1
|
Park S, Kim G, Choi A, Kim S, Yum JS, Chun E, Shin H. Comparative network-based analysis of toll-like receptor agonist, L-pampo signaling pathways in immune and cancer cells. Sci Rep 2024; 14:17173. [PMID: 39060412 PMCID: PMC11282102 DOI: 10.1038/s41598-024-67000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Toll-like receptors (TLRs) are critical components to stimulate immune responses against various infections. Recently, TLR agonists have emerged as a promising way to activate anti-tumor immunity. L-pampo, a TLR1/2 and TLR3 agonist, induces humoral and cellular immune responses and also causes cancer cell death. In this study, we investigated the L-pampo-induced signals and delineated their interactions with molecular signaling pathways using RNA-seq in immune cells and colon and prostate cancer cells. We first constructed a template network with differentially expressed genes and influential genes from network propagation using the weighted gene co-expression network analysis. Next, we obtained perturbed modules using the above method and extracted core submodules from them by conducting Walktrap. Finally, we reconstructed the subnetworks of major molecular signals utilizing a shortest path-finding algorithm, TOPAS. Our analysis suggests that TLR signaling activated by L-pampo is transmitted to oxidative phosphorylation (OXPHOS) with reactive oxygen species (ROS) through PI3K-AKT and JAK-STAT only in immune and prostate cancer cells that highly express TLRs. This signal flow may further sensitize prostate cancer to L-pampo due to its high basal expression level of OXPHOS and ROS. Our computational approaches can be applied for inferring underlying molecular mechanisms from complex gene expression profiles.
Collapse
Affiliation(s)
- Sera Park
- MOGAM Institute for Biomedical Research, Seoul, 06730, Republic of Korea
| | - Geuntae Kim
- CHA Vaccine Institute, Seongnamsi, Gyenggido, 13488, South Korea
| | - Ahyoung Choi
- MOGAM Institute for Biomedical Research, Seoul, 06730, Republic of Korea
| | - Sun Kim
- MOGAM Institute for Biomedical Research, Seoul, 06730, Republic of Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, 08826, Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea
| | - Jung Sun Yum
- CHA Vaccine Institute, Seongnamsi, Gyenggido, 13488, South Korea
| | - Eunyoung Chun
- CHA Vaccine Institute, Seongnamsi, Gyenggido, 13488, South Korea.
| | - Hyunjin Shin
- MOGAM Institute for Biomedical Research, Seoul, 06730, Republic of Korea.
| |
Collapse
|
2
|
Miao Z, Miao Z, Liu M, Xu S. Melatonin ameliorates imidacloprid-induced intestinal injury by negatively regulating the PGN/P38MAPK pathway in the common carp (Cyprinuscarpio). FISH & SHELLFISH IMMUNOLOGY 2022; 131:1063-1074. [PMID: 36375784 DOI: 10.1016/j.fsi.2022.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Imidacloprid (IMI), one of the most frequently used neonicotinoid insecticides in agriculture, is resided in surface water worldwide and poses a threat to aquatic organisms. Melatonin (MT) provides effective protection against insecticide-induced toxicity, nevertheless, the toxic effects and whether MT attenuates intestinal injury caused by IMI exposure in the common carps remains poorly explored. Previous studies have reported adverse effects of IMI exposure on intestinal health status. Therefore, we first demonstrated that IMI altered the composition and function of the intestinal microbiota, destroying the integrity of intestinal ultrastructure, increasing intestinal permeability. Meanwhile, metagenomic sequencing and ELISA kits results hypothesized that peptidoglycan (PGN) is an IMI-triggered intestinal microbial metabolite. Subsequently, we thus further elucidated that IMI induced an increase in intestinal tight junction permeability by inducing PGN secretion in vitro model. MT addition dramatically attenuated IMI-induced intestinal toxicity by remitting PGN synthesis and thus resecuring tight junction permeability, thereby reducing intestinal injury. SB203580 was supplied as a P38MAPK inhibitor to alleviate the increased permeability of tight junctions induced by IMI/PGN. Therefore, these findings confirmed that MT protects against IMI-induced intestinal injury by negatively regulating PGN/P38MAPK pathway to antagonize the increased tight junction permeability.
