1
|
Nakanishi M, Tamagawa-Mineoka R, Nishigaki H, Arakawa Y, Ohtsuka S, Katoh N. Role of Siglec-E in MC903-Induced Atopic Dermatitis. Exp Dermatol 2025; 34:e70064. [PMID: 39967561 DOI: 10.1111/exd.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
Atopic dermatitis (AD) is a common skin disease. Although AD pathogenesis has been widely researched, inhibitory mechanisms in AD are still unclear. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of receptors recognising sialic acids; most Siglecs work as inhibitory receptors. Among Siglecs, Siglec-E is expressed on dendritic cells (DCs) and eosinophils, important immune cells in AD. Although Siglec-E inhibits Type 1 inflammatory diseases, how it influences AD is unknown. Thus, we investigated the role of Siglec-E in AD mouse model by using Siglec-E knockout (KO) mice. We demonstrated that Siglec-E attenuated AD-like inflammation of mice caused by topical application of MC903 on ear skin (MC903-induced AD). To reveal the role of Siglec-E in MC903-induced AD, we focused on Siglec-E on DCs and eosinophils. We first showed that Sigle-E was expressed on cutaneous DCs and migratory DCs of draining lymph nodes. Moreover, OX40L expression on cutaneous DCs was reduced in the presence of Siglec-E. In vitro experiments using cultured spleen DCs (SpDCs), highly expressing Siglec-E, revealed that IL-33 was involved in the induction of Siglec-E and confirmed that Siglec-E inhibited OX40L expression on SpDCs induced by IL-33. Moreover, CD4+ T cell-SpDC coculture revealed that Siglec-E inhibited Th2 polarisation under IL-33 stimulation. We finally revealed that Siglec-E was expressed on eosinophils and reduced the eosinophils infiltration to the MC903-treated ear skin with the suppression of CD49d, a necessary integrin for eosinophil migration to skin tissue [1], expression on eosinophils. These findings elucidated the inhibitory role of Siglec-E in MC903-induced AD.
Collapse
MESH Headings
- Animals
- Dermatitis, Atopic/chemically induced
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/immunology
- Mice
- Eosinophils/metabolism
- Mice, Knockout
- Dendritic Cells/metabolism
- Disease Models, Animal
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Mice, Inbred C57BL
- Skin
- Interleukin-33/metabolism
Collapse
Affiliation(s)
- Mari Nakanishi
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Risa Tamagawa-Mineoka
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiromi Nishigaki
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiyasu Arakawa
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Ohtsuka
- Laboratory for Experimental Animals, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Norito Katoh
- North Campus, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Miralda I, Samanas NB, Seo AJ, Foronda JS, Sachen J, Hui Y, Morrison SD, Oskeritzian CA, Piliponsky AM. Siglec-9 is an inhibitory receptor on human mast cells in vitro. J Allergy Clin Immunol 2023; 152:711-724.e14. [PMID: 37100120 PMCID: PMC10524464 DOI: 10.1016/j.jaci.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Mast cell activation is critical for the development of allergic diseases. Ligation of sialic acid-binding immunoglobin-like lectins (Siglecs), such as Siglec-6, -7, and -8 as well as CD33, have been shown to inhibit mast cell activation. Recent studies showed that human mast cells express Siglec-9, an inhibitory receptor also expressed by neutrophils, monocytes, macrophages, and dendritic cells. OBJECTIVE We aimed to characterize Siglec-9 expression and function in human mast cells in vitro. METHODS We assessed the expression of Siglec-9 and Siglec-9 ligands on human mast cell lines and human primary mast cells by real-time quantitative PCR, flow cytometry, and confocal microscopy. We used a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing approach to disrupt the SIGLEC9 gene. We evaluated Siglec-9 inhibitory activity on mast cell function by using native Siglec-9 ligands, glycophorin A (GlycA), and high-molecular-weight hyaluronic acid, a monoclonal antibody against Siglec-9, and coengagement of Siglec-9 with the high-affinity receptor for IgE (FcεRI). RESULTS Human mast cells express Siglec-9 and Siglec-9 ligands. SIGLEC9 gene disruption resulted in increased expression of activation markers at baseline and increased responsiveness to IgE-dependent and IgE-independent stimulation. Pretreatment with GlycA or high-molecular-weight hyaluronic acid followed by IgE-dependent or -independent stimulation had an inhibitory effect on mast cell degranulation. Coengagement of Siglec-9 with FcεRI in human mast cells resulted in reduced degranulation, arachidonic acid production, and chemokine release. CONCLUSIONS Siglec-9 and its ligands play an important role in limiting human mast cell activation in vitro.
