1
|
Vavak M, Cihova I, Reichwalderova K, Vegh D, Dolezajova L, Slaninova M. Changes in Vertical Jump Parameters After Training Unit in Relation to ACE, ACTN3, PPARA, HIF1A, and AMPD1 Gene Polymorphisms in Volleyball and Basketball Players. Genes (Basel) 2025; 16:250. [PMID: 40149402 PMCID: PMC11942027 DOI: 10.3390/genes16030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The study aims to investigate potential differences in vertical jump performance between elite basketball and volleyball players before and after a standard training session, in comparison to a control group from the general population. The analysis focuses on the influence of selected gene polymorphisms that may contribute to variations in the assessed performance parameters. AIMS The aim was to investigate the influence of ACE (rs4646994), ACTN3 (rs1815739), PPARA rs4253778, HIF1A (rs11549465), and AMPD1 (rs17602729) genes polymorphisms on the combined effects of post-activation potentiation (PAP), post-activation performance enhancement (PAPE), and general adaptation syndrome (GAS), as reflected in vertical jump performance, in elite basketball and volleyball players compared to a control group from the general population. METHODS The effects of PAP at the beginning of the training load (acute exercise), and the combined influences of PAPE and GAS following the training load were evaluated using parameters measured by the OptoJump Next® system (Microgate, Bolzano, Italy). RESULTS A statistically significant (h, p < 0.05) negative effect of the CT genotype of the AMPD1 gene on jump height was observed in the group of athletes. The CT genotype of the AMPD1 gene negatively impacted on PAPE and GAS adaptive responses (ΔP, Δh, p < 0.001) also in the control group. A positive effect on the power during the active phase of the vertical jump was identified for the II genotype of the ACE gene and the Pro/Ser genotype of the HIF1A gene, both exclusively in the control group (ΔP, p < 0.05). CONCLUSION Our findings demonstrate that different gene polymorphisms exert variable influences on the combined effects of PAPE and GAS, as reflected in vertical jump parameters, depending on the participants' level of training adaptation.
Collapse
Affiliation(s)
- Miroslav Vavak
- Department of Track and Field and Sport Conditioning, Faculty of Physical Education and Sport, Comenius University Bratislava, Nábr. arm. gen. L. Svobodu 9, 814 69 Bratislava, Slovakia
| | - Iveta Cihova
- Department of Track and Field and Sport Conditioning, Faculty of Physical Education and Sport, Comenius University Bratislava, Nábr. arm. gen. L. Svobodu 9, 814 69 Bratislava, Slovakia
| | - Katarina Reichwalderova
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - David Vegh
- Department of Track and Field and Sport Conditioning, Faculty of Physical Education and Sport, Comenius University Bratislava, Nábr. arm. gen. L. Svobodu 9, 814 69 Bratislava, Slovakia
| | - Ladislava Dolezajova
- Department of Track and Field and Sport Conditioning, Faculty of Physical Education and Sport, Comenius University Bratislava, Nábr. arm. gen. L. Svobodu 9, 814 69 Bratislava, Slovakia
| | - Miroslava Slaninova
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
2
|
Çığırtaş R, Bulgay C, Kazan HH, Akman O, Sporiš G, John G, Yusupov RA, Sultanov RI, Zhelankin AV, Semenova EA, Larin AK, Kulemin NA, Generozov EV, Jurko D, Ahmetov II. The ARK2N ( C18ORF25) Genetic Variant Is Associated with Muscle Fiber Size and Strength Athlete Status. Metabolites 2024; 14:684. [PMID: 39728465 DOI: 10.3390/metabo14120684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Data on the genetic factors contributing to inter-individual variability in muscle fiber size are limited. Recent research has demonstrated that mice lacking the Arkadia (RNF111) N-terminal-like PKA signaling regulator 2N (Ark2n; also known as C18orf25) gene exhibit reduced muscle fiber size, contraction force, and exercise capacity, along with defects in calcium handling within fast-twitch muscle fibers. However, the role of the ARK2N gene in human muscle physiology, and particularly in athletic populations, remains poorly understood. The aim of this study was threefold: (a) to compare ARK2N gene expression between power and endurance athletes; (b) to analyze the relationship between ARK2N gene expression and muscle fiber composition; and (c) to investigate the association between the functional variant of the ARK2N gene, muscle fiber size, and sport-related phenotypes. RESULTS We found that ARK2N gene expression was significantly higher in power athletes compared to endurance athletes (p = 0.042) and was positively associated with the proportion of oxidative fast-twitch (type IIA) muscle fibers in untrained subjects (p = 0.017, adjusted for age and sex). Additionally, we observed that the ARK2N rs6507691 T allele, which predicts high ARK2N gene expression (p = 3.8 × 10-12), was associated with a greater cross-sectional area of fast-twitch muscle fibers in strength athletes (p = 0.015) and was over-represented in world-class strength athletes (38.6%; OR = 2.2, p = 0.023) and wrestlers (33.8%; OR = 1.8, p = 0.044) compared to controls (22.0%). CONCLUSIONS In conclusion, ARK2N appears to be a gene specific to oxidative fast-twitch myofibers, with its functional variant being associated with muscle fiber size and strength-athlete status.
Collapse
Affiliation(s)
- Rukiye Çığırtaş
- Faculty of Sports Sciences, Bingol University, 12000 Bingol, Türkiye
| | - Celal Bulgay
- Faculty of Sports Sciences, Bingol University, 12000 Bingol, Türkiye
| | - Hasan Hüseyin Kazan
- Department of Medical Biology, Gulhane Faculty of Medicine, University of Health Sciences, 06018 Ankara, Türkiye
| | - Onur Akman
- Faculty of Sports Sciences, Bayburt University, 69000 Bayburt, Türkiye
| | - Goran Sporiš
- Department of General and Applied Kinesiology, Faculty of Kinesiology, Zagreb University, 10110 Zagreb, Croatia
| | - George John
- Transform Specialist Medical Centre, Dubai 119190, United Arab Emirates
| | - Rinat A Yusupov
- Department of Physical Culture and Sport, Kazan National Research Technical University named after A.N. Tupolev-KAI, 420111 Kazan, Russia
| | - Rinat I Sultanov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Andrey V Zhelankin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Nikolay A Kulemin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Damir Jurko
- Department of General and Applied Kinesiology, Faculty of Kinesiology, Zagreb University, 10110 Zagreb, Croatia
| | - Ildus I Ahmetov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, 191040 St Petersburg, Russia
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
3
|
Persad LS, Wang Z, Pino PA, Binder-Markey BI, Kaufman KR, Lieber RL. Specific tension of human muscle in vivo: a systematic review. J Appl Physiol (1985) 2024; 137:945-962. [PMID: 39169839 PMCID: PMC11486478 DOI: 10.1152/japplphysiol.00296.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
The intrinsic force production capability of human muscle can be expressed as "Specific Tension," or, the maximum force generated per cross-sectional area of muscle fibers. This value can be used to determine, for example, whether muscle quality changes during exercise, atrophy, disease, or hypertrophy. A value of 22.5 N/cm2 for mammalian muscle has generally become accepted based on detailed studies of small mammals. Determining the specific tension of human muscle is much more challenging as almost all determinations are indirect. Calculation of human muscle specific tension requires an understanding of that muscle's contribution to joint torque, its activation magnitude, tendon compliance, and joint moment arm. Determining any of these parameters is technically challenging in humans and thus, it is no surprise that human specific tension values reported vary from 2 to 73 N/cm2. In this systematic review, we screened 1,506 published papers and identified the 30 studies published between 1983 and 2023 that used appropriate methods and which reported 96 human specific tension values. We weighted each parameter based on whether it was directly measured, estimated, or calculated based on the literature, with decreasing weighting used, the more indirect the methods. Based on this exhaustive review of the relevant human literature, we suggest that the most accurate value that should be used for human muscle specific tension is 26.8 N/cm2.
Collapse
Affiliation(s)
- Lomas S Persad
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
| | - Zheng Wang
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, United States
| | - Paula A Pino
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, United States
- Department of Orthopaedic Surgery, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Benjamin I Binder-Markey
- Department of Physical Therapy and Rehabilitation Sciences, School of Biomedical Engineering, Sciences, and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States
| | - Kenton R Kaufman
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, United States
| | - Richard L Lieber
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
- Hines V.A. Hospital, Maywood, Illinois, United States
- Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
4
|
Varillas-Delgado D. Association of Genetic Profile with Muscle Mass Gain and Muscle Injury Prevention in Professional Football Players after Creatine Supplementation. Nutrients 2024; 16:2511. [PMID: 39125391 PMCID: PMC11313812 DOI: 10.3390/nu16152511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND In recent years, the study of creatine supplementation in professional athletes has been of great interest. However, the genetics involved in response to supplementation is unknown. The aim of this study was to analyse, for the first time, the relationship between muscle performance-related genes and the risk of an increased body mass index (BMI) and muscle mass and a decrease in fat mass in professional football players after creatine supplementation. METHODS For this longitudinal study, one hundred and sixty-one men's professional football players were recruited. The polymorphisms ACE I/D, ACTN3 c.1729C>T, AMPD1 c.34C>T, CKM c.*800A>G, and MLCK (c.49C>T and c.37885C>A) were genotyped using Single-Nucleotide Primer Extension (SNPE). To assess the combined impact of these six polymorphisms, a total genotype score (TGS) was calculated. The creatine supplementation protocol consisted of 20 g/day of creatine monohydrate for 5 days (loading dose) and 3-5 g/day for 7 weeks (maintenance dose). Anthropometric characteristics (body mass index (BMI), fat, and muscle mass) were recorded before and after the creatine supplementation protocol. Characteristics of non-contact muscle injuries during the 2022/2023 season were classified according to a consensus statement for injury recording. The results showed that the allelic frequencies of ACE and AMPD1 differed between responders and non-responders in muscle mass increase (all p < 0.05). Players with a TGS exceeding 54.16 a.u. had an odds ratio (OR) of 2.985 (95%CI: 1.560-5.711; p = 0.001) for muscle mass increase. By contrast, those with a TGS below 54.16 a.u. had an OR of 9.385 (95%CI: 4.535-19.425; p < 0.001) for suffering non-contact muscle injuries during the season. CONCLUSIONS The increase in BMI and muscle mass in response to creatine supplementation in professional football players was influenced by a TGS derived from the combination of favourable genotypes linked to muscle performance. The CC genotype and C allele of AMPD1 were particularly associated with a higher likelihood of muscle mass increase under creatine supplementation in this group of professional football players.
Collapse
Affiliation(s)
- David Varillas-Delgado
- Exercise and Sport Science, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo, Spain;
- SPORTNOMICS S.L., 28922 Madrid, Spain
| |
Collapse
|
5
|
El Ouali EM, Barthelemy B, Del Coso J, Hackney AC, Laher I, Govindasamy K, Mesfioui A, Granacher U, Zouhal H. A Systematic Review and Meta-analysis of the Association Between ACTN3 R577X Genotypes and Performance in Endurance Versus Power Athletes and Non-athletes. SPORTS MEDICINE - OPEN 2024; 10:37. [PMID: 38609671 PMCID: PMC11014841 DOI: 10.1186/s40798-024-00711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/31/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Previous studies reported differences in genotype frequency of the ACTN3 R577X polymorphisms (rs1815739; RR, RX and XX) in athletes and non-athletic populations. This systematic review with meta-analysis assessed ACTN3 R577X genotype frequencies in power versus endurance athletes and non-athletes. METHODS Five electronic databases (PubMed, Web of Science, Scopus, Science Direct, SPORTDiscus) were searched for research articles published until December 31st, 2022. Studies were included if they reported the frequency of the ACTN3 R577X genotypes in power athletes (e.g., weightlifters) and if they included a comparison with endurance athletes (e.g., long-distance runners) or non-athletic controls. A meta-analysis was then performed using either fixed or random-effects models. Pooled odds ratios (OR) were determined. Heterogeneity was detected using I2 and Cochran's Q tests. Publication bias and sensitivity analysis tests were computed. RESULTS After screening 476 initial registrations, 25 studies were included in the final analysis (13 different countries; 14,541 participants). In power athletes, the RX genotype was predominant over the two other genotypes: RR versus RX (OR 0.70; 95% CI 0.57-0.85, p = 0.0005), RR versus XX (OR 4.26; 95% CI 3.19-5.69, p < 0.00001), RX versus XX (OR 6.58; 95% CI 5.66-7.67, p < 0.00001). The R allele was higher than the X allele (OR 2.87; 95% CI 2.35-3.50, p < 0.00001) in power athletes. Additionally, the frequency of the RR genotype was higher in power athletes than in non-athletes (OR 1.48; 95% CI 1.25-1.75, p < 0.00001). The RX genotype was similar in both groups (OR 0.84; 95% CI 0.71-1.00, p = 0.06). The XX genotype was lower in power athletes than in controls (OR 0.73; 95% CI 0.64-0.84, p < 0.00001). Furthermore, the R allele frequency was higher in power athletes than in controls (OR 1.28; 95% CI 1.19-1.38, p < 0.00001). Conversely, a higher frequency of X allele was observed in the control group compared to power athletes (OR 0.78; 95% CI 0.73-0.84, p < 0.00001). On the other hand, the frequency of the RR genotype was higher in power athletes than in endurance athletes (OR 1.27; 95% CI 1.09-1.49, p = 0.003). The frequency of the RX genotype was similar in both groups (OR 1.07; 95% CI 0.93-1.24, p = 0.36). In contrast, the frequency of the XX genotype was lower in power athletes than in endurance athletes (OR 0.63; 95% CI 0.52-0.76, p < 0.00001). In addition, the R allele was higher in power athletes than in endurance athletes (OR 1.32; 95% CI 1.11-1.57, p = 0.002). However, the X allele was higher in endurance athletes compared to power athletes (OR 0.76; 95% CI 0.64-0.90, p = 0.002). Finally, the genotypic and allelic frequency of ACTN3 genes were similar in male and female power athletes. CONCLUSIONS The pattern of the frequencies of the ACTN3 R577X genotypes in power athletes was RX > RR > XX. However, the RR genotype and R allele were overrepresented in power athletes compared to non-athletes and endurance athletes. These data suggest that the RR genotype and R allele, which is associated with a normal expression of α-actinin-3 in fast-twitch muscle fibers, may offer some benefit in improving performance development in muscle strength and power.
