1
|
Boccia G, Brustio PR, Salvaggio F, Grossio L, Calcagno E, Pintore A, Rainoldi A, Samozino P. The Rate of Torque Development as a Determinant of the Torque-Velocity Relationship. Scand J Med Sci Sports 2025; 35:e70035. [PMID: 40087151 PMCID: PMC11909002 DOI: 10.1111/sms.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/10/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
We investigate the contribution of isometric rate of torque development (RTD) and maximal voluntary torque (MVT) to the dynamic force production capacities of knee extensors obtained from the torque-velocity (TV) relationship, that is, the theoretical maximal velocity (V0), torque (T0), and maximal power (Pmax). Single-leg knee extensors were tested in 64 young adults (31 females). RTD and root mean square (RMS) of electromyographic signals from the knee extensors were recorded during isometric and incremental load dynamic (nonisokinetic) contractions. In the dynamic test, torque and velocity were continuously measured and averaged over 80°-140° knee angles to determine individual TV relationships. TV relationships were well fitted by hyperbolic regression (r2 from 0.983 to 0.993). Stepwise linear regressions showed that the main determinant of V0 was normalized RTD50 (R2 = 0.145, p = 0.004); the main determinant of T0 was MVT (R2 = 0.760, p < 0.001); and the main determinant of Pmax was RTD150 (R2 = 0.612, p < 0.001). V0 (when obtained from averaged values over knee extension) is partially explained by rapid torque capacity (i.e., "explosive strength"). Therefore, the capacity to produce torque at high velocity partly depends on the capacity to rise quickly the torque in the early phase of the contraction, suggesting that some underlying determinants of RFD would also affect V0.
Collapse
Affiliation(s)
- Gennaro Boccia
- Department of Clinical and Biological SciencesUniversity of TurinTorinoItaly
- Neuromuscular Function Research Group, School of Exercise and Sport ScienceUniversity of TurinTorinoItaly
| | - Paolo Riccardo Brustio
- Department of Clinical and Biological SciencesUniversity of TurinTorinoItaly
- Neuromuscular Function Research Group, School of Exercise and Sport ScienceUniversity of TurinTorinoItaly
| | - Francesco Salvaggio
- Neuromuscular Function Research Group, School of Exercise and Sport ScienceUniversity of TurinTorinoItaly
- Department of Neuroscience, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Ludovico Grossio
- Neuromuscular Function Research Group, School of Exercise and Sport ScienceUniversity of TurinTorinoItaly
- Department of Neuroscience, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Elena Calcagno
- Neuromuscular Function Research Group, School of Exercise and Sport ScienceUniversity of TurinTorinoItaly
| | - Arianna Pintore
- Neuromuscular Function Research Group, School of Exercise and Sport ScienceUniversity of TurinTorinoItaly
| | - Alberto Rainoldi
- Neuromuscular Function Research Group, School of Exercise and Sport ScienceUniversity of TurinTorinoItaly
- Department of Medical SciencesUniversity of TurinTorinoItaly
| | - Pierre Samozino
- Univ Savoie Mont BlancInteruniversity Laboratory of Human Movement SciencesChambéryEAFrance
| |
Collapse
|
2
|
D'Emanuele S, Boccia G, Angius L, Hayman O, Goodall S, Schena F, Tarperi C. Reduced rate of force development under fatigued conditions is associated to the decline in force complexity in adult males. Eur J Appl Physiol 2024; 124:3583-3591. [PMID: 39046485 PMCID: PMC11568984 DOI: 10.1007/s00421-024-05561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE This study aimed to verify whether the slowing of muscle contraction quickness, typically observed in states of fatigue, may worsen force control by decreasing the rate with which force fluctuations are modulated. Therefore, we investigated the relationship between rate of force development (RFD), and force fluctuations' magnitude (Coefficient of variation, CoV) and complexity (Approximate Entropy, ApEn; Detrended fluctuation analysis, DFAα). METHODS Fourteen participants performed intermittent ballistic isometric contractions of the plantar dorsiflexors at 70% of maximal voluntary force until task failure (under 60% twice). RESULTS Indices of RFD (RFDpeak, RFD50, RFD100, and RFD150) decreased over time by approximately 46, 32, 44, and 39%, respectively (p all ≤ 0.007). DFAα increased by 10% (p < 0.001), and CoV increased by 15% (p < 0.001), indicating decreased force complexity along with increased force fluctuations, respectively. ApEn decreased by just over a quarter (28%, p < 0.001). The linear hierarchical models showed negative associations between RFDpeak and DFAα (β = - 3.6 10-4, p < 0.001), CoV (β = - 1.8 10-3, p < 0.001), while ApEn showed a positive association (β = 8.2 × 10-5, p < 0.001). CONCLUSION The results suggest that exercise-induced reductions in contraction speed, lead to smoother force complexity and diminished force control due to slower adjustments around the target force. The fatigued state resulted in worsened force producing capacity and overall force control.