Collapse
Affiliation(s)
- Irina Miralda
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Nyssa B Samanas
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Albert J Seo
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Jake S Foronda
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Josie Sachen
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Yvonne Hui
- University of South Carolina School of Medicine, Columbia, SC
| | - Shane D Morrison
- Department of Surgery, Division of Plastic Surgery, Seattle Children's Hospital, Seattle, Wash
| | | | - Adrian M Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash; Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash; Department of Pathology, University of Washington School of Medicine, Seattle, Wash; Department of Global Health, University of Washington School of Medicine, Seattle, Wash.
| |
Collapse
|
3
|
Ye Z, Wang Y, Xiang B, Wang H, Tao H, Zhang C, Zhang S, Sun D, Luo F, Song L. Roles of the Siglec family in bone and bone homeostasis. Biomed Pharmacother 2023; 165:115064. [PMID: 37413904 DOI: 10.1016/j.biopha.2023.115064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Tremendous progress has been seen in the study of the role of sialic acid binding im-munoglobulin type lectins (Siglecs) in osteoimmunology in the past two decades. Interest in Siglecs as immune checkpoints has grown from the recognition that Siglecs have relevance to human disease. Siglecs play important roles in inflammation and cancer, and play key roles in immune cell signaling. By recognizing common sialic acid containing glycans on glycoproteins and glycolipids as regulatory receptors for immune cell signals, Siglecs are expressed on most immune cells and play important roles in normal homeostasis and self-tolerance. In this review, we describe the role that the siglec family plays in bone and bone homeostasis, including the regulation of osteoclast differentiation as well as recent advances in inflammation, cancer and osteoporosis. Particular emphasis is placed on the relevant functions of Siglecs in self-tolerance and as pattern recognition receptors in immune responses, thereby potentially providing emerging strategies for the treatment of bone related diseases.
Collapse
Affiliation(s)
- Zi Ye
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Yetong Wang
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Binqing Xiang
- Department of Surgical Anesthesia, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Heng Wang
- Army Border Defense 331st Brigade, Dandong 118000, China
| | - Haiyan Tao
- Health Management Center, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Chengmin Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Shuai Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Dong Sun
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Fei Luo
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Lei Song
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
4
|
Lima K, Ribas GT, Riella LV, Borges TJ. Inhibitory innate receptors and their potential role in transplantation. Transplant Rev (Orlando) 2023; 37:100776. [PMID: 37451057 DOI: 10.1016/j.trre.2023.100776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
The regulatory arm of the immune system plays a crucial role in maintaining immune tolerance and preventing excessive immune responses. Immune regulation comprises various regulatory cells and molecules that work together to suppress or regulate immune responses. The programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) are examples of inhibitory receptors that counteract activating signals and fine-tune immune responses. While most of the discoveries of immune regulation have been related to T cells and the adaptive immune system, the innate arm of the immune system also has a range of inhibitory receptors that can counteract activating signals and suppress the effector immune responses. Targeting these innate inhibitory receptors may provide a complementary therapeutic approach in several immune-related conditions, including transplantation. In this review, we will explore the potential role of innate inhibitory receptors in controlling alloimmunity during solid organ transplantation.