Collapse
Affiliation(s)
- Zhiruo Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhiying Miao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
3
|
Hu Y, Li R, Jin J, Wang Y, Ma R. Quercetin improves pancreatic cancer chemo-sensitivity by regulating oxidative-inflammatory networks. J Food Biochem 2022; 46:e14453. [PMID: 36181395 DOI: 10.1111/jfbc.14453] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
Chemotherapy is the main method for controlling pancreatic cancer metastasis but the prevalent chemotherapy resistance limits its utilization. The response of oxidation and inflammation often promotes pancreatic cancer progression and chemo-resistance. It is critical to explore the potential natural products with few side effects to control inflammatory responses and understand the related mechanisms. Quercetin is a flavonoid widely found in numerous vegetables, fruits, and foods and is thought to have antioxidant and anti-inflammatory properties, which may be associated with improvement of chemotherapy sensitivity during pancreatic cancer treatment. Quercetin may sensitize pancreatic cancer cells to the chemotherapeutic agents, including bromodomain and extraterminal domain inhibitors (BETI), daunorubicin, gemcitabine, sulforaphane, doxorubicin, and tumor necrosis factor-related signaling apoptosis-inducing ligand (TRAIL). Meanwhile, during the chemo-resistance therapy, many signaling molecules are involved with toll-like receptor 4 (TLR4)-mediated oxidative and inflammatory pathway. The effects of quercetin on other oxidative and inflammatory pathways were also explored. Quercetin may exert antitumor activity during the prevention of pancreatic cancer progression by regulating oxidative and inflammatory networks, which can promote immune escape of cancer cells by inducing immunosuppressive cytokines. Studying these patterns will help us to better understand the functional role of quercetin in the improvement of pancreatic cancer chemo-sensitivity. PRACTICAL APPLICATIONS: Chemotherapy is the major way for treating pancreatic cancer metastasis but the prevalent chemotherapy resistance caused by oxidative and inflammatory responses limits its utilization. It is necessary to explore the potential natural products with few side effects to prevent the oxidative and inflammatory responses. Quercetin is a flavonoid widely found in numerous vegetables, fruits, and foods and is thought to have antioxidant and anti-inflammatory properties, which may be associated with improvement of chemotherapy sensitivity of pancreatic cancer treatment by sensitizing pancreatic cancer cells to various chemotherapeutic agents via the regulation of oxidative and inflammatory networks. Studying these patterns will help us to better understand the functional role of quercetin in the improvement of pancreatic cancer chemo-sensitivity.
Collapse
Affiliation(s)
- Yaoyuan Hu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junyi Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yihui Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Ma
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Gautam R, Jo J, Acharya M, Maharjan A, Lee D, K C PB, Kim C, Kim K, Kim H, Heo Y. Evaluation of potential toxicity of polyethylene microplastics on human derived cell lines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156089. [PMID: 35605862 DOI: 10.1016/j.scitotenv.2022.156089] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 05/14/2023]
Abstract
Microplastics bare of major concern for environmental conservation and animal welfare in recent years as its use has increased tremendously. Polyethylene microplastics (PE-MPs) are the most common microplastics and could get exposed to humans via different routes with oral>inhalation>dermal. Internalization of MPs through epithelial tissue could expose MPs to various cells such as dendritic cells, macrophages/monocytes, and/or T cells. In this study, we aimed at identifying the effects of two different sized (30.5 ± 10.5 and 6.2 ± 2.0 μm) PE-MPs on different human cell lines representing different tissues or cells that get exposed to MPs directly or indirectly. Six cell lines were cultured with different concentrations of PE-MPs and cell viability, intracellular reactive oxygen species (ROS), nitric oxide (NO), and cytokines were measured. PE-MPs did not substantially lower the cell viability of cells however highest concentration (1000 μg/mL) of both sized MPs slightly reduced cell viability in intestinal epithelial Caco-2 and lung epithelial A549 cells. Both sized PE-MPs induced higher NO in all the cell lines and upregulation of ROS generation was demonstrated at THP-1, Jurkat, and U937 immune cell lines. A pro-inflammatory cytokine response was seen in HaCaT keratinocyte cells when cultured with PE-MPs whereas the opposite effect was observed in THP-1 and U937 cells except with THP-1 cells cultured with larger-sized MPs. We found that the PE-MPs do not have the same effects on all kinds of cells and tissues exposed and the immune modulation is not necessarily inflammatory. Thus, this study gives insight into why more detailed studies focused on exposure routes and organ-specific effects of different MPs need to be carried out.
Collapse
Affiliation(s)
- Ravi Gautam
- Department of occupational health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan 38430, Republic of Korea.
| | - JiHun Jo
- Department of occupational health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Manju Acharya
- Department of occupational health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Anju Maharjan
- Department of occupational health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - DaEun Lee
- Department of occupational health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Pramod Bahadur K C
- Graduate School Department of Toxicology, Daegu Catholic University, 38430 Gyeongsan, Republic of Korea
| | - ChangYul Kim
- Graduate School Department of Toxicology, Daegu Catholic University, 38430 Gyeongsan, Republic of Korea.
| | - KilSoo Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Center, 41061 Daegu, Republic of Korea; College of Veterinary Medicine, Kyungpook National University, 41566 Daegu, Republic of Korea.