Collapse
Affiliation(s)
- Samuel D'Emanuele
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gennaro Boccia
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
| | - Luca Angius
- Department of Sport, Exercise, and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - Oliver Hayman
- Department of Sport, Exercise, and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - Stuart Goodall
- Department of Sport, Exercise, and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - Federico Schena
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Cantor Tarperi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Jastrzębska AD. Effect of acute fatigue on force generation accuracy and repeatability in youth athletes. Sci Rep 2024; 14:29558. [PMID: 39609504 PMCID: PMC11605004 DOI: 10.1038/s41598-024-80822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
The study aimed to evaluate the acute effect of the incremental running test on the accuracy and repeatability of submaximal force generation in adolescent athletes (biathletes and runners) with different training regimes. The isometric force generation was assessed in biathletes and runners by examining left and right elbow extension (LEE; REE); flexion (LEF; REF); left and right knee extensions (LKE; RKE) before and after the test. The mean force of 10 sub-maximal targeted force pulses (Fmean) and force variability parameters: standard deviation and coefficient variation were used for accuracy and repeatability estimation. Biathletes generated forces more accurate and exhibit better repeatability of produced forces than runners. Mean force measured in fatigue conditions, for both groups, did not vary significantly from rest measurements. Before testing biathletes exhibited significantly lower REE and LEE, and after testing lower REF and LEF variability than runners. After testing there was a significant drop of variability in elbows flexion but not extension and RKE in biathletes. Insignificant downward trend of variability parameters were found in runners. The presented findings corroborate sport-specific force generation ability alteration in response to exhaustive effort. Tracking force generation over time may be useful in the monitoring of training loads and specific training adaptations.
Collapse
Affiliation(s)
- Agnieszka D Jastrzębska
- Department of Physiology and Biochemistry, Wroclaw University of Health and Sport Sciences, Wroclaw, 51-612, Poland.
| |
Collapse
|
4
|
Ruggiero L, Gruber M. Neuromuscular mechanisms for the fast decline in rate of force development with muscle disuse - a narrative review. J Physiol 2024. [PMID: 39467095 DOI: 10.1113/jp285667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The removal of skeletal muscle tension (unloading or disuse) is followed by many changes in the neuromuscular system, including muscle atrophy and loss of isometric maximal strength (measured by maximal force, Fmax). Explosive strength, i.e. the ability to develop the highest force in the shortest possible time, to maximise rate of force development (RFD), is a fundamental neuromuscular capability, often more functionally relevant than maximal muscle strength. In the present review, we discuss data from studies that looked at the effect of muscle unloading on isometric maximal versus explosive strength. We present evidence that muscle unloading yields a greater decline in explosive relative to maximal strength. The longer the unloading duration, the smaller the difference between the decline in the two measures. Potential mechanisms that may explain the greater decline in measures of RFD relative to Fmax after unloading are higher recruitment thresholds and lower firing rates of motor units, slower twitch kinetics, impaired excitation-contraction coupling, and decreased tendon stiffness. Using a Hill-type force model, we showed that this ensemble of adaptations minimises the loss of force production at submaximal contraction intensities, at the expense of a disproportionately lower RFD. With regard to the high functional relevance of RFD on one hand, and the boosted detrimental effects of inactivity on RFD on the other hand, it seems crucial to implement specific exercises targeting explosive strength in populations that experience muscle disuse over a longer time.
Collapse
Affiliation(s)
- Luca Ruggiero
- Human Performance Research Centre, Department of Sports Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sports Science, University of Konstanz, Konstanz, Germany
| |
Collapse
|
5
|
Woods S, McKiel A, Herda T, Klentrou P, Holmes M, Gabriel D, Falk B. Motor unit firing rates during slow and fast contractions in boys and men. Eur J Appl Physiol 2024; 124:2965-2979. [PMID: 38762834 DOI: 10.1007/s00421-024-05500-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Motor unit (MU) activation during maximal contractions is lower in children compared with adults. Among adults, discrete MU activation differs, depending on the rate of contraction. We investigated the effect of contraction rate on discrete MU activation in boys and men. METHODS Following a habituation session, 14 boys and 20 men completed two experimental sessions for knee extension and wrist flexion, in random order. Maximal voluntary isometric torque (MVIC) was determined before completing trapezoidal isometric contractions (70%MVIC) at low (10%MVIC/s) and high (35%MVIC/s) contraction rates. Surface electromyography was captured from the vastus lateralis (VL) and flexor carpi radialis (FCR) and decomposed into individual MU action potential (MUAP) trains. RESULTS In both groups and muscles, the initial MU firing rate (MUFR) was greater (p < 0.05) at high compared with low contraction rates. The increase in initial MUFR at the fast contraction in the VL was greater in men than boys (p < 0.05). Mean MUFR was significantly lower during fast contractions only in the FCR (p < 0.05). In both groups and muscles, the rate of decay of MUFR with increasing MUAP amplitude was less steep (p < 0.05) during fast compared with slow contractions. CONCLUSION In both groups and muscles, initial MUFRs, as well as MUFRs of large MUs were higher during fast compared with slow contractions. However, in the VL, the increase in initial MUFR was greater in men compared with boys. This suggests that in large muscles, men may rely more on increasing MUFR to generate torque at faster rates compared with boys.