Collapse
Affiliation(s)
- Karina Lima
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guilherme T Ribas
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Professional and Technological Education Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thiago J Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Siddiqui SS. Non-canonical roles of Siglecs: Beyond sialic acid-binding and immune cell modulation. Mol Aspects Med 2023; 90:101145. [PMID: 36153172 DOI: 10.1016/j.mam.2022.101145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/11/2022] [Accepted: 09/13/2022] [Indexed: 02/08/2023]
Abstract
Siglecs (Sialic acid-binding immunoglobulin-type lectins) are I-type lectins that bind with sialic acid ligands (Sia). Most are expressed on the surface of leukocytes and are involved in immune regulation and possess immune tyrosine-based inhibitory motif (ITIM) in the intracellular domain, thus leading to inhibition of the immune response. This signaling is instrumental in maintaining quiescence under physiological conditions and acts as a brake for inflammatory cascades. By contrast, activating Siglecs carry positively charged residues in the transmembrane domain and interact with immune tyrosine-based activating motif (ITAM)-containing proteins, a DNAX-activating protein of 10-12 kDa (DAP10/12), to activate immune cells. There are various characteristics of Siglecs that do not fit within the classification of Siglec receptors as being either inhibitory or activating in nature. This review focuses on elucidating the non-canonical functions and interactions of Siglec receptors, which include Sia-independent interactions such as protein-protein interactions and interactions with lipids or other sugars. This review also summarizes Siglec expression and function on non-immune cells, and non-classical signaling of the receptor. Thus, this review will be beneficial to researchers interested in the field of Siglecs and sialic acid biology.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, United Kingdom.
| |
Collapse
|
6
|
Transgenic mouse models to study the physiological and pathophysiological roles of human Siglecs. Biochem Soc Trans 2022; 50:935-950. [PMID: 35383825 DOI: 10.1042/bst20211203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are important immunomodulatory receptors. Due to differences between human and mouse Siglecs, defining the in vivo roles for human Siglecs (hSiglecs) can be challenging. One solution is the development and use of hSiglec transgenic mice to assess the physiological roles of hSiglecs in health and disease. These transgenic mice can also serve as important models for the pre-clinical testing of immunomodulatory approaches that are based on targeting hSiglecs. Four general methods have been used to create hSiglec-expressing transgenic mice, each with associated advantages and disadvantages. To date, transgenic mouse models expressing hSiglec-2 (CD22), -3 (CD33), -7, -8, -9, -11, and -16 have been created. This review focuses on both the generation of these hSiglec transgenic mice, along with the important findings that have been made through their study. Cumulatively, hSiglec transgenic mouse models are providing a deeper understanding of the differences between human and mice orthologs/paralogs, mechanisms by which Siglecs regulate immune cell signaling, physiological roles of Siglecs in disease, and different paradigms where targeting Siglecs may be therapeutically advantageous.
Collapse
|
7
|
Pan PJ, Wang JC, Tsai CC, Kuo HC. Identification of early response to hypertonic dextrose prolotherapy markers in knee osteoarthritis patients by an inflammation-related cytokine array. J Chin Med Assoc 2022; 85:525-531. [PMID: 35019866 DOI: 10.1097/jcma.0000000000000693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is one of the most common forms of arthritis, and hypertonic dextrose prolotherapy has long been used clinically to treat knee OA. The aim of this study was to investigate the inflammation-related protein-expression profile characterizing the efficacy of the hypertonic dextrose prolotherapy in knee OA as prognostic markers. METHODS OA patients over the age of 65 were recruited for Western Ontario McMaster University Osteoarthritis (WOMAC) index, knee X-ray evaluation and knee joint synovial fluid analysis before and after hypertonic dextrose prolotherapy. The expressions of inflammation-related factors were measured using a novel cytokine antibody array methodology. The cytokine levels were quantified by quantitative protein expression and analyzed by ELISA using the patients' knee-joint synovial fluid. RESULTS The WOMAC Index and minimum joint space width before receiving the intra-articular injection and at 2-week intervals were compared. Twelve patients who received OA intervention were enrolled and finally a clinical evaluation of 12 knee joints and knee synovial fluid samples were analyzed. In this study, after receiving hypertonic dextrose prolotherapy, the OA patients clearly demonstrated a significant improvement in WOMAC index and increasing tendency in the medial minimum joint space width after intervention. Meanwhile, we observed a significantly associated tendency between hypertonic dextrose treatment of knee OA and the upregulation of MMP2, TIMP-1, EGF, CXCL9 and IL-22. CONCLUSION The findings provide knee OA patients receiving hypertonic dextrose prolotherapy, which is accompained by the improvemeny of knee symptoms and associated tendency of upregulation of MMP2, EGF, CXCL 9 and IL-22.