Collapse
Affiliation(s)
- El Mokhtar El Ouali
- Laboratory of Biology and Health, Department of Biology, Ibn Tofail University of Kenitra, Kenitra, Morocco
| | - Benjamin Barthelemy
- Movement, Sport, Health and Sciences Laboratory (M2S), UFR-STAPS, University of Rennes 2-ENS Cachan, Av. Charles Tillon, 35044, Rennes Cedex, France
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, Fuenlabrada, Spain
| | | | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Karuppasamy Govindasamy
- Department of Physical Education and Sports Sciences, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Ibn Tofail University of Kenitra, Kenitra, Morocco
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, Freiburg, Germany.
| | - Hassane Zouhal
- Movement, Sport, Health and Sciences Laboratory (M2S), UFR-STAPS, University of Rennes 2-ENS Cachan, Av. Charles Tillon, 35044, Rennes Cedex, France.
- Institut International des Sciences du Sport (2IS), 35850, Irodouer, France.
| |
Collapse
|
6
|
Martinez Aguirre-Betolaza A, Cacicedo J, Castañeda-Babarro A. Creatine Supplementation and Resistance Training in Patients With Breast Cancer (CaRTiC Study): Protocol for a Randomized Controlled Trial. Am J Clin Oncol 2024; 47:161-168. [PMID: 38018533 DOI: 10.1097/coc.0000000000001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
BACKGROUND Creatine supplementation is an effective ergogenic nutrient for athletes, as well as for people starting a health or fitness program. Resistance training has previously been identified as an important method of increasing muscle mass and strength, especially in people with cancer to avoid sarcopenia. The potential of creatine supplementation for adaptations produced by resistance training in patients with cancer is still unknown. The primary aim of this study is to evaluate the effectiveness of a supervised resistance training program intervention with and without creatine supplementation in patients with breast cancer. METHODS Is a multicentre, randomized, blind, placebo-controlled study. Patients will be randomly assigned to a control group and 2 experimental groups. The first training resistance group (RG) will perform resistance training, while the second experimental resistance-creatine group will perform the same resistance training as the RG and will also receive a 5 g/d creatine supplementation during the intervention. RG participants will follow the same daily dosing protocol, but in their case, with dextrose/maltodextrin. Resistance training will be a 16-week supervised workout that will consist of a series of resistance exercises (leg press, knee extension, knee bends, chest press, sit-ups, back extensions, pull-ups, and shoulder press) that involve the largest muscle groups, performed 3 times a week on nonconsecutive days. Both the RG and the resistance-creatine group will receive a supplement of soluble protein powder (20 to 30 g) daily. CONCLUSION This intervention will help to better understand the potential of nonpharmacological treatment for improving strength and well-being values in patients with breast cancer with and without creatine supplementation.
Collapse
Affiliation(s)
| | - Jon Cacicedo
- Department of Radiation Oncology, Group for Radiology and Physical Medicine in Oncology, Cruces University Hospital/Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Arkaitz Castañeda-Babarro
- Department of Physical Activity and Sport Sciences, Faculty of Education and Sport, University of Deusto, Bilbao, Spain
| |
Collapse
|
7
|
Del Coso J, Rodas G, Soler-Aguinaga A, López-Del Campo R, Resta R, González-Rodenas J, Ferrandis J, Moreno-Pérez V. ACTN3 XX Genotype Negatively Affects Running Performance and Increases Muscle Injury Incidence in LaLiga Football Players. Genes (Basel) 2024; 15:386. [PMID: 38540445 PMCID: PMC10969915 DOI: 10.3390/genes15030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 06/14/2024] Open
Abstract
The aim of this study was to investigate the association of the ACTN3 rs1815739 polymorphism with match running performance and injury incidence in top-level professional football players. A total of 315 top-level professional football players from the first division of Spanish football (i.e., LaLiga) participated in this prospective and descriptive study. The ACTN3 rs1815739 genotype was identified for each player using genomic DNA samples. During LaLiga 2021-2022, players' performance was obtained through a validated camera system in all official matches. Additionally, the incidence of non-contact injuries was obtained by each team's medical staff according to the International Olympic Committee (IOC) statement. From the study sample, 116 (36.8%) players had the RR genotype, 156 (49.5%) had the RX genotype, and 43 (13.7%) had the XX genotype. The anthropometric characteristics of the players were similar across genotypes. However, the total running distance (p = 0.046), the distance at 21.0-23.9 km/h (p = 0.042), and the number of sprints (p = 0.042) were associated with the ACTN3 genotype. In all these variables, XX players had lower match performance values than RR players. Additionally, total and match injury incidences were higher in XX players than in RR players (p = 0.026 and 0.009, respectively). The rate of muscle injuries was also higher in XX players (p = 0.016). LaLiga football players with the ACTN3 XX genotype had lower match running performance and a higher incidence of non-contact injuries over the season.
Collapse
Affiliation(s)
- Juan Del Coso
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Fuenlabrada, Spain; (J.G.-R.); (J.F.)
| | - Gil Rodas
- Medical Department & Barça Innovation Hub, Fútbol Club Barcelona, 08038 Barcelona, Spain;
| | | | | | - Ricardo Resta
- Department of Competitions, La Liga, 28043 Madrid, Spain; (R.L.-D.C.); (R.R.)
| | - Joaquín González-Rodenas
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Fuenlabrada, Spain; (J.G.-R.); (J.F.)
| | - Jordi Ferrandis
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Fuenlabrada, Spain; (J.G.-R.); (J.F.)
- Faculty of Physical Education and Sports Sciences, Catholic University of Valencia, “San Vicente Mártir”, 46001 Valencia, Spain
| | - Víctor Moreno-Pérez
- Department of Sport Sciences, Sports Research Centre, Miguel Hernandez University of Elche, 03202 Elche, Spain;
- Department of Pathology and Surgery, Translational Research Centre of Physiotherapy, Faculty of Medicine, Miguel Hernandez University, 03202 Elche, Spain
| |
Collapse
|
8
|
Ahmetov II, John G, Semenova EA, Hall ECR. Genomic predictors of physical activity and athletic performance. ADVANCES IN GENETICS 2024; 111:311-408. [PMID: 38908902 DOI: 10.1016/bs.adgen.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Physical activity and athletic performance are complex phenotypes influenced by environmental and genetic factors. Recent advances in lifestyle and behavioral genomics led to the discovery of dozens of DNA polymorphisms (variants) associated with physical activity and allowed to use them as genetic instruments in Mendelian randomization studies for identifying the causal links between physical activity and health outcomes. On the other hand, exercise and sports genomics studies are focused on the search for genetic variants associated with athlete status, sports injuries and individual responses to training and supplement use. In this review, the findings of studies investigating genetic markers and their associations with physical activity and athlete status are reported. As of the end of September 2023, a total of 149 variants have been associated with various physical activity traits (of which 42 variants are genome-wide significant) and 253 variants have been linked to athlete status (115 endurance-related, 96 power-related, and 42 strength-related).
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St. Petersburg, Russia; Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russia; Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.
| | - George John
- Transform Specialist Medical Centre, Dubai, United Arab Emirates
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia; Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Elliott C R Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
9
|
Murtagh CF, Hall ECR, Brownlee TE, Drust B, Williams AG, Erskine RM. The Genetic Association with Athlete Status, Physical Performance, and Injury Risk in Soccer. Int J Sports Med 2023; 44:941-960. [PMID: 37253386 DOI: 10.1055/a-2103-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The aim of this review was to critically appraise the literature concerning the genetic association with athlete status, physical performance, and injury risk in soccer. The objectives were to provide guidance on which genetic markers could potentially be used as part of future practice in soccer and to provide direction for future research in this area. The most compelling evidence identified six genetic polymorphisms to be associated with soccer athlete status (ACE I/D; ACTN3 rs1815739; AGT rs699; MCT1 rs1049434; NOS3 rs2070744; PPARA rs4253778), six with physical performance (ACTN3 rs1815739; AMPD1 rs17602729; BDNF rs6265; COL2A1 rs2070739; COL5A1 rs12722; NOS3 rs2070744), and seven with injury risk (ACTN3 rs1815739; CCL2 rs2857656; COL1A1 rs1800012; COL5A1 rs12722; EMILIN1 rs2289360; IL6 rs1800795; MMP3 rs679620). As well as replication by independent groups, large-scale genome-wide association studies are required to identify new genetic markers. Future research should also investigate the physiological mechanisms associating these polymorphisms with specific phenotypes. Further, researchers should investigate the above associations in female and non-Caucasian soccer players, as almost all published studies have recruited male participants of European ancestry. Only after robust, independently replicated genetic data have been generated, can genetic testing be considered an additional tool to potentially inform future practice in soccer.
Collapse
Affiliation(s)
- Conall F Murtagh
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Sports Science Department, Liverpool Football Club and Athletic Grounds Ltd, Liverpool, United Kingdom
| | - Elliott C R Hall
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Thomas E Brownlee
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Barry Drust
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alun G Williams
- Manchester Metropolitan Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
- Institute of Sport, Exercise and Health, University College London, London, United Kingdom
| | - Robert M Erskine
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Institute of Sport, Exercise and Health, University College London, London, United Kingdom
| |
Collapse
|
10
|
Bulgay C, Cepicka L, Dalip M, Yıldırım S, Ceylan Hİ, Yılmaz ÖÖ, Ulucan K, Badicu G, Cerit M. The relationships between ACTN3 rs1815739 and PPARA-α rs4253778 gene polymorphisms and athletic performance characteristics in professional soccer players. BMC Sports Sci Med Rehabil 2023; 15:121. [PMID: 37749582 PMCID: PMC10518950 DOI: 10.1186/s13102-023-00733-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Current research on athletic performance focuses on genetic variants that contribute significantly to individuals' performance. ACTN3 rs1815739 and PPARA-α rs4253778 gene polymorphisms are variants frequently associated with athletic performance among different populations. However, there is limited research examining the pre-and post-test results of some variants of athletic performance in soccer players. Therefore, the presented research is to examine the relationships between the ACTN3 rs1815739 and PPARA-α rs4253778 gene polymorphisms and athletic performance improvement rates in adaptations to six weeks of training in elite soccer players using some athletic performance tests. METHODOLOGY Twenty-two soccer players between the ages of 18 and 35 voluntarily participated in the study. All participants were actively engaged in a rigorous six-day-a-week training program during the pre-season preparation period. Preceding and following the training program, a battery of diverse athletic performance tests was administered to the participants. Moreover, Genomic DNA was extracted from oral epithelial cells using the Invitrogen DNA isolation kit (Invitrogen, USA), following the manufacturer's protocol. Genotyping was conducted using real-time PCR. To assess the pre- and post-test performance differences of soccer players, the Wilcoxon Signed Rank test was employed. RESULTS Upon analyzing the results of the soccer players based on the ACTN3 genotype variable, it was observed that there were no statistically significant differences in the SJ (Squat Jump), 30m sprint, CMJ (Counter Movement Jump), and DJ (Drop Jump) performance tests (p > 0.05). However, a statistically significant difference was identified in the YOYO IRT 2 (Yo-Yo Intermittent Recovery Test Level 2) and 1RM (One Repetition Maximum) test outcomes (YOYO IRT 2: CC, CT, and TT, p = 0.028, 0.028, 0.008, 0.000, respectively; 1RM: CC, CT, and TT, p = 0.010, 0.34, 0.001, respectively). Regarding the PPARA-α genotype variable, the statistical analysis revealed no significant differences in the SJ, 30m sprint, CMJ, and DJ performance tests (p > 0.05). Nevertheless, a statistically significant difference was observed in the YOYO IRT 2 and 1RM test results (YOYO IRT 2: CC, CG p = 0.001, 0.020; 1RM: CC, p = 0.000) CONCLUSIONS: The current study demonstrated significant enhancements in only YOYO INT 2 and 1RM test outcomes across nearly all gene variants following the six-day-a-week training program. Other performance tests, such as the 30m sprint, SJ, CMJ, and DJ tests did not exhibit statistically significant differences. These findings contribute novel insights into the molecular processes involving PPARA-α rs4253778 and ACTN3 rs1815739 that underpin enhancements in endurance (YOYO INT 2) and maximal strength (1RM) aspects of athletic performance. However, to comprehensively elucidate the mechanisms responsible for the association between these polymorphisms and athletic performance, further investigations are warranted. It is thought that the use of field and genetic analyses together to support each other will be an important detail for athletes to reach high performance.
Collapse
Affiliation(s)
- Celal Bulgay
- Sports Science Faculty, Bingol University, Bingöl, 12000 Türkiye
| | - Ladislav Cepicka
- Department of Physical Education and Sport, Faculty of Education, University of West Bohemia, Pilsen, 30100 Czech Republic
| | - Metin Dalip
- Faculty of Physical Culture and Health, University in Tetovo, Tetova, 1200 Republic of North Macedonia
| | - Selin Yıldırım
- Sports Science Faculty, Lokman Hekim University, Ankara, 06510 Türkiye
| | - Halil İ. Ceylan
- Kazim Karabekir Faculty of Education, Ataturk University, Erzurum, 25240 Türkiye
| | - Özlem Ö. Yılmaz
- Institute of Health Sciences Marmara University, İstanbul, 34722 Türkiye
| | - Korkut Ulucan
- Department of Medical Biology and Genetics, Marmara University, İstanbul, 34722 Türkiye
| | - Georgian Badicu
- Faculty of Physical Education and Mountain Sports, Transilvania University of Braşov, Brasov, 500068 Romania
| | - Mesut Cerit
- Sports Science Faculty, Lokman Hekim University, Ankara, 06510 Türkiye
| |
Collapse
|
11
|
Semenova EA, Hall ECR, Ahmetov II. Genes and Athletic Performance: The 2023 Update. Genes (Basel) 2023; 14:1235. [PMID: 37372415 PMCID: PMC10298527 DOI: 10.3390/genes14061235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Phenotypes of athletic performance and exercise capacity are complex traits influenced by both genetic and environmental factors. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status summarises recent advances in sports genomics research, including findings from candidate gene and genome-wide association (GWAS) studies, meta-analyses, and findings involving larger-scale initiatives such as the UK Biobank. As of the end of May 2023, a total of 251 DNA polymorphisms have been associated with athlete status, of which 128 genetic markers were positively associated with athlete status in at least two studies (41 endurance-related, 45 power-related, and 42 strength-related). The most promising genetic markers include the AMPD1 rs17602729 C, CDKN1A rs236448 A, HFE rs1799945 G, MYBPC3 rs1052373 G, NFIA-AS2 rs1572312 C, PPARA rs4253778 G, and PPARGC1A rs8192678 G alleles for endurance; ACTN3 rs1815739 C, AMPD1 rs17602729 C, CDKN1A rs236448 C, CPNE5 rs3213537 G, GALNTL6 rs558129 T, IGF2 rs680 G, IGSF3 rs699785 A, NOS3 rs2070744 T, and TRHR rs7832552 T alleles for power; and ACTN3 rs1815739 C, AR ≥21 CAG repeats, LRPPRC rs10186876 A, MMS22L rs9320823 T, PHACTR1 rs6905419 C, and PPARG rs1801282 G alleles for strength. It should be appreciated, however, that elite performance still cannot be predicted well using only genetic testing.