Collapse
Affiliation(s)
- Stacey Woods
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Andrew McKiel
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Trent Herda
- School of Education and Human Sciences, University of Kansas, Lawrence, KS, USA
| | - Panagiota Klentrou
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Michael Holmes
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - David Gabriel
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Bareket Falk
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
6
|
Gam S, Petz AK, Bjerre LR, Bøgild J, Nielsen AB, Sørensen RN, Kolind MI, Gram B, Hansen S, Aagaard P. Intersession reliability of lower limb muscle strength assessments in adults with obesity eligible for bariatric surgery. Clin Physiol Funct Imaging 2024; 44:303-312. [PMID: 38462744 DOI: 10.1111/cpf.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/22/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The aim of this study was to examine the test-retest reliability in lower limb muscle strength and rate of torque development (RTD) using isokinetic dynamometry in adults with obesity, with a body mass index (BMI) ≥ 35 kg/m2. METHOD Thirty-two adults with a BMI of 43.8 ± 6.6 kg/m2 eligible for bariatric surgery were enroled in the study. Isokinetic and isometric knee extensor (KE) and flexor (KF) strength were assessed in an isokinetic dynamometer (Biodex 4) during three test sessions separated by 3-7 days. RESULTS There were no statistical differences in peak KE and KF torque for any test modalities between sessions. Intraclass correlation (ICC) was 0.91-0.94 between sessions 1 and 2 and 0.94-0.97 between sessions 2 and 3. Standard error of measurement (SEM%) and coefficient of variation (CV) ranged across test sessions from 4.3% to 7.3%. KE RTD showed high test-retest reliability following familiarization, with ICC, CV and SEM% values ranging from 0.84 to 0.90, 13.3%-20.3% and 14.6%-24.9%, respectively. CONCLUSION Maximal lower limb muscle strength measured by isokinetic dynamometry showed excellent test-retest reliability manifested by small measurement errors and low CV. Reliability was slightly improved by including a familiarization session. KE RTD but not KF RTD demonstrated high test-retest reliability following familiarization. The present data indicate that isokinetic dynamometry can be used to detect even small changes in lower limb muscle strength in adults with obesity.
Collapse
Affiliation(s)
- Søren Gam
- Department of Diabetes and Endocrinology, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense, Denmark
| | - Anders K Petz
- Department of Diabetes and Endocrinology, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Lukas R Bjerre
- Department of Diabetes and Endocrinology, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Jeppe Bøgild
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Anders B Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Rikke N Sørensen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Mikkel I Kolind
- Department of Diabetes and Endocrinology, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense, Denmark
| | - Bibi Gram
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Research unit of Endocrinology: Bariatrics and Diabetes, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Stinus Hansen
- Department of Diabetes and Endocrinology, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Boccia G, Brustio PR, Beratto L, Peluso I, Ferrara R, Munzi D, Toti E, Raguzzini A, Sciarra T, Rainoldi A. Upper-Limb Muscle Fatigability in Para-Athletes Quantified as the Rate of Force Development in Rapid Contractions of Submaximal Amplitude. J Funct Morphol Kinesiol 2024; 9:108. [PMID: 38921644 PMCID: PMC11204935 DOI: 10.3390/jfmk9020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
This study aimed to compare neuromuscular fatigability of the elbow flexors and extensors between athletes with amputation (AMP) and athletes with spinal cord injury (SCI) for maximum voluntary force (MVF) and rate of force development (RFD). We recruited 20 para-athletes among those participating at two training camps (2022) for Italian Paralympic veterans. Ten athletes with SCI (two with tetraplegia and eight with paraplegia) were compared to 10 athletes with amputation (above the knee, N = 3; below the knee, N = 6; forearm, N = 1). We quantified MVF, RFD at 50, 100, and 150 ms, and maximal RFD (RFDpeak) of elbow flexors and extensors before and after an incremental arm cranking to voluntary fatigue. We also measured the RFD scaling factor (RFD-SF), which is the linear relationship between peak force and peak RFD quantified in a series of ballistic contractions of submaximal amplitude. SCI showed lower levels of MVF and RFD in both muscle groups (all p values ≤ 0.045). Despite this, the decrease in MVF (Cohen's d = 0.425, p < 0.001) and RFDpeak (d = 0.424, p = 0.003) after the incremental test did not show any difference between pathological conditions. Overall, RFD at 50 ms showed the greatest decrease (d = 0.741, p < 0.001), RFD at 100 ms showed a small decrease (d = 0.382, p = 0.020), and RFD at 150 ms did not decrease (p = 0.272). The RFD-SF decreased more in SCI than AMP (p < 0.0001). Muscle fatigability impacted not only maximal force expressions but also the quickness of ballistic contractions of submaximal amplitude, particularly in SCI. This may affect various sports and daily living activities of wheelchair users. Early RFD (i.e., ≤50 ms) was notably affected by muscle fatigability.