Collapse
Affiliation(s)
- Po-Jung Pan
- Department of Physical Medicine and Rehabilitation, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan, ROC
- Department of Medicine, National Yang Ming Chiao Tung University University, Taipei, Taiwan, ROC
| | - Jia-Chi Wang
- Department of Medicine, National Yang Ming Chiao Tung University University, Taipei, Taiwan, ROC
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chih-Chun Tsai
- Department of Mathematics, Tamkang University, Taipei, Taiwan, ROC
| | - Hsing-Chun Kuo
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chiayi, Taiwan, ROC
- Research Fellow, Chang Gung Memorial Hospital, Chiayi, Taiwan, ROC
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, ROC
- Chronic Diseases and Health Promotion Research Center, CGUST, Chiayi, Taiwan, ROC
| |
Collapse
|
8
|
Ye X, Lu Q, Yang A, Rao J, Xie W, He C, Wang W, Li H, Zhang Z. MiR-206 regulates the Th17/Treg ratio during osteoarthritis. Mol Med 2021; 27:64. [PMID: 34147072 PMCID: PMC8214293 DOI: 10.1186/s10020-021-00315-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The present study aimed to determine the functional role of miR-206 in T helper 17 (Th17)/regulatory T (Treg) cell differentiation during the development of osteoarthritis (OA). METHODS Patients with OA and healthy controls were recruited for investigating the association between miR-206 and Th17/Treg ratio. Transfection experiments were conducted in CD4+ T cells to verify the mechanism of miR-206 on the balance of Treg/Th17. OA model was constructed to detect the clinical score, histopathological changes and Treg/Th17 ratio. OA model was induced in rats to verify the effect of miR-206 inhibition on Th17/Treg immunoregulation. RESULTS High expression of miR-206 was positively correlated with peripheral Th17/Treg imbalance in patients with OA. The interactions between miR-206 and the 3' untranslated regions (3'-UTR) of suppressor of cytokine signaling-3 (SOCS3) and fork head transcriptional factor 3 (Foxp3) were confirmed by luciferase reporter assays. MiR-206 disturbed the Th17/Treg balance by targeting SOCS3 and Foxp3. In vivo assay demonstrated that antagomiR directed against miR-206 restored Th17/Treg balance during the development of OA. CONCLUSION MiR-206 contributed to the progression of OA by modulating Th17/Treg imbalance, suggesting that miR-206 inhibition might be a promising therapeutic strategy for the treatment of OA.
Collapse
Affiliation(s)
- Xiguang Ye
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430061, Hubei, China.,Institute of Orthopedics, Hubei Province Academy of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430070, Hubei, China
| | - Qilin Lu
- Department of Orthopedics, Hubei 672 Orthopaedics Hospital of Integrated Chinese & Western Medicine, Wuhan, 430079, Hubei, China
| | - Aofei Yang
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430061, Hubei, China. .,Institute of Orthopedics, Hubei Province Academy of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430070, Hubei, China. .,College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430061, Hubei, China.
| | - Jun Rao
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430061, Hubei, China.,Institute of Orthopedics, Hubei Province Academy of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430070, Hubei, China
| | - Wei Xie
- Department of Orthopedics, Hubei 672 Orthopaedics Hospital of Integrated Chinese & Western Medicine, Wuhan, 430079, Hubei, China
| | - Chengjian He
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430061, Hubei, China.,Institute of Orthopedics, Hubei Province Academy of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430070, Hubei, China
| | - Weijun Wang
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430061, Hubei, China.,Institute of Orthopedics, Hubei Province Academy of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430070, Hubei, China
| | - Hao Li
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430061, Hubei, China.,Institute of Orthopedics, Hubei Province Academy of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430070, Hubei, China
| | - Zhiwen Zhang
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430061, Hubei, China.,Institute of Orthopedics, Hubei Province Academy of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430070, Hubei, China
| |
Collapse
|
9
|
Andes FT, Adam S, Hahn M, Aust O, Frey S, Grueneboom A, Nitschke L, Schett G, Steffen U. The human sialic acid-binding immunoglobulin-like lectin Siglec-9 and its murine homolog Siglec-E control osteoclast activity and bone resorption. Bone 2021; 143:115665. [PMID: 33007530 DOI: 10.1016/j.bone.2020.115665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023]
Abstract
Regulation of osteoclast differentiation and function is a central element in bone homeostasis. While the role of soluble factors, such as cytokines, hormones and growth factors, in controlling osteoclast differentiation has been intensively characterized, the function of surface receptors is less well understood. Sialic acid-binding immunoglobulin-like lectin (Siglec)-9 and its murine homolog Siglec-E are sialic acid-recognizing inhibitory receptors from the CD33-related Siglec-family and mainly expressed on myeloid cells. We found Siglec-9 and Siglec-E to be expressed at all stages of human and murine osteoclastogenesis, respectively. Siglec-E knockout mice displayed lower bone mass despite unchanged osteoclast numbers and an increased bone formation rate. Ex vivo osteoclast assays using Siglec-E knockout cells or a blocking antibody against human Siglec-9 confirmed the suppressive effect of Siglec-9/Siglec-E on osteoclast function. Although osteoclast numbers were unchanged or even slightly decreased, the blockade/absence of Siglec-9/Siglec-E resulted in an augmented resorption activity of mature osteoclasts. This increased resorption activity was associated with enlarged actin rings. Together, our results suggest Siglec-9/Siglec-E to inhibit osteoclast activation independently from osteoclast differentiation and thereby propose a new mechanism for the control of local bone resorption.