Collapse
Affiliation(s)
- Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Elliott C. R. Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4UA, UK
| | - Ildus I. Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
12
|
Humińska-Lisowska K, Chmielowiec K, Strońska-Pluta A, Chmielowiec J, Suchanecka A, Masiak J, Michałowska-Sawczyn M, Boroń A, Cięszczyk P, Grzywacz A. Epigenetic Analysis of the Dopamine Transporter Gene DAT1 with a Focus on Personality Traits in Athletes. Int J Mol Sci 2023; 24:ijms24108931. [PMID: 37240274 DOI: 10.3390/ijms24108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Human phenotypes (traits) are determined by the selective use of a person's unique genotype (DNA sequence), following exposure to environmental stimuli, such as exercise. Inducing profound changes in epigenetics may be an underlying factor of the beneficial effects of exercise. This study aimed to investigate the association between methylation in the promoter region of the DAT1 gene and personality traits measured by the NEO-FFI questionnaire in a group of athletes. The study group included 163 athletes, and the control group consisted of 232 non-athletes. The obtained results show several significant differences between the studied groups of subjects. The Extraversion scale and the Conscientiousness scale results of the NEO-FFI are significantly higher in the group of athletes compared to controls. The total methylation and the number of methylated islands in the promoter region of the DAT1 gene are higher in the study group. Pearson's linear correlation between the total methylation, the number of methylated islands and the NEO-FFI shows significant results for the Extraversion and Agreeability scales. The total methylation and the number of methylated islands in the promoter region of the DAT1 gene are higher in the study group. Pearson's linear correlation between the total methylation, the number of methylated islands and the NEO-FFI shows significant results for the Extraversion and Agreeability scales. Our analysis of the methylation status of individual CpG sites revealed a new direction of research into the biological aspects of regulating dopamine release and personality traits in people practicing sports.
Collapse
Affiliation(s)
- Kinga Humińska-Lisowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Górskiego St. 1, 80-336 Gdansk, Poland
- Institute of Sports Sciences, The University of Physical Education in Krakow, 31-541 Kraków, Poland
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland
| | - Aleksandra Strońska-Pluta
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland
| | - Aleksandra Suchanecka
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Jolanta Masiak
- Second Department of Psychiatry and Psychiatric Rehabilitation, Medical University of Lublin, 1 Głuska St., 20-059 Lublin, Poland
| | - Monika Michałowska-Sawczyn
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Górskiego St. 1, 80-336 Gdansk, Poland
| | - Agnieszka Boroń
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Aleja Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Górskiego St. 1, 80-336 Gdansk, Poland
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| |
Collapse
|
13
|
Zouhal H, Coso JD, Jayavel A, Tourny C, Ravé G, Jebabli N, Clark CCT, Barthélémy B, Hackney AC, Abderrahman AB. Association between ACTN3 R577X genotype and risk of non-contact injury in trained athletes: A systematic review. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:359-368. [PMID: 34284153 PMCID: PMC10199131 DOI: 10.1016/j.jshs.2021.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/13/2021] [Accepted: 06/18/2021] [Indexed: 05/17/2023]
Abstract
PURPOSE The aim of this study was to review, systematically, evidence concerning the link between the ACTN3 R577X polymorphism and the rates and severity of non-contact injuries and exercise-induced muscle damage in athletes and individuals enrolled in exercise training programs. METHODS A computerized literature search was performed in the electronic databases PubMed, Web of Science, and SPORTDiscus, from inception until November 2020. All included studies compared the epidemiological characteristics of non-contact injury between the different genotypes of the ACTN3 R577X polymorphism. RESULTS Our search identified 492 records. After the screening of titles, abstracts, and full texts, 13 studies examining the association between the ACTN3 genotypes and the rate and severity of non-contact injury were included in the analysis. These studies were performed in 6 different countries (Spain, Japan, Brazil, China, the Republic of Korea, and Italy) and involved a total participant pool of 1093 participants. Of the studies, 2 studies involved only women, 5 studies involved only men, and 6 studies involved both men and women. All the studies included were classified as high-quality studies (≥6 points in the Physiotherapy Evidence Database (PEDro) scale score). Overall, evidence suggests there is an association between the ACTN3 R577X genotype and non-contact injury in 12 investigations. Six studies observed a significant association between ACTN3 R577X polymorphism and exercise induced muscle damage: 2 with non-contact ankle injury, 3 with non-contact muscle injury, and 1 with overall non-contact injury. CONCLUSION The present findings support the premise that possessing the ACTN3 XX genotype may predispose athletes to a higher probability of some non-contact injuries, such as muscle injury, ankle sprains, and higher levels of exercise-induced muscle damage.
Collapse
Affiliation(s)
- Hassane Zouhal
- M2S (Laboratoire Mouvement, Sport, Santé)-EA 1274, Department of Sport Sciences, University of Rennes, Rennes F-35000, France.
| | - Juan Del Coso
- Rey Juan Carlos University, Centre for Sport Studies, Madrid 28032, Spain
| | - Ayyappan Jayavel
- SRM College of Physiotherapy, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, India
| | - Claire Tourny
- Department of Sport Sciences, University of Rouen, Mont Saint Aignan, CETAPS EA 3832, F-76821, France
| | | | - Nidhal Jebabli
- Higher Institute of Sport and Physical Education, Ksar-Said, University of Manouba, Tunis 2010, Tunisia
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry CV1 5FB, UK
| | | | - Anthony C Hackney
- Department of Exercise & Sport Science, Department of Nutrition, University of North Carolina, Chapel Hill, NC 27514, USA
| | | |
Collapse
|
14
|
Yang S, Lin W, Jia M, Chen H. Association between ACTN3 R577x and the physical performance of Chinese 13 to 15-year-old elite and sub-elite football players at different positions. Front Genet 2023; 14:1038075. [PMID: 36968581 PMCID: PMC10036392 DOI: 10.3389/fgene.2023.1038075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/18/2023] [Indexed: 03/12/2023] Open
Abstract
The purpose of this study was to investigate the prevalence of ACTN3 polymorphisms in Chinese elite and sub-elite football players aged 13–15 years at different positions. Specifically we explored whether ACTN3 genotypes were linked with athletic performance of elite and sub-elite players at different positions. The RR genotype frequency of elite defenders (p = 0.018) and midfielders (p = 0.008) was significantly higher than that of sub-elite XX genotype in elite players. Furthermore, the R allele frequency of elite defenders (p = 0.003) and midfielders (p = 0.008) was significantly higher than that of sub-elite players. In all subjects, RR players performed faster and exhibited more explosive power than RX or XX players. RR, RX and XX elite players’ 20 m/30 m sprint, 5 × 25-m repeated sprint ability (5 × 25 m RSA), and standing long jump were stronger than sub-elite players, but there was no significant different in aerobic endurance between elite and sub-elite players at different positions. In conclusion, there were significant differences in ACTN3 genotypes and alleles between elite and sub-elite players at different positions, and the RR genotype was significantly associated with power-related athletic performance in Chinese youth football players.
Collapse
Affiliation(s)
- Shidong Yang
- Department of Physical Education, Nanjing Xiaozhuang University, Najing, Jiangsu, China
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Wentao Lin
- Department of Physical Education, Zhuhai University of Science and Technology, Zhuhai, Guangdong, China
- *Correspondence: Wentao Lin,
| | - Mengmeng Jia
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Haichun Chen
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Alvero-Cruz JR, Alarcón-Martín E, García-Romero J, Ruiz-Galdon M, Carrillo-Albornoz-Gil M, Polvillo R, González I, Reyes-Engel A, Royo JL. Moderate exercise reveals the influence of ACTN3 R577X and ACE I/D polymorphisms on physical performance in non-athlete active subjects. Gene 2023; 850:146958. [DOI: 10.1016/j.gene.2022.146958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
16
|
Yang S, Lin W, Jia M, Chen H. Association between ACE and ACTN3 genes polymorphisms and athletic performance in elite and sub-elite Chinese youth male football players. PeerJ 2023; 11:e14893. [PMID: 36992938 PMCID: PMC10042156 DOI: 10.7717/peerj.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/23/2023] [Indexed: 03/31/2023] Open
Abstract
Background Previous studies have shown controversial relationships between ACE I/D and ACTN3 R577x polymorphisms and athletic performance. Therefore, the aim of this study was to assess athletic performance indicators of Chinese youth male football players with different ACE and ACTN3 gene profiles. Methods and Materials This study recruited 73 elite (26 13-year-olds, 28 14-year-olds, and 19 15-year-olds) and 69 sub-elite (37 13-year-olds, 19 14-year-olds, and 13 15-year-olds) and 107 controls (63 13-year-olds, and 44 14-year olds aged 13-15 years, all participants were of Chinese Han origin. We measured height, body mass, thigh circumference, speed, explosive power, repeat sprints ability, and aerobic endurance in elite and sub-elite players. We used single nucleotide polymorphism technology to detect controls elite and sub-elite players' ACE and ACTN3 genotypes, Chi-squared (χ 2) tests were employed to test for Hardy-Weinberg equilibrium. χ 2 tests were also used to observe the association between the genotype distribution and allele frequencies between controls and elite and sub-elite players. The differences in parameters between the groups were analyzed using one-way analysis of variance and a Bonferroni's post-hoc test, with statistical significance set at p ≤ 0.05. Results (1) The genotype distribution of the ACE I/D and ACTN3 R577x polymorphisms in controls, elite and sub-elite football players were consistent with Hardy-Weinberg equilibrium, except for the ACE genotype distribution of sub-elite players. (2) The RR and DD genotypes were significantly different between elite and sub-elite players (p = 0.024 and p = 0.02, respectively). (3) Elite players were more likely to have the RR genotype and less likely to have the DD genotype compared with sub-elite players. (4) Both elite and sub-elite RR players' Yo-yo intermittent recovery level 1 (YYIR1) running distance was significantly longer than that of RX players (p = 0.05 and p = 0.025, respectively). However, there was no significantly different in YYIR1 running distance between elite and sub-elite RR players. (5) Elite XX players' VO2 max was significantly higher than that of RX and sub-elite players. Conclusion These results indicate that ACE I/D and ACTN3 R577x polymorphisms are not associated with muscle power in Chinese elite and sub-elite players. The XX genotype of ACTN3 is associated with the aerobic endurance of elite players.
Collapse
Affiliation(s)
- Shidong Yang
- Department of Physical Education, Nanjing Xiaozhuang University, Nan Jing, China
- Department of Physical Education and Sports Science, Fujian Normal University, Fu Zhou, China
| | - Wentao Lin
- Department of Physical Education, Zhuhai University of Science and Technology, Zhuhai, China
| | - Mengmeng Jia
- Department of Physical Education and Sports Science, Fujian Normal University, Fu Zhou, China
| | - Haichun Chen
- Department of Physical Education and Sports Science, Fujian Normal University, Fu Zhou, China
| |
Collapse
|
17
|
VEGFA rs2010963 GG genotype is associated with superior adaptations to resistance versus endurance training in the same group of healthy, young men. Mol Genet Genomics 2023; 298:119-129. [PMID: 36326960 PMCID: PMC9816297 DOI: 10.1007/s00438-022-01965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE We used a within-subject, cross-over study to determine the relationship between the intra-individual adaptations to four weeks' resistance (RT) versus four weeks' endurance (END) training, and we investigated whether three single nucleotide polymorphisms (SNPs) were associated with these adaptations. METHODS Thirty untrained, healthy, young men completed a cycling test to exhaustion to determine peak oxygen uptake (V̇O2peak), and a knee extension (KE) maximum voluntary isometric contraction (MVIC) of the right leg before and after four weeks' supervised RT (four sets of 10 repetitions at 80% single repetition maximum unilateral KE exercise, three times weekly) and four weeks' supervised END (30 min combined continuous/interval cycling, three times weekly), separated by a three-week washout phase. Participants were genotyped for the ACTN3 rs1815739, NOS3 rs2070744 and VEGFA rs2010963 SNPs. RESULTS The intra-individual adaptations regarding percentage changes in MVIC force and V̇O2peak following RT and END, respectively, were unrelated (r2 = 0.003; P = 0.79). However, a VEGFA genotype × training modality interaction (P = 0.007) demonstrated that VEGFA GG homozygotes increased their MVIC force after RT (+ 20.9 ± 13.2%) more than they increased their V̇O2peak after END (+ 8.4 ± 9.1%, P = 0.005), and more than VEGFA C-allele carriers increased their MVIC force after RT (+ 12.2 ± 8.1%, P = 0.04). There were no genotype × training modality interactions for the ACTN3 or NOS3 SNPs. CONCLUSION High/low responders to RT were not consequently high/low responders to END or vice versa. However, preferential adaptation of VEGFA rs2010963 GG homozygotes to RT over END, and their greater adaptation to RT compared to VEGFA C-allele carriers, indicate a novel genetic predisposition for superior RT adaptation.
