in the host epidermis around grafts. Additionally, the chemokine (C-C motif) ligand 20-chemokine receptor 6 pathway was essential for recruitment of Vγ4 T cells to the transplantation area, whereas both IL-1β and IL-23 induced IL-17A production from infiltrating cells. Lastly, Vγ4 T-cell-derived IL-17A promoted the accumulation of mature dendritic cells in draining lymph nodes to subsequently regulate αβ T-cell function after skin graft transplantation. Taken together, our data reveal that Vγ4 T cells accelerate skin graft rejection by providing an early source of IL-17A.
Collapse
Affiliation(s)
- Yashu Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Zhenggen Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Rongshuai Yan
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Meixi Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Yang Bai
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Guangping Liang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jian Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Chibing Huang
- Department of Urology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Baoyi Liu
- Department of Orthopedic, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China.
| | - Jun Wu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China.
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China.
| |
Collapse
|
9
|
Abstract
Cardiac allograft vasculopathy (CAV) has a high prevalence among patients that have undergone heart transplantation. Cardiac allograft vasculopathy is a multifactorial process in which the immune system is the driving force. In this review, the data on the immunological and fibrotic processes that are involved in the development of CAV are summarized. Areas where a lack of knowledge exists and possible additional research can be completed are pinpointed. During the pathogenesis of CAV, cells from the innate and the adaptive immune system cooperate to reject the foreign heart. This inflammatory response results in dysfunction of the endothelium and migration and proliferation of smooth muscle cells (SMCs). Apoptosis and factors secreted by both the endothelium as well as the SMCs lead to fibrosis. The migration of SMCs together with fibrosis provoke concentric intimal thickening of the coronary arteries, which is the main characteristic of CAV.
Collapse
|
10
|
Zou H, Yang Y, Gao M, Zhang B, Ming B, Sun Y, Chen H, Tang X, Chen Z, Xiong P, Xu Y, Fang M, Tan Z, Gong F, Zheng F. HMGB1 is involved in chronic rejection of cardiac allograft via promoting inflammatory-like mDCs. Am J Transplant 2014; 14:1765-77. [PMID: 24984831 DOI: 10.1111/ajt.12781] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/04/2014] [Accepted: 04/06/2014] [Indexed: 01/25/2023]
Abstract
Chronic rejection that leads to diffuse narrowing and occlusion of graft vessels is the most important cause of morbidity and mortality following cardiac transplantation. The role and underlying mechanism of high-mobility group box 1 (HMGB1), as an established inflammatory mediator in acute rejection, remains poorly understood in chronic rejection. Here, we assessed the effects and mechanisms of HMGB1 on the chronic rejection using single MHC Class II-mismatched mouse cardiac transplantation model. It was found that HMGB1 was increased accompanying with the development of chronic rejection, while blockade of HMGB1 with specific neutralizing mAb substantially ameliorated chronic rejection-mediated vasculopathy and fibrosis of allograft, as well as markedly decreased T cell infiltration and production of IL-17A and interferon-gamma in allograft and recipient's spleen. Further, anti-HMGB1 antibody treatment significantly declined the number and frequency of mature dendritic cells (DCs) in allograft and recipient's spleen, especially CD11b(+) Ly6C(high) matured DCs that share the phenotypes with inflammatory-DCs. These findings indicate that HMGB1 contributes to chronic rejection, and HMGB1 blockade may be a novel mean to disrupt the proinflammatory loop after heart transplantation.
Collapse
Affiliation(s)
- H Zou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|