Collapse
Affiliation(s)
- F T Andes
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - S Adam
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - M Hahn
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - O Aust
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - S Frey
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - A Grueneboom
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - L Nitschke
- Department of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - G Schett
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - U Steffen
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany.
| |
Collapse
|
10
|
The development of a targeted and more potent, anti-Inflammatory derivative of colchicine: Implications for gout. Biochem Pharmacol 2020; 180:114125. [PMID: 32598947 DOI: 10.1016/j.bcp.2020.114125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colchicine is routinely used for its anti-inflammatory properties to treat gout and Familial Mediterranean fever. More recently, it was also shown to be of therapeutic benefit for another group of diseases in which inflammation is a key component, namely, cardiovascular disease. Whilst there is considerable interest in repurposing this alkaloid, it has a narrow therapeutic index and is associated with undesirable side effects and drug interactions. We, therefore, developed a derivatives of colchicine that preferentially target leukocytes to increase their potency and diminish their side effects. The anti-inflammatory activity of the colchicine derivatives was tested in experimental models of neutrophil activation by the etiological agent of gout, monosodium urate crystals (MSU). METHODS Using a rational drug design approach, the structure of colchicine was modified to increase its affinity for βVI-tubulin, a colchicine ligand preferentially expressed by immune cells. The ability of the colchicine analogues with the predicted highest affinity for βVI-tubulin to dampen neutrophil responses to MSU was determined with in vitro assays that measure MSU-induced production of ROS, release of IL-1 and CXCL8/IL-8, and the increase in the concentration of cytoplasmic calcium. The anti-inflammatory property of the derivatives was assessed in the air pouch model of MSU-induced inflammation in mice. RESULTS The most effective compound generated, CCI, is more potent than colchicine in all the in vitro assays. It inhibits neutrophil responses to MSU in vitro at concentrations 10-100-fold lower than colchicine. Similarly, in vivo, CCI inhibits the MSU-induced recruitment of leukocytes at a 10-fold lower concentration than colchicine when administered prior to or after MSU. CONCLUSIONS We provide evidence that colchicine can be rendered more potent atinhibiting MSU-induced neutrophil activation and inflammation using a rational drug design approach. The development of compounds such as CCI will provide more efficacious drugs that will not only alleviate gout patients of their painful inflammatory episodes at significantly lower doses than colchicine, but also be of potential therapeutic benefit for patients with other diseases treated with colchicine.