Collapse
|
18
|
Genotype Distribution of the ACTN3 p.R577X Polymorphism in Elite Badminton Players: A Preliminary Study. Genes (Basel) 2022; 14:genes14010050. [PMID: 36672791 PMCID: PMC9858904 DOI: 10.3390/genes14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
α-Actinin-3 is a protein with a structural role at the sarcomeric Z-line in skeletal muscle. As it is only present in fast-type muscle fibers, α-actinin-3 is considered a key mechanical component to produce high-intensity muscle contractions and to withstand external tension applied to the skeletal muscle. α-Actinin-3 is encoded by the gene ACTN3, which has a single-nucleotide polymorphism (p.R577X; rs1815739) that affects the expression of α-actinin-3 due to the presence of a stop codon. Individuals homozygous for the 577R allele (i.e., RR genotype) and RX heterozygotes express functional α-actinin-3, while those homozygous for the 577X (i.e., XX genotype) express a non-functional protein. There is ample evidence to support the associations between the ACTN3 genotype and athletic performance, with higher frequencies of the 577R allele in elite and professional sprint and power athletes than in control populations. This suggests a beneficial influence of possessing functional α-actinin-3 to become an elite athlete in power-based disciplines. However, no previous investigation has determined the frequency of the ACTN3 genotypes in elite badminton players, despite this sport being characterized by high-intensity actions of intermittent nature such as changes of direction, accelerations, jumps and smashes. The purpose of this study was to analyze ACTN3 R577X genotype frequencies in professional badminton players to establish whether this polymorphism is associated with elite athlete status. A total of 53 European Caucasian professional badminton players competing in the 2018 European Badminton Championships volunteered to participate in the study. Thirty-one were men (26.2 ± 4.4 years) and twenty-two were women (23.4 ± 4.5 years). Chi-squared tests were used to analyze the differences in the distribution of ACTN3 genotypes (RR, RX and XX) between categories and sexes. The ACTN3 RR genotype was the most frequent in the sample of professional badminton players (RR = 49.1%, RX = 22.6% and XX = 28.3%). None of the badminton players ranked in the world's top ten possessed the XX genotype (RX = 60%, RR = 40%). The distribution of the ACTN3 genotypes was similar between male and female professional badminton players (men: RR = 45.2%, RX = 25.8% and XX = 29.0%; women: RR = 54.5%, RX = 18.2% and XX = 27.3%; χ2 = 0.58; p = 0.750). The distribution of the ACTN3 genotypes in badminton players was different from the 1000 genome database for the European population (χ2 = 15.5; p < 0.001), with an overrepresentation of the RR genotype (p < 0.05) and an underrepresentation of the RX genotype (p < 0.01). In conclusion, the expression of functional α-actinin-3, associated with RR and RX genotypes in the ACTN3 gene may confer an advantage for reaching the status of elite athlete in badminton, and especially the world's top-ten ranking. Large-scale studies with different ethnic backgrounds are needed to confirm the association of the R allele of ACTN3 with badminton performance.
Collapse
|
19
|
Venckunas T, Degens H. Genetic polymorphisms of muscular fitness in young healthy men. PLoS One 2022; 17:e0275179. [PMID: 36166425 PMCID: PMC9514622 DOI: 10.1371/journal.pone.0275179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
The effects of genetic polymorphisms on muscle structure and function remain elusive. The present study tested for possible associations of 16 polymorphisms (across ten candidate genes) with fittness and skeletal muscle phenotypes in 17- to 37-year-old healthy Caucasian male endurance (n = 86), power/strength (n = 75) and team athletes (n = 60), and non-athletes (n = 218). Skeletal muscle function was measured with eight performance tests covering multiple aspects of muscular fitness. Along with body mass and height, the upper arm and limb girths, and maximal oxygen uptake were measured. Genotyping was conducted on DNA extracted from blood. Of the 16 polymorphisms studied, nine (spanning seven candidate genes and four gene families/signalling pathways) were independently associated with at least one skeletal muscle fitness measure (size or function, or both) measure and explained up to 4.1% of its variation. Five of the studied polymorphisms (activin- and adreno-receptors, as well as myosine light chain kinase 1) in a group of one to three combined with body height, age and/or group explained up to 20.4% of the variation of muscle function. ACVR1B (rs2854464) contributed 2.0-3.6% to explain up to 14.6% of limb proximal girths. The G allele (genotypes AG and GG) of the ACVR1B (rs2854464) polymorphism was significantly overrepresented among team (60.4%) and power (62.0%) athletes compared to controls (52.3%) and endurance athletes (39.2%), and G allele was also most consistently/frequently associated with muscle size and power. Overall, the investigated polymorphisms determined up to 4.1% of the variability of muscular fitness in healthy young humans.
Collapse
Affiliation(s)
- Tomas Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Hans Degens
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
- Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
20
|
Del Coso J, Rodas G, Buil MÁ, Sánchez-Sánchez J, López P, González-Ródenas J, Gasulla-Anglés P, López-Samanes Á, Hernández-Sánchez S, Iztueta A, Moreno-Pérez V. Association of the ACTN3 rs1815739 Polymorphism with Physical Performance and Injury Incidence in Professional Women Football Players. Genes (Basel) 2022; 13:genes13091635. [PMID: 36140803 PMCID: PMC9498709 DOI: 10.3390/genes13091635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
The p.R577X polymorphism (rs1815739) in the ACTN3 gene causes individuals with the XX genotype to be deficient in functional α-actinin-3. Previous investigations have found that XX athletes are more prone to suffer non-contact muscle injuries, in comparison with RR and RX athletes who produce a functional α-actinin-3 in their fast-twitch fibers. This investigation aimed to determine the influence of the ACTN3 R577X polymorphism on physical performance and injury incidence of players competing in the women’s Spanish first division of football (soccer). Using a cross-sectional experiment, football-specific performance and epidemiology of non-contact football-related injuries were recorded in a group of 191 professional football players. ACTN3 R577X genotype was obtained for each player using genomic DNA samples obtained through buccal swabs. A battery of physical tests, including a countermovement jump, a 20 m sprint test, the sit-and-reach test and ankle dorsiflexion, were performed during the preseason. Injury incidence and characteristics of non-contact injuries were obtained according to the International Olympic Committee (IOC) statement for one season. From the study sample, 28.3% of players had the RR genotype, 52.9% had the RX genotype, and 18.8% had the XX genotype. Differences among genotypes were identified with one-way analysis of variance (numerical variables) or chi-square tests (categorical variables). Jump height (p = 0.087), sprint time (p = 0.210), sit-and-reach distance (p = 0.361), and dorsiflexion in the right (p = 0.550) and left ankle (p = 0.992) were similar in RR, RX, and XX football players. A total of 356 non-contact injuries were recorded in 144 football players while the remaining 47 did not sustain any non-contact injuries during the season. Injury incidence was 10.4 ± 8.6, 8.2 ± 5.7, and 8.9 ± 5.3 injuries per/1000 h of football exposure, without differences among genotypes (p = 0.222). Injury rates during training (from 3.6 ± 3.7 to 4.8 ± 2.1 injuries per/1000 h of training exposure, p = 0.100) and match (from 47.8 ± 9.5 to 54.1 ± 6.3 injuries per/1000 h of match exposure, p = 0.209) were also similar in RR, RX, and XX football players. The ACTN3 genotype did not affect the mode of onset, the time needed to return to play, the type of injury, or the distribution of body locations of the injuries. In summary, women football players with different genotypes of the p.R577X ACTN3 polymorphism had similar values of football-specific performance and injury incidence. From a practical perspective, the ACTN3 genotyping may not be useful to predict performance or injury incidence in professional women football players.
Collapse
Affiliation(s)
- Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, 28943 Fuenlabrada, Spain
- Correspondence:
| | - Gil Rodas
- Medical Department & Barça Innovation Hub, Fútbol Club Barcelona, 08028 Barcelona, Spain
| | - Miguel Ángel Buil
- Department of Sports Medicine, Levante Unión Deportiva, 46360 Valencia, Spain
- Department of Sports Medicine, IVRE—Institut Valencià de Recuperació Esportiva, 46010 Valencia, Spain
| | | | - Pedro López
- Medical Department, Valencia Club de Fútbol, 46980 Paterna, Spain
| | | | | | - Álvaro López-Samanes
- Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain
| | - Sergio Hernández-Sánchez
- Center for Translational Research in Physiotherapy, Department of Pathology and Surgery, Miguel Hernandez University of Elche, 03202 Elche, Spain
| | - Ane Iztueta
- Health and Performance Unit, Real Sociedad de Fútbol Sociedad Anónima Deportiva, 20160 Donostia, Spain
| | - Víctor Moreno-Pérez
- Center for Translational Research in Physiotherapy, Department of Pathology and Surgery, Miguel Hernandez University of Elche, 03202 Elche, Spain
| |
Collapse
|
21
|
Sierra APR, Martínez Galán BS, de Sousa CAZ, de Menezes DC, Branquinho JLDO, Neves RL, Arata JG, Bittencourt CA, Barbeiro HV, de Souza HP, Pesquero JB, Cury-Boaventura MF. Exercise Induced-Cytokines Response in Marathon Runners: Role of ACE I/D and BDKRB2 +9/-9 Polymorphisms. Front Physiol 2022; 13:919544. [PMID: 36117688 PMCID: PMC9479100 DOI: 10.3389/fphys.2022.919544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
Renin-angiotensin system (RAS) and kallikrein-kinin system (KKS) have a different site of interaction and modulate vascular tone and inflammatory response as well on exercise adaptation, which is modulated by exercise-induced cytokines. The aim of the study was to evaluate the role of ACE I/D and BDKRB2 +9/−9 polymorphism on exercise-induced cytokine response. Seventy-four male marathon finishers, aged 30 to 55 years, participated in this study. Plasma levels of exercise-induced cytokines were determined 24 h before, immediately after, and 24 h and 72 h after the São Paulo International Marathon. Plasma concentrations of MCP-1, IL-6 and FGF-21 increased after marathon in all genotypes of BDKRB2. IL-10, FSTL and BDNF increased significantly after marathon in the genotypes with the presence of the −9 allele. FSTL and BDNF concentrations were higher in the −9/−9 genotype compared to the +9/+9 genotype before (p = 0.006) and after the race (p = 0.023), respectively. Apelin, IL-15, musclin and myostatin concentrations were significantly reduced after the race only in the presence of −9 allele. Marathon increased plasma concentrations of MCP1, IL-6, BDNF and FGF-21 in all genotypes of ACE I/D polymorphism. Plasma concentrations of IL-8 and MIP-1alpha before the race (p = 0.015 and p = 0.031, respectively), of MIP-1alpha and IL-10 after the race (p = 0.033 and p = 0.047, respectively) and VEGF 72 h after the race (p = 0.018) were lower in II homozygotes compared to runners with the presence of D allele. One day after the race we also observed lower levels of MIP-1alpha in runners with II homozygotes compared to DD homozygotes (p = 0.026). Before the marathon race myostatin concentrations were higher in DD compared to II genotypes (p = 0.009). Myostatin, musclin, IL-15, IL-6 and apelin levels decreased after race in genotypes with the presence of D allele. After the race ACE activity was negatively correlated with MCP1 (r = −56, p < 0.016) and positively correlated with IL-8, IL-10 and MIP1-alpha (r = 0.72, p < 0.0007, r = 0.72, p < 0.0007, r = 0.47, p < 0.048, respectively). The runners with the −9/−9 genotype have greater response in exercise-induced cytokines related to muscle repair and cardioprotection indicating that BDKRB2 participate on exercise adaptations and runners with DD genotype have greater inflammatory response as well as ACE activity was positively correlated with inflammatory mediators. DD homozygotes also had higher myostatin levels which modulates protein homeostasis.
Collapse
Affiliation(s)
| | - Bryan Steve Martínez Galán
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Cesar Augustus Zocoler de Sousa
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Duane Cardoso de Menezes
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | | | - Raquel Leão Neves
- Department of Biophysics, Federal University of Sao Paulo, São Paulo, Brazil
| | | | | | | | | | - João Bosco Pesquero
- Department of Biophysics, Federal University of Sao Paulo, São Paulo, Brazil
| | - Maria Fernanda Cury-Boaventura
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo, Brazil
- *Correspondence: Maria Fernanda Cury-Boaventura,
| |
Collapse
|
22
|
Abstract
Sports genomics is the scientific discipline that focuses on the organization and function of the genome in elite athletes, and aims to develop molecular methods for talent identification, personalized exercise training, nutritional need and prevention of exercise-related diseases. It postulates that both genetic and environmental factors play a key role in athletic performance and related phenotypes. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status and soft-tissue injuries covers advances in research reported in recent years, including one whole genome sequencing (WGS) and four genome-wide association (GWAS) studies, as well as findings from collaborative projects and meta-analyses. At end of 2020, the total number of DNA polymorphisms associated with athlete status was 220, of which 97 markers have been found significant in at least two studies (35 endurance-related, 24 power-related, and 38 strength-related). Furthermore, 29 genetic markers have been linked to soft-tissue injuries in at least two studies. The most promising genetic markers include HFE rs1799945, MYBPC3 rs1052373, NFIA-AS2 rs1572312, PPARA rs4253778, and PPARGC1A rs8192678 for endurance; ACTN3 rs1815739, AMPD1 rs17602729, CPNE5 rs3213537, CKM rs8111989, and NOS3 rs2070744 for power; LRPPRC rs10186876, MMS22L rs9320823, PHACTR1 rs6905419, and PPARG rs1801282 for strength; and COL1A1 rs1800012, COL5A1 rs12722, COL12A1 rs970547, MMP1 rs1799750, MMP3 rs679620, and TIMP2 rs4789932 for soft-tissue injuries. It should be appreciated, however, that hundreds and even thousands of DNA polymorphisms are needed for the prediction of athletic performance and injury risk.