Collapse
Affiliation(s)
- Gennaro Boccia
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy;
- Neuromuscular Function Research Group, School of Exercise and Sport Science, University of Turin, 10126 Turin, Italy;
| | - Paolo Riccardo Brustio
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy;
- Neuromuscular Function Research Group, School of Exercise and Sport Science, University of Turin, 10126 Turin, Italy;
| | - Luca Beratto
- Neuromuscular Function Research Group, School of Exercise and Sport Science, University of Turin, 10126 Turin, Italy;
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
| | - Ilaria Peluso
- Research Centre for Food and Nutrition (CREA-AN), 00178 Rome, Italy; (I.P.); (E.T.); (A.R.)
| | - Roberto Ferrara
- Rehabilitation Medicine Department, Italian Army Medical Hospital, 00143 Rome, Italy; (R.F.); (T.S.)
| | - Diego Munzi
- Joint Veteran Defence Center, 00184 Rome, Italy;
| | - Elisabetta Toti
- Research Centre for Food and Nutrition (CREA-AN), 00178 Rome, Italy; (I.P.); (E.T.); (A.R.)
| | - Anna Raguzzini
- Research Centre for Food and Nutrition (CREA-AN), 00178 Rome, Italy; (I.P.); (E.T.); (A.R.)
| | - Tommaso Sciarra
- Rehabilitation Medicine Department, Italian Army Medical Hospital, 00143 Rome, Italy; (R.F.); (T.S.)
- Joint Veteran Defence Center, 00184 Rome, Italy;
| | - Alberto Rainoldi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
- Research Centre for Food and Nutrition (CREA-AN), 00178 Rome, Italy; (I.P.); (E.T.); (A.R.)
| |
Collapse
|
8
|
Boccia G, D'Emanuele S, Brustio PR, Rainoldi A, Schena F, Tarperi C. Decreased neural drive affects the early rate of force development after repeated burst-like isometric contractions. Scand J Med Sci Sports 2024; 34:e14528. [PMID: 37899668 DOI: 10.1111/sms.14528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023]
Abstract
The neural drive to the muscle is the primary determinant of the rate of force development (RFD) in the first 50 ms of a rapid contraction. It is still unproven if repetitive rapid contractions specifically impair the net neural drive to the muscles. To isolate the fatiguing effect of contraction rapidity, 17 male adult volunteers performed 100 burst-like (i.e., brief force pulses) isometric contractions of the knee extensors. The response to electrically-evoked single and octet femoral nerve stimulation was measured with high-density surface electromyography (HD-sEMG) from the vastus lateralis and medialis muscles. Root mean square (RMS) of each channel of HD-sEMG was normalized to the corresponding M-wave peak-to-peak amplitude, while muscle fiber conduction velocity (MFCV) was normalized to M-wave conduction velocity to compensate for changes in sarcolemma properties. Voluntary RFD 0-50 ms decreased (d = -0.56, p < 0.001) while time to peak force (d = 0.90, p < 0.001) and time to RFDpeak increased (d = 0.56, p = 0.034). Relative RMS (d = -1.10, p = 0.006) and MFCV (d = -0.53, p = 0.007) also decreased in the first 50 ms of voluntary contractions. Evoked octet RFD 0-50 ms (d = 0.60, p = 0.020), M-wave amplitude (d = 0.77, p = 0.009) and conduction velocity (d = 1.75, p < 0.001) all increased. Neural efficacy, i.e., voluntary/octet force ratio, largely decreased (d = -1.50, p < 0.001). We isolated the fatiguing impact of contraction rapidity and found that the decrement in RFD, particularly when calculated in the first 50 ms of muscle contraction, can mainly be explained by a decrease in the net neural drive.
Collapse
Affiliation(s)
- Gennaro Boccia
- Neuromuscular Function research group, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Samuel D'Emanuele
- School of Sport and Exercise Sciences, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paolo Riccardo Brustio
- Neuromuscular Function research group, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alberto Rainoldi
- Neuromuscular Function research group, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Federico Schena
- School of Sport and Exercise Sciences, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Cantor Tarperi
- School of Sport and Exercise Sciences, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|