Collapse
|
11
|
Liu H, Zheng Y, Zhang Y, Li J, Fernandes SM, Zeng D, Li X, Schnaar RL, Jia Y. Immunosuppressive Siglec-E ligands on mouse aorta are up-regulated by LPS via NF-κB pathway. Biomed Pharmacother 2020; 122:109760. [DOI: 10.1016/j.biopha.2019.109760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 11/28/2022] Open
|
12
|
Ma D, Xu K, Zhang G, Liu Y, Gao J, Tian M, Wei C, Li J, Zhang L. Immunomodulatory effect of human umbilical cord mesenchymal stem cells on T lymphocytes in rheumatoid arthritis. Int Immunopharmacol 2019; 74:105687. [PMID: 31295689 DOI: 10.1016/j.intimp.2019.105687] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/23/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease which is lack of effective therapies. Abnormal activation, proliferation, and differentiation of T lymphocytes are closely related to RA. Mesenchymal stem cells (MSCs) can be used for RA treatment due to their immunoregulatory effects. However, the specific molecular mechanisms have not been fully elucidated and the therapeutic effect has been inconsistent. This study investigated the immunomodulatory effect of human umbilical cord MSCs (hUCMSCs) on T lymphocytes in collagen-induced arthritis (CIA) rats and RA patients to clarify the possible mechanism of hUCMSCs in RA treatment. The effects of hUCMSCs on arthritis index, radiological and synovial pathological changes, T lymphocyte proliferation and apoptosis, RORγt and Foxp3 expression, Th17 and Treg cell ratios, and IL-17 and TGF-β levels were assessed in CIA rats. Further, we verified the effect of hUCMSCs in RA patients, and compared the effect of hUCMSCs with that of hUCMSC derived extracellular vesicles (EVs). The results showed that hUCMSCs inhibited the proliferation and promoted apoptosis in T lymphocytes, downregulated RORγt mRNA and protein expression, decreased Th17 cell ratio, upregulated Foxp3 mRNA and protein expression, and increased Treg cell ratio in the spleen. Furthermore, they downregulated RORγt and Foxp3 expression in the joints, and inhibited IL-17 and promoted TGF-β expression in the serum, thereby improving arthritis, delaying radiological progression, and inhibiting synovial hyperplasia in CIA rats. In vitro the effects of hUCMSCs and EVs were consistent with those in vivo. Therefore, hUCMSCs may be expected to serve as a new therapy for RA.
Collapse
Affiliation(s)
- Dan Ma
- Department of Rheumatology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan 030032, Shanxi, China
| | - Ke Xu
- Department of Rheumatology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan 030032, Shanxi, China
| | - Gailian Zhang
- Department of Rheumatology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan 030032, Shanxi, China
| | - Yang Liu
- Department of Rheumatology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan 030032, Shanxi, China
| | - Jinfang Gao
- Department of Rheumatology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan 030032, Shanxi, China
| | - Min Tian
- Department of Rheumatology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan 030032, Shanxi, China
| | - Chun Wei
- Department of Rheumatology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan 030032, Shanxi, China
| | - Juan Li
- Department of Rheumatology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan 030032, Shanxi, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan 030032, Shanxi, China.
| |
Collapse
|
13
|
Choi HJ, Chung TW, Choi HJ, Han JH, Choi JH, Kim CH, Ha KT. Increased α2-6 sialylation of endometrial cells contributes to the development of endometriosis. Exp Mol Med 2018; 50:1-12. [PMID: 30542051 PMCID: PMC6290765 DOI: 10.1038/s12276-018-0167-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/30/2018] [Accepted: 06/12/2018] [Indexed: 12/18/2022] Open
Abstract
Endometriosis is a disease characterized by implants of endometrial tissue outside the uterine cavity and is strongly associated with infertility. Focal adhesion of endometrial tissue to the peritoneum is an indication of incipient endometriosis. In this study, we examined the effect of various cytokines that are known to be involved in the pathology of endometriosis on endometrial cell adhesion. Among the investigated cytokines, transforming growth factor-β1 (TGF-β1) increased adhesion of endometrial cells to the mesothelium through induction of α2-6 sialylation. The expression levels of β-galactoside α2-6 sialyltransferase (ST6Gal) 1 and ST6Gal2 were increased through activation of TGF-βRI/SMAD2/3 signaling in endometrial cells. In addition, we discovered that terminal sialic acid glycan epitopes of endometrial cells engage with sialic acid-binding immunoglobulin-like lectin-9 expressed on mesothelial cell surfaces. Interestingly, in an in vivo mouse endometriosis model, inhibition of endogenous sialic acid binding by a NeuAcα2-6Galβ1-4GlcNAc injection diminished TGF-β1-induced formation of endometriosis lesions. Based on these results, we suggest that increased sialylation of endometrial cells by TGF-β1 promotes the attachment of endometrium to the peritoneum, encouraging endometriosis outbreaks. A growth factor involved in cell differentiation and proliferation contributes to the development of endometriosis by stimulating a protein modification mechanism that increases the adhesiveness of cells lining the uterus. Endometriosis results when these cells, known as endometrial cells, start growing outside the uterus causing pelvic pain, heavy periods and, in some cases, infertility. Ki-Tae Ha at Pusan National University, Yangsan, South Korea, and colleagues found that transforming growth factor-β1 signaling promoted the addition of sialic acid sugar units onto endometrial cell surface proteins. This modification enhanced the adhesion of endometrial cells to mesothelial cells, which line other internal organs, and the formation of endometriosis lesions in mice. Preventing sialic acid binding to its mesothelial cell receptor reduced lesion formation. The findings reveal a new molecular mechanism underlying endometriosis and a potential treatment strategy.