Collapse
|
23
|
RODRIGUES KARINEP, PRADO LAISS, ALMEIDA MARIANALUCIANODE, TRAPE ATILAALEXANDRE, BUENO JUNIOR CARLOSROBERTO. Association between ACE and ACTN3 genetic polymorphisms and the effects of different physical training models on physically active women aged 50 to 75. AN ACAD BRAS CIENC 2022; 94:e20210509. [DOI: 10.1590/0001-3765202220210509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
|
24
|
Physiological profile comparison between high intensity functional training, endurance and power athletes. Eur J Appl Physiol 2021; 122:531-539. [PMID: 34853894 DOI: 10.1007/s00421-021-04858-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION High intensity functional trainings (HIFT), a recent development of high intensity trainings, includes in the same training session components of endurance exercises, elements of Olympic weightlifting and powerlifting, gymnastics, plyometrics and calisthenics exercises. Therefore, subjects practicing this type of activity are supposed to show physiological features that represent a combination of both endurance and power athletes. The aim of this study was to compare the physiological profile of three groups of age-matched endurance, HIFT and power athletes. METHODS A total of 30 participants, 18 to 38-year-old men were enrolled in the study. Participants were divided in three groups: HIFT (n = 10), endurance (END, n = 10), and power (POW, weightlifters, n = 10) athletes. All were evaluated for anthropometric characteristics, VO2peak, handgrip, lower limb maximal isometric and isokinetic strength, countermovement vertical jump and anaerobic power through a shuttle run test on the field. RESULTS VO2peak/kg was higher in END and HIFT than POW athletes (p = 0.001 and p = 0.007, respectively), but there were no significant differences between the first two. POW and HIFT athletes showed significant greater strength at the handgrip, countermovement jump and leg extension/flexion tests than END athletes. HIFT athletes showed highest results at the dynamic isokinetic test, while there were no significant differences at the shuttle run test among groups. CONCLUSIONS As HIFT reach aerobic levels similar to END athletes and power and strength output similar to POW athletes, it appears that HIFT programs are effective to improve both endurance-related and power-related physical fitness components.
Collapse
|
25
|
Melián Ortiz A, Laguarta-Val S, Varillas-Delgado D. Muscle Work and Its Relationship with ACE and ACTN3 Polymorphisms Are Associated with the Improvement of Explosive Strength. Genes (Basel) 2021; 12:genes12081177. [PMID: 34440352 PMCID: PMC8391250 DOI: 10.3390/genes12081177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/24/2023] Open
Abstract
Background: The potential influence of genetics in athletic performance allows the search for genetic profiles associated with muscular work for the orientation of strength training and sports selection. The purpose of the study was to analyze four muscular exercises for effectiveness in improving explosive strength variables, associated to the genetics in Angiotensin Converting Enzyme (ACE) and α-actinin-3 (ACTN3) polymorphisms. Methods: A randomized controlled trial was conducted on a sample of 80 subjects allocated into four groups: concentric muscle work (CMW), eccentric muscle work (EMW), concentric-eccentric muscle (C-EMW) work and isometric muscular work (IMW), by block and gender randomization. Vertical jump, long jump, power jump, and speed were measured to study explosive strength. Genotypic frequencies of ACE (rs4646994) and ACTN3 (rs1815739) were obtained by polymerase chain reaction. Results: ACE gen showed significant improvements regarding the DD genotype in the Sargent test (p = 0.003) and sprint velocity test (p = 0.017). In the ACTN3 gene, the RR variable obtained improvement results with regard to RX and XX variables in long jump (p < 0.001), Sargent test (p < 0.001) and power jump (p = 0.004). Conclusions: The selected genes demonstrated an influence on the muscle work and the improvement in explosive strength variables with a decisive role regarding the type of muscle work performed.
Collapse
Affiliation(s)
- Alberto Melián Ortiz
- Department of Physical Therapy, FREMAP-Majadahonda Hospital, 28222 Madrid, Spain;
- Department of Health Sciences, Faculty of Nursing and Physical Therapy Salus Informorum, Pontifical University of Salamanca, 37007 Madrid, Spain
| | - Sofía Laguarta-Val
- Department of Physiotherapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, 28922 Madrid, Spain
- Correspondence:
| | - David Varillas-Delgado
- Department of Sports Sciences, Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcon, 28223 Madrid, Spain;
| |
Collapse
|
26
|
Vann CG, Morton RW, Mobley CB, Vechetti IJ, Ferguson BK, Haun CT, Osburn SC, Sexton CL, Fox CD, Romero MA, Roberson PA, Oikawa SY, McGlory C, Young KC, McCarthy JJ, Phillips SM, Roberts MD. An intron variant of the GLI family zinc finger 3 (GLI3) gene differentiates resistance training-induced muscle fiber hypertrophy in younger men. FASEB J 2021; 35:e21587. [PMID: 33891350 PMCID: PMC8234740 DOI: 10.1096/fj.202100113rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022]
Abstract
We examined the association between genotype and resistance training-induced changes (12 wk) in dual x-ray energy absorptiometry (DXA)-derived lean soft tissue mass (LSTM) as well as muscle fiber cross-sectional area (fCSA; vastus lateralis; n = 109; age = 22 ± 2 y, BMI = 24.7 ± 3.1 kg/m2 ). Over 315 000 genetic polymorphisms were interrogated from muscle using DNA microarrays. First, a targeted investigation was performed where single nucleotide polymorphisms (SNP) identified from a systematic literature review were related to changes in LSTM and fCSA. Next, genome-wide association (GWA) studies were performed to reveal associations between novel SNP targets with pre- to post-training change scores in mean fCSA and LSTM. Our targeted investigation revealed no genotype-by-time interactions for 12 common polymorphisms regarding the change in mean fCSA or change in LSTM. Our first GWA study indicated no SNP were associated with the change in LSTM. However, the second GWA study indicated two SNP exceeded the significance level with the change in mean fCSA (P = 6.9 × 10-7 for rs4675569, 1.7 × 10-6 for rs10263647). While the former target is not annotated (chr2:205936846 (GRCh38.p12)), the latter target (chr7:41971865 (GRCh38.p12)) is an intron variant of the GLI Family Zinc Finger 3 (GLI3) gene. Follow-up analyses indicated fCSA increases were greater in the T/C and C/C GLI3 genotypes than the T/T GLI3 genotype (P < .05). Data from the Auburn cohort also revealed participants with the T/C and C/C genotypes exhibited increases in satellite cell number with training (P < .05), whereas T/T participants did not. Additionally, those with the T/C and C/C genotypes achieved myonuclear addition in response to training (P < .05), whereas the T/T participants did not. In summary, this is the first GWA study to examine how polymorphisms associate with the change in hypertrophy measures following resistance training. Future studies are needed to determine if the GLI3 variant differentiates hypertrophic responses to resistance training given the potential link between this gene and satellite cell physiology.
Collapse
Affiliation(s)
- Christopher G Vann
- School of Kinesiology, Auburn University, Auburn, AL, USA.,Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Robert W Morton
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Christopher B Mobley
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA.,The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Ivan J Vechetti
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | | | - Casey L Sexton
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Carlton D Fox
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | | | | | - Sara Y Oikawa
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Chris McGlory
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, AL, USA.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn, AL, USA
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA.,The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, USA.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn, AL, USA
| |
Collapse
|
27
|
Dawson EA, Sheikhsaraf B, Boidin M, Erskine RM, Thijssen DHJ. Intra-individual differences in the effect of endurance versus resistance training on vascular function: A cross-over study. Scand J Med Sci Sports 2021; 31:1683-1692. [PMID: 33899971 PMCID: PMC8360023 DOI: 10.1111/sms.13975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
We used a within‐subject, cross‐over design study to compare the impact of 4‐weeks' resistance (RT) versus endurance (END) training on vascular function. We subsequently explored the association of intra‐individual effects of RT versus END on vascular function with a single nucleotide polymorphism (SNP) of the NOS3 gene. Thirty‐five healthy males (21 ± 2 years old) were genotyped for the NOS3 rs2070744 SNP and completed both training modalities. Participants completed 12 sessions over a 4‐week period, either RT (leg‐extension) or END (cycling) training in a randomized, balanced cross‐over design with a 3‐week washout period. Participants performed peak oxygen uptake (peak VO2) and leg‐extension single‐repetition maximum (1‐RM) testing, and vascular function assessment using flow‐mediated dilation (FMD) on 3 separated days pre/post‐training. Peak VO2 increased after END (p < 0.001), while 1‐RM increased after RT (p < 0.001). FMD improved after 4‐weeks’ training (time effect: p = 0.006), with no difference between exercise modalities (interaction effect: p = 0.92). No relation was found between individual changes (delta, pre‐post) in FMD to both types of training (R2 = 0.06, p = 0.14). Intra‐individual changes in FMD following END and RT were associated with the NOS3 SNP, with TT homozygotes significantly favoring only END (p = 0.016) and TC/CC tending to favor RT only (p = 0.056). Although both training modes improved vascular function, significant intra‐individual variation in the adaptation of FMD was found. The association with NOS3 genotype suggests a genetic predisposition to FMD adapting to a specific mode of chronic exercise. This study therefore provides novel evidence for personalized exercise training to optimize vascular health.
Collapse
Affiliation(s)
- Ellen Adele Dawson
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Bahare Sheikhsaraf
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Maxime Boidin
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Cardiovascular Prevention and Rehabilitation (EPIC) Center, Montreal Heart Institute, Montreal, Canada.,School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Robert M Erskine
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute of Sport, Exercise and Health, University College London, Liverpool, UK
| | - Dick H J Thijssen
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Research Institute for Health Sciences, Department of Physiology, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Wagle JP, Carroll KM, Cunanan AJ, Wetmore A, Taber CB, DeWeese BH, Sato K, Stuart CA, Stone MH. Preliminary Investigation Into the Effect of ACTN3 and ACE Polymorphisms on Muscle and Performance Characteristics. J Strength Cond Res 2021; 35:688-694. [PMID: 30199453 DOI: 10.1519/jsc.0000000000002809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ABSTRACT Wagle, JP, Carroll, KM, Cunanan, AJ, Wetmore, A, Taber, CB, DeWeese, BH, Sato, K, Stuart, CA, and Stone, MH. Preliminary investigation into the effect of ACTN3 and ACE polymorphisms on muscle and performance characteristics. J Strength Cond Res 35(3): 688-694, 2021-The purpose of this investigation was to explore the phenotypic and performance outcomes associated with ACTN3 and ACE polymorphisms. Ten trained men (age = 25.8 ± 3.0 years, height = 183.3 ± 4.1 cm, body mass = 92.3 ± 9.3 kg, and back squat to body mass ratio = 1.8 ± 0.3) participated. Blood samples were analyzed to determine ACTN3 and ACE polymorphisms. Standing ultrasonography images of the vastus lateralis (VL) were collected to determine whole muscle cross-sectional area (CSA-M), and a percutaneous muscle biopsy of the VL was collected to determine type I-specific CSA (CSA-T1), type II-specific CSA (CSA-T2), and type II to type I CSA ratio (CSA-R). Isometric squats were performed on force platforms with data used to determine peak force (IPF), allometrically scaled peak force (IPFa), and rate of force development (RFD) at various timepoints. One repetition maximum back squats were performed, whereby allometrically scaled dynamic strength (DSa) was determined. Cohen's d effect sizes revealed ACTN3 RR and ACE DD tended to result in greater CSA-M but differ in how they contribute to performance. ACTN3 RR's influence seems to be in the type II fibers, altering maximal strength, and ACE DD may influence RFD capabilities through a favorable CSA-R. Although the findings of the current investigation are limited by the sample size, the findings demonstrate the potential influence of ACTN3 and ACE polymorphisms on isometric and dynamic strength testing. This study may serve as a framework to generate hypotheses regarding the effect of genetics on performance.
Collapse
Affiliation(s)
- John P Wagle
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Kevin M Carroll
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Aaron J Cunanan
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Alexander Wetmore
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Christopher B Taber
- Department of Physical Therapy and Human Movement Science, Sacred Heart University, Fairfield, Connecticut; and
| | - Brad H DeWeese
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Kimitake Sato
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Charles A Stuart
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson, City, Tennessee
| | - Michael H Stone
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
29
|
Kittilsen HT, Goleva-Fjellet S, Freberg BI, Nicolaisen I, Støa EM, Bratland-Sanda S, Helgerud J, Wang E, Sæbø M, Støren Ø. Responses to Maximal Strength Training in Different Age and Gender Groups. Front Physiol 2021; 12:636972. [PMID: 33679448 PMCID: PMC7925619 DOI: 10.3389/fphys.2021.636972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose The present study aimed to investigate the potential impact of age, gender, baseline strength, and selected candidate polymorphisms on maximal strength training (MST) adaptations. Methods A total of 49 subjects (22 men and 27 women) aged 20–76 years, divided into five age groups, completed an 8 weeks MST intervention. Each MST session consisted of 4 sets with 4 repetitions at ∼85–90% of one-repetition maximum (1RM) intensity in leg-press, three times per week. 1RM was tested pre and post the intervention and blood samples were drawn to genotype candidate polymorphisms ACE I/D (rs1799752), ACTN3 R577X (rs1815739), and PPARGC1A Gly482Ser (rs8192678). Results All age groups increased leg-press 1RM (p < 0.01), with a mean improvement of 24.2 ± 14.0%. There were no differences in improvements between the five age groups or between male and female participants, and there were no non-responders. Baseline strength status did not correlate with 1RM improvements. PPARGC1A rs8192678 T allele carriers had a 15% higher age- and gender corrected baseline 1RM than the CC genotype (p < 0.05). C allele carriers improved 1RM (%) by 34.2% more than homozygotes for the T allele (p < 0.05). Conclusion To the best of our knowledge, this is the first study to report improvement in leg-press maximal strength regardless of gender, baseline strength status in all age groups. The present study is also first to demonstrate an association between the PPARGC1A rs8192678 and maximal strength and its trainability in a moderately trained cohort. MST may be beneficial for good health and performance of all healthy individuals.