| | - HyoungAh Kim
- College of Medicine, Department of Preventive Medicine, The Catholic University of Korea, 06591 Seoul, Republic of Korea.
| | - Yong Heo
- Department of occupational health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan 38430, Republic of Korea; Graduate School Department of Toxicology, Daegu Catholic University, 38430 Gyeongsan, Republic of Korea.
| |
Collapse
|
5
|
Li D, Cui Z, Zhao F, Zhu X, Tan A, Deng Y, Lai Y, Huang Z. Characterization of snakehead (Channa argus) interleukin-21: Involvement in immune defense against two pathogenic bacteria, in leukocyte proliferation, and in activation of JAK-STAT signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2022; 123:207-217. [PMID: 35278639 DOI: 10.1016/j.fsi.2022.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Interleukin-21 (IL-21), a crucial immune regulatory molecule, belongs to the common γ-chain family of type I cytokines, and exerts pleiotropic effects on multiple immune cell types in mammals. However, the characteristics and functions of fish IL-21 remain unclear. To further investigate the molecular mechanism of IL-21 in teleosts, we first cloned and identified the IL-21 gene (designated shIL-21) of the snakehead (Channa argus). The full-length open reading frame of shIL-21 is 438 bp in length, and encodes a predicted protein of 145 amino acid residues. A sequence analysis showed that shIL-21 has the typical structural characteristics of other IL-21 proteins, containing four α-helices and four conserved cysteine residues. In a phylogenetic analysis, shIL-21 clustered within a subgroup of IL-21 proteins from other teleost species and shared its closest evolutionary relationship with that of Lates calcarifer. The expression analysis showed that shIL-21 was ubiquitously expressed in all the healthy snakehead tissues tested, albeit at different levels. After infection with Nocardia seriolae or Aeromonas schubertii, the relative expression of shIL-21 was mainly upregulated in the head kidney and spleen in vivo. Similarly, after stimulation with the three pathogen analogues lipoteichoic acid, lipopolysaccharides, and polyinosinic-polycytidylic acid, the expression of shIL-21 was also induced in head kidney leukocytes in vitro. A recombinant shIL-21 protein was expressed and purified, and promoted the proliferation of head kidney leukocytes, induced the expression of genes encoding critical signaling molecules in the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) pathway, including JAK1, JAK3, STAT1, and STAT3, and induced the expression of endogenous shIL-21 and genes encoding several key proinflammatory cytokines (tumor necrosis factor-α, interferon-γ, and IL-1β). Taken together, these preliminary findings suggest that shIL-21 is involved in the immune defense against bacterial infection, in leukocyte proliferation, and in the activation of the JAK-STAT pathway. They thus extend the functional studies of IL-21 in teleosts.
Collapse
Affiliation(s)
- Dongqi Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhengwei Cui
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Xueqing Zhu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Aiping Tan
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yuting Deng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yingtiao Lai
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhibin Huang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| |
Collapse
|
6
|
Jian L, Li C, Wang X, Sun L, Ma Z, Zhao J. IL-21 impairs pro-inflammatory activity of M1-like macrophages exerting anti-inflammatory effects on rheumatoid arthritis. Autoimmunity 2021; 55:75-85. [PMID: 34842006 DOI: 10.1080/08916934.2021.2007374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Objective:Macrophages are the main source of inflammatory mediators and play important roles in the pathogenesis of rheumatoid arthritis (RA). Interleukin-21 (IL-21) regulates both innate and adaptive immune responses and exerts major effects on inflammatory responses that promote the development of RA. However, its effect on macrophage polarisation remains unclear.Methods:CD14+ monocytes of the peripheral blood of Human healthy donors (HD) and RA, and macrophages of RA synovial fluid (RA-SF MΦs) were isolated. IL-21 receptor (IL-21R) was detected by flow cytometry. Cytokine production by MΦs from different sources pre-treated with IL-21 and/or LPS was measured by real-time polymerase chain reaction (RT-PCR) and ELISA. CD14+ monocytes were differentiated into M1-like and M2-like macrophages via stimulation with GM-CSF, interferon-γ (IFN-γ), and LPS or M-CSF, IL-4, and IL-13, respectively. To determine the effect of IL-21 on macrophage polarisation, macrophage phenotypes, gene expression, and cytokine secretion were detected by flow cytometry, RT-PCR, and ELISA. TLR4 and ERK1/2 were determined by western blotting.Results:IL-21 exerted different effects on LPS-mediated inflammatory responses in various derived MΦs, and inhibited macrophages polarisation to M1-like macrophages and promote their polarisation to M2-like macrophages in HD and RA. Moreover, IL-21 inhibited LPS-mediated secretion of inflammatory cytokines, probably by downregulating the ERK1/2, in RA-SF MΦs.Conclusion:For the first time, we indicated that IL-21 inhibits LPS-mediated cytokine production in RA-SF MΦs, and impairs pro-inflammatory activity of M1-like macrophages, hereby exerting anti-inflammatory effects on RA. Thus, IL-21 might not be an appropriate therapeutic target for RA.