Collapse
Affiliation(s)
- Hee-Jin Choi
- Department of Korean Medical Science, School of Korean Medicine, Seoul, Republic of Korea.,Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea.,Graduate Training Program of Korean Medicine for Healthy-aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Tae-Wook Chung
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Hee-Jung Choi
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Jung Ho Han
- Department of Korean Medical Science, School of Korean Medicine, Seoul, Republic of Korea.,Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea.,Graduate Training Program of Korean Medicine for Healthy-aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Sciences and Department of Oriental Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi-do, 16419, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Seoul, Republic of Korea. .,Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea. .,Graduate Training Program of Korean Medicine for Healthy-aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea.
| |
Collapse
|
14
|
Zhao H, Xu H, Zuo Z, Wang G, Liu M, Guo M, Xiao C. Yi Shen Juan Bi Pill Ameliorates Bone Loss and Destruction Induced by Arthritis Through Modulating the Balance of Cytokines Released by Different Subpopulations of T Cells. Front Pharmacol 2018; 9:262. [PMID: 29636683 PMCID: PMC5880890 DOI: 10.3389/fphar.2018.00262] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 03/09/2018] [Indexed: 12/21/2022] Open
Abstract
The Yi Shen Juan Bi Pill (YSJB), a traditional Chinese compound herbal drug, has been used as an anti-rheumatic drug in clinical practice. Cartilage and bone destruction of inflamed joints is the hallmark of rheumatoid arthritis (RA). Our previous study suggested that YSJB had a protective effect on joint damage in collagen-induced (CIA) rats. However, the role and the mechanism of YSJB in inflammation-induced bone loss are unavailable. The current study aimed to further evaluate the effect of YSJB on the joint destruction and the systemic bone loss, and to clarify the potential mechanism. CIA model was generated by using collagen II and incomplete Freund's adjuvant in Sprague-Dawley rats. After 4 weeks treatment, arthritic index, tissue pathology, micro-computed tomography scanning (μ-CT), and bone mineral density (BMD) analysis were performed. YSJB decreased arthritic scores and bone destruction; improved the BMD of lumbar vertebrae and bone volume fraction of inflamed joints. Moreover, YSJB significantly decreased the production of serum bone resorption markers, including Tartrate-Resistant Acid Phosphatase (TRACP), N-terminal telopeptide of type I collagen and C-terminal telopeptide of type I collagen. Meanwhile, it increased the level of serum bone formation marker type I collagen N-terminal propeptide. These results revealed that YSJB ameliorated bone destruction and reduced bone loss induced by arthritis. We have previously showed that Tregs inhibited osteoclast differentiation and bone resorption in vitro. Furthermore, others suggested that abnormality of Th1, Th17 may contribute to bone destruction. Here, we showed YSJB significantly up-regulated the percentage of Tregs, while also down-regulated the percentage of Th1 and Th17 cells. Our findings provide the evidence that YSJB ameliorates the severity of disease and joint degradation, and reduces systemic bone loss induced by arthritis. We propose YSJB modulates the balance of T cell phenotype, which affects the activation and differentiation of osteoclasts.
Collapse
Affiliation(s)
- Hongyan Zhao
- Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Huihui Xu
- Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Zhengyun Zuo
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Gui Wang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Meijie Liu
- Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Minghui Guo
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Cheng Xiao
| |
Collapse
|