Collapse
Affiliation(s)
- Hans Torvild Kittilsen
- Department of Sport and Outdoor Life Studies, University of South-Eastern Norway, Bø, Norway
| | - Sannija Goleva-Fjellet
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Norway
| | - Baard Ingegerdsson Freberg
- Department of Sport and Outdoor Life Studies, University of South-Eastern Norway, Bø, Norway.,The Norwegian Biathlon Association, Oslo, Norway.,Top Sports Medical Office, Tønsberg, Norway
| | - Iver Nicolaisen
- Department of Sport and Outdoor Life Studies, University of South-Eastern Norway, Bø, Norway
| | - Eva Maria Støa
- Department of Sport and Outdoor Life Studies, University of South-Eastern Norway, Bø, Norway
| | - Solfrid Bratland-Sanda
- Department of Sport and Outdoor Life Studies, University of South-Eastern Norway, Bø, Norway
| | - Jan Helgerud
- Department of Circulation and Medical Imaging, Faculty of Medicine Trondheim, Norwegian University of Science and Technology, Trondheim, Norway.,Myworkout, Medical Rehabilitation Centre, Trondheim, Norway
| | - Eivind Wang
- Department of Circulation and Medical Imaging, Faculty of Medicine Trondheim, Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Health and Social Sciences, Molde University College, Molde, Norway.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Mona Sæbø
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Norway
| | - Øyvind Støren
- Department of Sport and Outdoor Life Studies, University of South-Eastern Norway, Bø, Norway
| |
Collapse
|
30
|
McAuley ABT, Hughes DC, Tsaprouni LG, Varley I, Suraci B, Roos TR, Herbert AJ, Kelly AL. The association of the ACTN3 R577X and ACE I/D polymorphisms with athlete status in football: a systematic review and meta-analysis. J Sports Sci 2021; 39:200-211. [PMID: 32856541 DOI: 10.1080/02640414.2020.1812195] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2020] [Indexed: 02/07/2023]
Abstract
The aim of this review was to assess the association of ACTN3 R577X and ACE I/D polymorphisms with athlete status in football and determine which allele and/or genotypes are most likely to influence this phenotype via a meta-analysis. A comprehensive search identified 17 ACTN3 and 19 ACE studies. Significant associations were shown between the presence of the ACTN3 R allele and professional footballer status (OR = 1.35, 95% CI: 1.18-1.53) and the ACE D allele and youth footballers (OR = 1.18, 95% CI: 1.01-1.38). More specifically, the ACTN3 RR genotype (OR = 1.48, 95% CI: 1.23-1.77) and ACE DD genotype (OR = 1.29, 95% CI: 1.02-1.63) exhibited the strongest associations, respectively. These findings may be explained by the association of the ACTN3 RR genotype and ACE DD genotype with power-orientated phenotypes and the relative contribution of power-orientated phenotypes to success in football. As such, the results of this review provide further evidence that individual genetic variation may contribute towards athlete status and can differentiate athletes of different competitive playing statuses in a homogenous team-sport cohort. Moreover, the ACTN3 R577X and ACE I/D polymorphisms are likely (albeit relatively minor) contributing factors that influence athlete status in football.
Collapse
Affiliation(s)
- Alexander B T McAuley
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - David C Hughes
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - Loukia G Tsaprouni
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - Ian Varley
- Department of Sport Science, Nottingham Trent University , Nottingham, UK
| | - Bruce Suraci
- Academy Coaching Department, AFC Bournemouth , Bournemouth, UK
| | - Thomas R Roos
- The International Academy of Sports Science and Technology (AISTS), University of Lausanne , Lausanne, Switzerland
| | - Adam J Herbert
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - Adam L Kelly
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| |
Collapse
|
31
|
He L, Khanal P, Morse CI, Williams A, Thomis M. Associations of combined genetic and epigenetic scores with muscle size and muscle strength: a pilot study in older women. J Cachexia Sarcopenia Muscle 2020; 11:1548-1561. [PMID: 33058541 PMCID: PMC7749602 DOI: 10.1002/jcsm.12585] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/08/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Inter-individual variance in skeletal muscle is closely related to genetic architecture and epigenetic regulation. Studies have examined genetic and epigenetic relationships with characteristics of ageing muscle separately, while no study has combined both genetic and epigenetic profiles in ageing muscle research. The aim of this study was to evaluate the association between combined genetic and methylation scores and skeletal muscle phenotypes in older women. METHODS Forty-eight older Caucasian women (aged 65-79 years) were included in this study. Biceps brachii thickness and vastus lateralis anatomical cross-sectional area (ACSAVL ) were measured by ultrasonography. Maximum isometric elbow flexion (MVCEF ) and knee extension (MVCKE ) torques were measured by a customized dynamometer. The muscle-driven genetic predisposition score (GPSSNP ) was calculated based on seven muscle-related single nucleotide polymorphisms (SNPs). DNA methylation levels of whole blood samples were analysed using Infinium MethylationEPIC BeadChip arrays. The DNA methylation score was calculated as a weighted sum of methylation levels of sarcopenia-driven CpG sites (MSSAR ) or an overall gene-wise methylation score (MSSNP , the mean methylation level of CpG sites located in muscle-related genes). Linear regression models were built to study genetic and epigenetic associations with muscle size and strength. Three models were built with both genetic and methylation scores: (1) MSSAR + GPSSNP , (2) MSSNP + GPSSNP , and (3) gene-wise combined scores which were calculated as the ratio of the SNP score to the mean methylation level of promoters in the corresponding gene. Additional models with only a genetic or methylation score were also built. All models were adjusted for age and BMI. RESULTS MSSAR was negatively associated with ACSAVL , MVCEF , and MVCKE and explained 10.1%, 35.5%, and 40.1% of the variance, respectively. MSSAR explained more variance in these muscular phenotypes than GPSSNP , MSSNP , and models including both genetic and methylation scores. MSSNP and GPSSNP accounted for less than 8% and 5% of the variance in all muscular phenotypes, respectively. The genotype and methylation level of CNTF was positively related to MVCKE (P = 0.03) and explained 12.2% of the variance. The adjusted R2 and Akaike information criterion showed that models with only a MSSAR performed the best in explaining inter-individual variance in muscular phenotypes. CONCLUSIONS Our results improve the understanding of inter-individual variance in muscular characteristics of older women and suggest a possible application of a sarcopenia-driven methylation score to muscle strength estimation in older women while the combination with a genetic score still needs to be further studied.
Collapse
Affiliation(s)
- Lingxiao He
- Department of Movement Sciences, Physical Activity, Sports & Health Research Group, KU Leuven, Leuven, Belgium.,Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| | - Praval Khanal
- Department of Movement Sciences, Physical Activity, Sports & Health Research Group, KU Leuven, Leuven, Belgium.,Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| | - Christopher I Morse
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| | - Alun Williams
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK.,Institute of Sport, Exercise and Health, University College London, London, UK
| | - Martine Thomis
- Department of Movement Sciences, Physical Activity, Sports & Health Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Hall ECR, Murgatroyd C, Stebbings GK, Cunniffe B, Harle L, Salter M, Ramadass A, Westra JW, Hunter E, Akoulitchev A, Williams AG. The Prospective Study of Epigenetic Regulatory Profiles in Sport and Exercise Monitored Through Chromosome Conformation Signatures. Genes (Basel) 2020; 11:E905. [PMID: 32784689 PMCID: PMC7464522 DOI: 10.3390/genes11080905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 01/09/2023] Open
Abstract
The integration of genetic and environmental factors that regulate the gene expression patterns associated with exercise adaptation is mediated by epigenetic mechanisms. The organisation of the human genome within three-dimensional space, known as chromosome conformation, has recently been shown as a dynamic epigenetic regulator of gene expression, facilitating the interaction of distal genomic regions due to tight and regulated packaging of chromosomes in the cell nucleus. Technological advances in the study of chromosome conformation mean a new class of biomarker-the chromosome conformation signature (CCS)-can identify chromosomal interactions across several genomic loci as a collective marker of an epigenomic state. Investigative use of CCSs in biological and medical research shows promise in identifying the likelihood that a disease state is present or absent, as well as an ability to prospectively stratify individuals according to their likely response to medical intervention. The association of CCSs with gene expression patterns suggests that there are likely to be CCSs that respond, or regulate the response, to exercise and related stimuli. The present review provides a contextual background to CCS research and a theoretical framework discussing the potential uses of this novel epigenomic biomarker within sport and exercise science and medicine.
Collapse
Affiliation(s)
- Elliott C. R. Hall
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (G.K.S.); (A.G.W.)
| | | | - Georgina K. Stebbings
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (G.K.S.); (A.G.W.)
| | - Brian Cunniffe
- English Institute of Sport, Nottingham NG12 2LU, UK;
- Institute of Sport, Exercise and Health, University College London, London W1T 7HA, UK
| | - Lee Harle
- Holos Life Sciences, Oxford OX1 3HA, UK;
| | - Matthew Salter
- Oxford BioDynamics, Oxford OX4 2JZ, UK; (M.S.); (A.R.); (J.W.W.); (E.H.); (A.A.)
| | - Aroul Ramadass
- Oxford BioDynamics, Oxford OX4 2JZ, UK; (M.S.); (A.R.); (J.W.W.); (E.H.); (A.A.)
| | - Jurjen W. Westra
- Oxford BioDynamics, Oxford OX4 2JZ, UK; (M.S.); (A.R.); (J.W.W.); (E.H.); (A.A.)
| | - Ewan Hunter
- Oxford BioDynamics, Oxford OX4 2JZ, UK; (M.S.); (A.R.); (J.W.W.); (E.H.); (A.A.)
| | | | - Alun G. Williams
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (G.K.S.); (A.G.W.)
- Institute of Sport, Exercise and Health, University College London, London W1T 7HA, UK
| |
Collapse
|
33
|
Alvarez-Romero J, Voisin S, Eynon N, Hiam D. Mapping Robust Genetic Variants Associated with Exercise Responses. Int J Sports Med 2020; 42:3-18. [PMID: 32693428 DOI: 10.1055/a-1198-5496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review summarised robust and consistent genetic variants associated with aerobic-related and resistance-related phenotypes. In total we highlight 12 SNPs and 7 SNPs that are robustly associated with variance in aerobic-related and resistance-related phenotypes respectively. To date, there is very little literature ascribed to understanding the interplay between genes and environmental factors and the development of physiological traits. We discuss future directions, including large-scale exercise studies to elucidate the functional relevance of the discovered genomic markers. This approach will allow more rigour and reproducible research in the field of exercise genomics.
Collapse
Affiliation(s)
| | - Sarah Voisin
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Nir Eynon
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,MCRI, Murdoch Childrens Research Institute, Parkville, Australia
| | - Danielle Hiam
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
34
|
Stožer A, Vodopivc P, Križančić Bombek L. Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiol Res 2020; 69:565-598. [PMID: 32672048 DOI: 10.33549/physiolres.934371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extreme or unaccustomed eccentric exercise can cause exercise-induced muscle damage, characterized by structural changes involving sarcomere, cytoskeletal, and membrane damage, with an increased permeability of sarcolemma for proteins. From a functional point of view, disrupted force transmission, altered calcium homeostasis, disruption of excitation-contraction coupling, as well as metabolic changes bring about loss of strength. Importantly, the trauma also invokes an inflammatory response and clinically presents itself by swelling, decreased range of motion, increased passive tension, soreness, and a transient decrease in insulin sensitivity. While being damaging and influencing heavily the ability to perform repeated bouts of exercise, changes produced by exercise-induced muscle damage seem to play a crucial role in myofibrillar adaptation. Additionally, eccentric exercise yields greater hypertrophy than isometric or concentric contractions and requires less in terms of metabolic energy and cardiovascular stress, making it especially suitable for the elderly and people with chronic diseases. This review focuses on our current knowledge of the mechanisms underlying exercise-induced muscle damage, their dependence on genetic background, as well as their consequences at the structural, functional, metabolic, and clinical level. A comprehensive understanding of these is a prerequisite for proper inclusion of eccentric training in health promotion, rehabilitation, and performance enhancement.
Collapse
Affiliation(s)
- A Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Slovenia.
| | | | | |
Collapse
|
35
|
The genetic profile of elite youth soccer players and its association with power and speed depends on maturity status. PLoS One 2020; 15:e0234458. [PMID: 32569264 PMCID: PMC7307776 DOI: 10.1371/journal.pone.0234458] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/03/2020] [Indexed: 12/17/2022] Open
Abstract
We investigated the association of multiple single nucleotide polymorphisms (SNPs) with athlete status and power/speed performance in elite male youth soccer players (ESP) and control participants (CON) at different stages of maturity. ESP (n = 535; aged 8-23 years) and CON (n = 151; aged 9-26 years) were genotyped for 10 SNPs and grouped according to years from predicted peak-height-velocity (PHV), i.e. pre- or post-PHV, to determine maturity status. Participants performed bilateral vertical countermovement jumps, bilateral horizontal-forward countermovement jumps, 20m sprints and modified 505-agility tests. Compared to CON, pre-PHV ESP demonstrated a higher ACTN3 (rs1815739) XX ('endurance') genotype frequency distribution, while post-PHV ESP revealed a higher frequency distribution of the PPARA (rs4253778) C-allele, AGT (rs699) GG genotype and NOS3 (rs2070744) T-allele ('power' genotypes/alleles). BDNF (rs6265) CC, COL5A1 (rs12722) CC and NOS3 TT homozygotes sprinted quicker than A-allele carriers, CT heterozygotes and CC homozygotes, respectively. COL2A1 (rs2070739) CC and AMPD1 (rs17602729) GG homozygotes sprinted faster than their respective minor allele carrier counterparts in CON and pre-PHV ESP, respectively. BDNF CC homozygotes jumped further than T-allele carriers, while ESP COL5A1 CC homozygotes jumped higher than TT homozygotes. To conclude, we have shown for the first time that pre- and post-PHV ESP have distinct genetic profiles, with pre-PHV ESP more suited for endurance, and post-PHV ESP for power and speed (the latter phenotypes being crucial attributes for post-PHV ESP). We have also demonstrated that power, acceleration and sprint performance were associated with five SNPs, both individually and in combination, possibly by influencing muscle size and neuromuscular activation.