Collapse
Affiliation(s)
- Leilei Jian
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China.,Department of Rheumatology and Immunology, Huadong Hospital affiliated to Fudan University, Shanghai, China
| | - Changhong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Xinyu Wang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Lin Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Zhenzhen Ma
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Jinxia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
7
|
Yang MJ, Xu D, Yang DX, Li L, Peng XX, Chen ZG, Li H. Malate enhances survival of zebrafish against Vibrio alginolyticus infection in the same manner as taurine. Virulence 2021; 11:349-364. [PMID: 32316833 PMCID: PMC7199751 DOI: 10.1080/21505594.2020.1750123] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Development of low-cost and eco-friendly approaches to fight bacterial pathogens is especially needed in aquaculture. We previously showed that exogenous malate reprograms zebrafish’s metabolome to potentiate zebrafish survival against Vibrio alginolyticus infection. However, the underlying mechanism is unknown. Here, we use GC-MS based metabolomics to identify the malate-triggered metabolic shift. An activated TCA cycle and elevated taurine are identified as the key metabolic pathways and the most crucial biomarker of the reprogrammed metabolome, respectively. Taurine elevation is attributed to the activated TCA cycle, which is further supported by the increased expression of genes in the metabolic pathway of taurine biosynthesis from the isocitrate of the TCA cycle to taurine. Exogenous taurine increases the survival of zebrafish against V. alginolyticus infection as malate did. Moreover, exogenous taurine and malate regulate the expression of innate immunity genes and promote the generation of reactive oxygen species and nitrogen oxide in a similar way. The two metabolites can alleviate the excessive immune response to bacterial challenge, which protects fish from bacterial infection. These results indicate that malate enhances the survival of zebrafish to V. alginolyticus infection via taurine. Thus, our study highlights a metabolic approach to enhance a host’s ability to fight bacterial infection.
Collapse
Affiliation(s)
- Man-Jun Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China.,Tibet Vocational Technical College, Lhasha, People's Republic of China
| | - Di Xu
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China
| | - Dai-Xiao Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China
| | - Lu Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhuang-Gui Chen
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Feng TT, Yang XY, Hao SS, Sun FF, Huang Y, Lin QS, Pan W. TLR-2-mediated metabolic reprogramming participates in polyene phosphatidylcholine-mediated inhibition of M1 macrophage polarization. Immunol Res 2020; 68:28-38. [PMID: 32248343 DOI: 10.1007/s12026-020-09125-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Zhang A, Jian X, Wang D, Ren J, Wang X, Zhou H. Characterization and bioactivity of grass carp (Ctenopharyngodon idella) interleukin-21: Inducible production and involvement in inflammatory regulation. FISH & SHELLFISH IMMUNOLOGY 2020; 99:19-26. [PMID: 32014588 DOI: 10.1016/j.fsi.2020.01.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
In mammals, interleukin 21 (IL-21) is a broad pleiotropic cytokine that plays critical roles in the development of several inflammatory and autoimmune diseases. In fish, functional information of Il-21 is limited, and its role in immune response is largely unknown. In the present study, we cloned a coding sequence of grass carp (Ctenopharyngodon idella) il21 gene (gcil21). To characterize the release patterns and biological activity of gcIl-21, we prepared recombinant gcIl-21 (rgcIl-21) and obtained the polyclonal antibody with gcIl-21 specificity. Western blotting analysis showed that in grass carp head kidney leukocytes (HKLs), gcIl-21 was undetected in culture supernatant of untreated cells but drastically induced by heat-killed Aeromonas hydrophila (A. hydrophila), uncovering the release features of gcIl-21 and its possible involvement in immune response. Subsequent functional experiments revealed that rgcIl-21 did not affect the mRNA expression of grass carp il1b and tgfb, but induced a strong expression of grass carp il10, and to a lesser extent of grass carp tnfa in HKLs, suggesting a dominant effect of gcIl-21 in modulating Il-10 signaling as seen in rainbow trout and mammals. Furthermore, in vivo studies showed that intraperitoneal injection of rgcIl-21 was able to increase the survival rate of grass carp infected with live A. hydrophila, and reduce the pathological responses caused by the same pathogenic bacteria in head kidney and intestine. Taken together, these results for the first time revealed the close relationship of fish Il-21 production and function with inflammatory responses, and highlighted its anti-bacterial and anti-inflammatory ability, thereby providing a new insight into host defense mechanisms in fish.
Collapse
Affiliation(s)
- Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xiaoyu Jian
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Dan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jingqi Ren
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|