Collapse
|
36
|
Brazier J, Antrobus M, Stebbings GK, Day SH, Callus P, Erskine RM, Bennett MA, Kilduff LP, Williams AG. Anthropometric and Physiological Characteristics of Elite Male Rugby Athletes. J Strength Cond Res 2020; 34:1790-1801. [DOI: 10.1519/jsc.0000000000002827] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
ACTN3 R/X gene polymorphism across ethnicity: a brief review of performance gene. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-019-00584-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Goleva-Fjellet S, Bjurholt AM, Kure EH, Larsen IK, Støren Ø, Sæbø M. Distribution of allele frequencies for genes associated with physical activity and/or physical capacity in a homogenous Norwegian cohort- a cross-sectional study. BMC Genet 2020; 21:8. [PMID: 31973699 PMCID: PMC6979285 DOI: 10.1186/s12863-020-0813-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/16/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND There are large individual differences in physical activity (PA) behavior as well as trainability of physical capacity. Heritability studies have shown that genes may have as much impact on exercise participation behavior as environmental factors. Genes that favor both trainability and participation may increase the levels of PA. The present study aimed to assess the allele frequencies in genes associated with PA and/or physical capacity, and to see if there is any association between these polymorphisms and self-reported PA levels in a cohort of middle-aged Norwegians of Scandinavian descent (n = 831; mean age mean age (± SD) 55.5 ± 3.8 years). RESULTS The genotype distributions of the ACTN3 R577X, ACE I/D and MAOA uVNTR polymorphisms were similar to other populations of European descent. When comparing the genotype distribution between the low/medium level PA group (LMPA) and high level PA groups (HPA), a significant difference in ACTN3 577X allele distribution was found. The X allele frequency was 10% lower in the HPA level group (P = 0.006). There were no differences in the genotype distribution of the ACE I/D or MAOA uVNTR polymorphism. Education and previous participation in sports or outdoor activities was positively associated with the self-reported PA levels (P ≤ 0.001). CONCLUSIONS To the best of our knowledge, this is the first study to report association between ACTN3 R577X genotype and PA level in middle-aged Scandinavians. Nevertheless, the contribution of a single polymorphism to a complex trait, like PA level, is likely small. Socioeconomic variables, as education and previous participation in sports or outdoor activities, are positively associated with the self-reported PA levels.
Collapse
Affiliation(s)
- Sannija Goleva-Fjellet
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Gullbringvegen 36, 3800, Bø i, Telemark, Norway.
| | - Anne Mari Bjurholt
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Gullbringvegen 36, 3800, Bø i, Telemark, Norway
| | - Elin H Kure
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Gullbringvegen 36, 3800, Bø i, Telemark, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | | | - Øyvind Støren
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Gullbringvegen 36, 3800, Bø i, Telemark, Norway
| | - Mona Sæbø
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Gullbringvegen 36, 3800, Bø i, Telemark, Norway
| |
Collapse
|
39
|
Sierra APR, Lima GHO, da Silva ED, Maciel JFDS, Benetti MP, de Oliveira RA, Martins PFDO, Kiss MAP, Ghorayeb N, Newsholme P, Pesquero JB, Cury-Boaventura MF. Angiotensin-Converting Enzyme Related-Polymorphisms on Inflammation, Muscle and Myocardial Damage After a Marathon Race. Front Genet 2019; 10:984. [PMID: 31708962 PMCID: PMC6823274 DOI: 10.3389/fgene.2019.00984] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Muscle damage is one of the most important factors that affect muscle fatigue during endurance exercise. Recent evidence suggests that the renin–angiotensin system impacts on skeletal muscle wasting. The aim of this study was to determine association between the AGT Met235Thr, ACE I/D and BDKRB2 −9/+9 polymorphisms with inflammation, myocardial and muscle injury induced by endurance exercise. Eighty-one Brazilian male runners participated in this study and completed the International Marathon of Sao Paulo. Muscle and myocardial damage markers (alanine transaminase, ALT, aspartate transaminase, AST, lactic dehydrogenase, LDH, creatine kinase, CK, Troponin, pro BNP, myoglobin, and CK-MB) and inflammatory mediators (IL-6, IL-8, IL-10, IL12p70, IL1β, and TNF-α) were determined one day before, immediately after, one day after, and three days after the event. Muscle damage was also determined fifteen days after race and angiotensinogen (AGT) Met235Thr, angiotensin-converting enzyme (ACE) I/D, and Bradykinin B2 receptor (BDKRB2) −9/+9 polymorphisms were determined. Marathon race participation induced an increase in all muscle damage and inflammatory markers evaluated (p < 0.0001). The muscle damage markers, troponin and pro BNP, CK and LDH and inflammatory markers, IL-6, IL-8, IL-1β and IL-10 were also higher in ACE II genotype immediately after race, compared to DD genotype. The percentage of runners higher responders (>500U/I) to CK levels was higher for II genotypes (69%) compared to DD and ID genotypes (38% and 40%, respectively) immediately after. Troponin, pro BNP and IL-1β, IL-8 levels were also elevated in AGT MM genotype compared to TT genotype athletes after and/or one day after race. BDKRB2 −9/−9 had pronounced response to LDH, CK, CK-MB and ALT and AST activities, myoglobin, troponin, IL-6, IL-8 levels immediately, one day and/or three days after race. The percentage of runners higher responders (>500U/I) to CK levels was greater for −9−9 and −9+9 genotypes (46 and 48%, respectively) compared to +9+9 genotypes (31%) immediately after. ACE II, AGT MM, and BDKRB2 −9−9 genotypes may increase the susceptibility to inflammation, muscle injury after endurance exercise and could be used to predict the development of clinical conditions associated with muscle damage and myocardial injury.
Collapse
Affiliation(s)
- Ana Paula Rennó Sierra
- School of Physical Education and Sport, University of São Paulo, Sao Paulo, Brazil.,Sports Cardiology Department, Dante Pazzanese Institute of Cardiology, Sao Paulo, Brazil
| | | | - Elton Dias da Silva
- Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | - Nabil Ghorayeb
- Sports Cardiology Department, Dante Pazzanese Institute of Cardiology, Sao Paulo, Brazil
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - João Bosco Pesquero
- Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
40
|
The Role of Genetic Profile in Functional Performance Adaptations to Exercise Training or Physical Activity: A Systematic Review of the Literature. J Aging Phys Act 2019; 27:594-616. [PMID: 30676214 DOI: 10.1123/japa.2018-0155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: Variations in genotype may contribute to heterogeneity in functional adaptations to exercise. Methods: A systematic search of eight databases was conducted, and 9,696 citations were screened. Results: Eight citations from seven studies measuring 10 single-nucleotide polymorphisms and nine different functional performance test outcomes were included in the review. There was one observational study of physical activity and six experimental studies of aerobic or resistance training. The ACE (D) allele, ACTN3 (RR) genotype, UCP2 (GG) genotype, IL-6-174 (GG) genotype, TNF-α-308 (GG) genotype, and IL-10-1082 (GG) genotype all predicted significantly superior adaptations in at least one functional outcome in older men and women after prescribed exercise or in those with higher levels of physical activity. Conclusion: There is a small amount of evidence that older adults may have better functional outcomes after exercise/physical activity if they have specific alleles related to musculoskeletal function or inflammation. However, more robust trials are needed.
Collapse
|
41
|
Grishina EE, Zmijewski P, Semenova EA, Cięszczyk P, Humińska-Lisowska K, Michałowska-Sawczyn M, Maculewicz E, Crewther B, Orysiak J, Kostryukova ES, Kulemin NA, Borisov OV, Khabibova SA, Larin AK, Pavlenko AV, Lyubaeva EV, Popov DV, Lysenko EA, Vepkhvadze TF, Lednev EM, Bondareva EA, Erskine RM, Generozov EV, Ahmetov II. Three DNA Polymorphisms Previously Identified as Markers for Handgrip Strength Are Associated With Strength in Weightlifters and Muscle Fiber Hypertrophy. J Strength Cond Res 2019; 33:2602-2607. [PMID: 31361736 DOI: 10.1519/jsc.0000000000003304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Grishina, EE, Zmijewski, P, Semenova, EA, Cięszczyk, P, Humińska-Lisowska, K, Michałowska-Sawczyn, M, Maculewicz, E, Crewther, B, Orysiak, J, Kostryukova, ES, Kulemin, NA, Borisov, OV, Khabibova, SA, Larin, AK, Pavlenko, AV, Lyubaeva, EV, Popov, DV, Lysenko, EA, Vepkhvadze, TF, Lednev, EM, Bondareva, EA, Erskine, RM, Generozov, EV, and Ahmetov, II. Three DNA polymorphisms previously identified as markers for handgrip strength are associated with strength in weightlifters and muscle fiber hypertrophy. J Strength Cond Res 33(10): 2602-2607, 2019-Muscle strength is a highly heritable trait. So far, 196 single nucleotide polymorphisms (SNPs) associated with handgrip strength have been identified in 3 genome-wide association studies. The aim of our study was to validate the association of 35 SNPs with strength of elite Russian weightlifters and replicate the study in Polish weightlifters. Genotyping was performed using micro-array analysis or real-time polymerase chain reaction. We found that the rs12055409 G-allele near the MLN gene (p = 0.004), the rs4626333 G-allele near the ZNF608 gene (p = 0.0338), and the rs2273555 A-allele in the GBF1 gene (p = 0.0099) were associated with greater competition results (total lifts in snatch and clean and jerk adjusted for sex and weight) in 53 elite Russian weightlifters. In the replication study of 76 sub-elite Polish weightlifters, rs4626333 GG homozygotes demonstrated greater competition results (p = 0.0155) and relative muscle mass (p = 0.046), adjusted for sex, weight, and age, compared with carriers of the A-allele. In the following studies, we tested the hypotheses that these SNPs would be associated with skeletal muscle hypertrophy and handgrip strength. We found that the number of strength-associated alleles was positively associated with fast-twitch muscle fiber cross-sectional area in the independent cohort of 20 male power athletes (p = 0.021) and with handgrip strength in 87 physically active individuals (p = 0.015). In conclusion, by replicating previous findings in 4 independent studies, we demonstrate that the rs12055409 G-, rs4626333 G-, and rs2273555 A-alleles are associated with higher levels of strength, muscle mass, and muscle fiber size.
Collapse
Affiliation(s)
- Elina E Grishina
- Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia
| | - Piotr Zmijewski
- Faculty of Medicine, University of Information Technology and Management in Rzeszow, Poland.,Research and Development Center Legia Lab, Legia Warszawa, Poland
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Department of Biochemistry, Kazan Federal University, Kazan, Russia
| | - Paweł Cięszczyk
- Department of Theory and Practice of Sport, Academy of Physical Education in Katowice, Katowice, Poland
| | - Kinga Humińska-Lisowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | | | - Ewelina Maculewicz
- Independent Laboratory of Genetics and Molecular Biology, Kaczkowski Military Institute of Hygiene Epidemiology, Warsaw, Poland
| | - Blair Crewther
- Institute of Sport-National Research Institute, Warsaw, Poland
| | - Joanna Orysiak
- Institute of Sport-National Research Institute, Warsaw, Poland
| | - Elena S Kostryukova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Nickolay A Kulemin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Oleg V Borisov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - Sofya A Khabibova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Alexander V Pavlenko
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ekaterina V Lyubaeva
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Daniil V Popov
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Evgeny A Lysenko
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Tatiana F Vepkhvadze
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Egor M Lednev
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Elvira A Bondareva
- Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, Russia
| | - Robert M Erskine
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Institute of Sport, Exercise and Health, University College London, London, United Kingdom
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ildus I Ahmetov
- Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.,Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Sports Genetics Laboratory, St. Petersburg Research Institute of Physical Culture, St. Petersburg, Russia
| |
Collapse
|
42
|
Sierra APR, Oliveira RA, Silva ED, Lima GHO, Benetti MP, Kiss MAP, Sierra CA, Ghorayeb N, Seto JT, Pesquero JB, Cury-Boaventura MF. Association Between Hematological Parameters and Iron Metabolism Response After Marathon Race and ACTN3 Genotype. Front Physiol 2019; 10:697. [PMID: 31244673 PMCID: PMC6580990 DOI: 10.3389/fphys.2019.00697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/17/2019] [Indexed: 12/19/2022] Open
Abstract
α-Actinin-3 (ACTN3 R577X, rs.1815739) polymorphism is a genetic variation that shows the most consistent influence on metabolic pathway and muscle phenotype. XX genotype is associated with higher metabolic efficiency of skeletal muscle; however, the role of ACTN3 polymorphism in oxygen transport and utilization system has not yet been investigated. Therefore, the aim of this study was to determine the influence of ACTN3 polymorphisms on hematological and iron metabolism response induced by marathon race. Eighty-one Brazilian amateur male endurance runners participated in the study. Blood samples and urine were collected before; immediately after; and 1, 3, and 15 days after the marathon race. Urine, hematological parameters, iron metabolism, and ACTN3 genotyping analyses were performed. The marathon race induced a decrease in erythrocytes, Hb, and Ht, and an increase in hematuria, creatinine, myoglobin, red cell distribution width, mean corpuscular hemoglobin concentration, mean corpuscular hemoglobin, direct and indirect bilirubin and erythropoietin. Moreover, an elevation immediately or 1 day after the marathon race follows a reduction 3 or 15 days after the marathon race were observed on transferrin saturation and iron and transferrin levels. Hematological parameters and iron metabolism changes induced by marathon race were not observed in XX genotypes. Hematuria and decreased erythrocytes, Hb, Ht, and iron and transferrin levels were observed only in RR and/or RX genotypes but not in XX genotypes. The percentage of runners with hematuria, leukocyturia, iron deficiency, creatinine, myoglobin, and bilirubin imbalance was higher in RR compared to XX genotypes. ACTN3 polymorphism is associated with iron metabolism and hematological responses after endurance exercise. Despite these results being based on a small sample, they highlight a protective role of the XX genotype on hematological and renal changes induced by long-distance exercise. Therefore, these findings should be further replicated.
Collapse
Affiliation(s)
- Ana Paula Renno Sierra
- Department of Biodynamics of Human Movements, School of Physical Education and Sports, University of São Paulo, São Paulo, Brazil.,Sports Cardiology Department, Dante Pazzanese Institute of Cardiology, São Paulo, Brazil
| | - Rodrigo Assunção Oliveira
- Department of Interdisciplinary in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Elton Dias Silva
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Giscard Humberto Oliveira Lima
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil.,Department of Movement, Human and Health Sciences, Program of Human Movement and Sport Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Marino Pereira Benetti
- Department of Biodynamics of Human Movements, School of Physical Education and Sports, University of São Paulo, São Paulo, Brazil
| | - Maria Augusta Pedanti Kiss
- Department of Biodynamics of Human Movements, School of Physical Education and Sports, University of São Paulo, São Paulo, Brazil
| | - Carlos Anibal Sierra
- Sports Cardiology Department, Dante Pazzanese Institute of Cardiology, São Paulo, Brazil
| | - Nabil Ghorayeb
- Sports Cardiology Department, Dante Pazzanese Institute of Cardiology, São Paulo, Brazil
| | - Jane T Seto
- Neuromuscular Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - João Bosco Pesquero
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Maria Fernanda Cury-Boaventura
- Department of Interdisciplinary in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| |
Collapse
|
43
|
ACTN3 R577X Genotype and Exercise Phenotypes in Recreational Marathon Runners. Genes (Basel) 2019; 10:genes10060413. [PMID: 31146466 PMCID: PMC6627880 DOI: 10.3390/genes10060413] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Homozygosity for the X-allele in the ACTN3 R577X (rs1815739) polymorphism results in the complete absence of α-actinin-3 in sarcomeres of fast-type muscle fibers. In elite athletes, the ACTN3 XX genotype has been related to inferior performance in speed and power-oriented sports; however, its influence on exercise phenotypes in recreational athletes has received less attention. We sought to determine the influence of ACTN3 genotypes on common exercise phenotypes in recreational marathon runners. Methods: A total of 136 marathoners (116 men and 20 women) were subjected to laboratory testing that included measurements of body composition, isometric muscle force, muscle flexibility, ankle dorsiflexion, and the energy cost of running. ACTN3 genotyping was performed using TaqMan probes. Results: 37 runners (27.2%) had the RR genotype, 67 (49.3%) were RX and 32 (23.5%) were XX. There was a difference in body fat percentage between RR and XX genotype groups (15.7 ± 5.8 vs. 18.8 ± 5.5%; effect size, ES, = 0.5 ± 0.4, p = 0.024), whereas the distance obtained in the sit-and-reach-test was likely lower in the RX than in the XX group (15.3 ± 7.8 vs. 18.4 ± 9.9 cm; ES = 0.4 ± 0.4, p = 0.046). Maximal dorsiflexion during the weight-bearing lunge test was different in the RR and XX groups (54.8 ± 5.8 vs. 57.7 ± 5.1 degree; ES = 0.5 ± 0.5, p = 0.044). Maximal isometric force was higher in the RR than in the XX group (16.7 ± 4.7 vs. 14.7 ± 4.0 N/kg; ES = −0.5 ± 0.3, p = 0.038). There was no difference in the energy cost of running between genotypes (~4.8 J/kg/min for all three groups, ES ~0.2 ± 0.4). Conclusions: The ACTN3 genotype might influence several exercise phenotypes in recreational marathoners. Deficiency in α-actinin-3 might be accompanied by higher body fatness, lower muscle strength and higher muscle flexibility and range of motion. Although there is not yet a scientific rationale for the use of commercial genetic tests to predict sports performance, recreational marathon runners who have performed such types of testing and have the ACTN3 XX genotype might perhaps benefit from personalized strength training to improve their performance more than their counterparts with other ACTN3 genotypes.
Collapse
|
44
|
Degens H, Stasiulis A, Skurvydas A, Statkeviciene B, Venckunas T. Physiological comparison between non-athletes, endurance, power and team athletes. Eur J Appl Physiol 2019; 119:1377-1386. [DOI: 10.1007/s00421-019-04128-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/20/2019] [Indexed: 01/09/2023]
|
45
|
Pickering C, Kiely J, Suraci B, Collins D. The magnitude of Yo-Yo test improvements following an aerobic training intervention are associated with total genotype score. PLoS One 2018; 13:e0207597. [PMID: 30485313 PMCID: PMC6261586 DOI: 10.1371/journal.pone.0207597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/01/2018] [Indexed: 11/18/2022] Open
Abstract
Recent research has demonstrated that there is considerable inter-individual variation in the response to aerobic training, and that this variation is partially mediated by genetic factors. As such, we aimed to investigate if a genetic based algorithm successfully predicted the magnitude of improvements following eight-weeks of aerobic training in youth soccer players. A genetic test was utilised to examine five single nucleotide polymorphisms (VEGF rs2010963, ADRB2 rs1042713 and rs1042714, CRP rs1205 & PPARGC1A rs8192678), whose occurrence is believed to impact aerobic training adaptations. 42 male soccer players (17.0 ± 1y, 176 ± 6 cm, 69 ± 9 kg) were tested and stratified into three different Total Genotype Score groups; "low", "medium"and "high", based on the possession of favourable polymorphisms. Subjects underwent two Yo-Yo tests separated by eight-weeks of sports-specific aerobic training. Overall, there were no significant differences between the genotype groups in pre-training Yo-Yo performance, but evident between-group response differentials emerged in post-training Yo-Yo test performance. Subjects in the "high" group saw much larger improvements (58%) than those in the 'medium" (35%) and "low" (7%) groups. There were significant (p<0.05) differences between the groups in the magnitude of improvement, with athletes in the "high" and medium group having larger improvements than the "low" group (d = 2.59 "high" vs "low"; d = 1.32 "medium" vs "low"). In conclusion, the magnitude of improvements in aerobic fitness following a training intervention were associated with a genetic algorithm comprised of five single nucleotide polymorphisms. This information could lead to the development of more individualised aerobic training designs, targeting optimal fitness adaptations.
Collapse
Affiliation(s)
- C. Pickering
- Institute of Coaching and Performance, School of Sport & Wellbeing, University of Central Lancashire, Preston, United Kingdom
- Exercise and Nutritional Genomics Research Centre, DNAFit Ltd, London, United Kingdom
| | - J. Kiely
- Institute of Coaching and Performance, School of Sport & Wellbeing, University of Central Lancashire, Preston, United Kingdom
| | - B. Suraci
- Exercise and Nutritional Genomics Research Centre, DNAFit Ltd, London, United Kingdom
- Suraci Consultancy, Portsmouth, United Kingdom
| | - D. Collins
- Institute of Coaching and Performance, School of Sport & Wellbeing, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
46
|
Del Coso J, Hiam D, Houweling P, Pérez LM, Eynon N, Lucía A. More than a 'speed gene': ACTN3 R577X genotype, trainability, muscle damage, and the risk for injuries. Eur J Appl Physiol 2018; 119:49-60. [PMID: 30327870 DOI: 10.1007/s00421-018-4010-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
A common null polymorphism (rs1815739; R577X) in the gene that codes for α-actinin-3 (ACTN3) has been related to different aspects of exercise performance. Individuals who are homozygous for the X allele are unable to express the α-actinin-3 protein in the muscle as opposed to those with the RX or RR genotype. α-actinin-3 deficiency in the muscle does not result in any disease. However, the different ACTN3 genotypes can modify the functioning of skeletal muscle during exercise through structural, metabolic or signaling changes, as shown in both humans and in the mouse model. Specifically, the ACTN3 RR genotype might favor the ability to generate powerful and forceful muscle contractions. Leading to an overall advantage of the RR genotype for enhanced performance in some speed and power-oriented sports. In addition, RR genotype might also favor the ability to withstand exercise-induced muscle damage, while the beneficial influence of the XX genotype on aerobic exercise performance needs to be validated in human studies. More information is required to unveil the association of ACTN3 genotype with trainability and injury risk during acute or chronic exercise.
Collapse
Affiliation(s)
- Juan Del Coso
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain.
| | - Danielle Hiam
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | | | - Laura M Pérez
- Universidad Europea de Madrid (Faculty of Sport Sciences) and Research Institute i+12, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Murdoch Childrens Research Institute, Melbourne, Australia
| | - Alejandro Lucía
- Universidad Europea de Madrid (Faculty of Sport Sciences) and Research Institute i+12, Madrid, Spain
| |
Collapse
|
47
|
Moraes V, Trapé A, Ferezin L, Gonçalves T, Monteiro C, Bueno Junior C. Association of ACE ID and ACTN3 C>T genetic polymorphisms with response to a multicomponent training program in physical performance in women from 50 to 70 years. Sci Sports 2018. [DOI: 10.1016/j.scispo.2018.03.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
The Neuromuscular Determinants of Unilateral Jump Performance in Soccer Players Are Direction-Specific. Int J Sports Physiol Perform 2018; 13:604-611. [PMID: 29283696 DOI: 10.1123/ijspp.2017-0589] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To investigate differences in neuromuscular factors between elite and nonelite players and to establish which factors underpin direction-specific unilateral jump performance. METHODS Elite (n = 23; age, 18.1 [1.0] y; body mass index, 23.1 [1.8] kg·m-2) and nonelite (n = 20; age, 22.3 [2.7] y; body mass index, 23.8 [1.8] kg·m-2) soccer players performed 3 unilateral countermovement jumps (CMJs) on a force platform in the vertical, horizontal-forward, and medial directions. Knee extension isometric maximum voluntary contraction torque was assessed using isokinetic dynamometry. Vastus lateralis fascicle length, angle of pennation, quadriceps femoris muscle volume (Mvol), and physiological cross-sectional area (PCSA) were assessed using ultrasonography. Vastus lateralis activation was assessed using electromyography. RESULTS Elite soccer players presented greater knee extensor isometric maximum voluntary contraction torque (365.7 [66.6] vs 320.1 [62.6] N·m; P = .045), Mvol (2853 [508] vs 2429 [232] cm3; P = .001), and PCSA (227 [42] vs 193 [25] cm2; P = .003) than nonelite. In both cohorts, unilateral vertical and unilateral medial CMJ performance correlated with Mvol and PCSA (r ≥ .310, P ≤ .043). In elite soccer players, unilateral vertical and unilateral medial CMJ performance correlated with upward phase vastus lateralis activation and angle of pennation (r ≥ .478, P ≤ .028). Unilateral horizontal-forward CMJ peak vertical power did not correlate with any measure of muscle size or activation but correlated inversely with angle of pennation (r = -.413, P = .037). CONCLUSIONS While larger and stronger quadriceps differentiated elite from nonelite players, relationships between neuromuscular factors and unilateral jump performance were shown to be direction-specific. These findings support a notion that improving direction-specific muscular power in soccer requires improving a distinct neuromuscular profile.
Collapse
|
49
|
Ma T, Lu D, Zhu YS, Chu XF, Wang Y, Shi GP, Wang ZD, Yu L, Jiang XY, Wang XF. ACTN3 genotype and physical function and frailty in an elderly Chinese population: the Rugao Longevity and Ageing Study. Age Ageing 2018; 47:416-422. [PMID: 29447359 DOI: 10.1093/ageing/afy007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 12/23/2022] Open
Abstract
Objective To examine the associations of the actinin alpha 3 gene (ACTN3) R577X polymorphism with physical performance and frailty in an older Chinese population. Methods Data from 1,463 individuals (57.8% female) aged 70-87 years from the Rugao Longevity and Ageing Study were used. The associations between R577X and timed 5-m walk, grip strength, timed Up and Go test, and frailty index (FI) based on deficits of 23 laboratory tests (FI-Lab) were examined. Analysis of variance and linear regression models were used to evaluate the genetic effects of ACTN3 R577X on physical performance and FI-Lab. Results The XX and RX genotypes of the ACTN3 R557X polymorphism accounted for 17.1 and 46.9%, respectively. Multivariate regression analysis revealed that in men aged 70-79 years, the ACTN3 577X allele was significantly associated with physical performance (5-m walk time, regression coefficient (β) = 0.258, P = 0.006; grip strength, β = -1.062, P = 0.012; Up and Go test time β = 0.368, P = 0.019). In women aged 70-79 years, a significant association between the ACTN3 577X allele and the FI-Lab score was observed, with a regression coefficient of β = 0.019 (P = 0.003). These findings suggest an age- and gender-specific X-additive model of R577X for 5-m walk time, grip strength, Up and Go Test time, and FI-Lab score. Conclusion The ACTN3 577X allele is associated with an age- and sex-specific decrease in physical performance and an increase in frailty in an older population.
Collapse
Affiliation(s)
- Teng Ma
- Unit of epidemiology, State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Deyi Lu
- University of Illinois at Chicago; Chicago, IL 60601, USA
| | - Yin-Sheng Zhu
- Rugao People’s Hospital, Rugao 226500, Jiangsu, China
| | - Xue-Feng Chu
- Rugao People’s Hospital, Rugao 226500, Jiangsu, China
| | - Yong Wang
- Rugao People’s Hospital, Rugao 226500, Jiangsu, China
| | - Guo-Ping Shi
- Rugao People’s Hospital, Rugao 226500, Jiangsu, China
| | | | - Li Yu
- Jipu biological technology (Shanghai) Co., Ltd., Shanghai 200433, China
| | - Xiao-Yan Jiang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
- Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Xiao-Feng Wang
- Unit of epidemiology, State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
- National Clinical Research center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
50
|
Pickering C, Kiely J. ACTN3: More than Just a Gene for Speed. Front Physiol 2017; 8:1080. [PMID: 29326606 PMCID: PMC5741991 DOI: 10.3389/fphys.2017.01080] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/08/2017] [Indexed: 12/31/2022] Open
Abstract
Over the last couple of decades, research has focused on attempting to understand the genetic influence on sports performance. This has led to the identification of a number of candidate genes which may help differentiate between elite and non-elite athletes. One of the most promising genes in that regard is ACTN3, which has commonly been referred to as “a gene for speed”. Recent research has examined the influence of this gene on other performance phenotypes, including exercise adaptation, exercise recovery, and sporting injury risk. In this review, we identified 19 studies exploring these phenotypes. Whilst there was large variation in the results of these studies, as well as extremely heterogeneous cohorts, there is overall a tentative consensus that ACTN3 genotype can impact the phenotypes of interest. In particular, the R allele of a common polymorphism (R577X) is associated with enhanced improvements in strength, protection from eccentric training-induced muscle damage, and sports injury. This illustrates that ACTN3 is more than just a gene for speed, with potentially wide-ranging influence on muscle function, knowledge of which may aid in the future personalization of exercise training programmes.
Collapse
Affiliation(s)
- Craig Pickering
- School of Sport and Wellbeing, Institute of Coaching and Performance, University of Central Lancashire, Preston, United Kingdom.,Exercise and Nutritional Genomics Research Centre, DNAFit Ltd., London, United Kingdom
| | - John Kiely
- School of Sport and Wellbeing, Institute of Coaching and Performance, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|