1
|
Robert E, Goonewardene K, Lamboo L, Perez O, Goolia M, Lewis C, Erdelyan CNG, Lung O, Handel K, Moffat E, Embury-Hyatt C, Amaya NN, Parra CPC, Rueda DCG, Monroy MAR, Clavijo A, Ambagala A. Molecular and Pathological Characterization of Classical Swine Fever Virus Genotype 2 Strains Responsible for the 2013-2018 Outbreak in Colombia. Viruses 2023; 15:2308. [PMID: 38140549 PMCID: PMC10747092 DOI: 10.3390/v15122308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Classical swine fever (CSF) is a highly contagious transboundary viral disease of domestic and wild pigs. Despite mass vaccination and continuous eradication programs, CSF remains endemic in Asia, some countries in Europe, the Caribbean and South America. Since June 2013, Northern Colombia has reported 137 CSF outbreaks, mostly in backyard production systems with low vaccination coverage. The purpose of this study was to characterize the virus responsible for the outbreak. Phylogenetic analysis based on the full-length E2 sequence shows that the virus is closely related to CSF virus (CSFV) genotype 2.6 strains circulating in Southeast Asia. The pathotyping experiment suggests that the virus responsible is a moderately virulent strain. The 190 nucleotide stretch of the E2 hypervariable region of these isolates also shows high similarity to the CSFV isolates from Colombia in 2005 and 2006, suggesting a common origin for the CSF outbreaks caused by genotype 2.6 strains. The emergence of genotype 2.6 in Colombia suggests a potential transboundary spread of CSFV from Asia to the Americas, complicating the ongoing CSF eradication efforts in the Americas, and emphasizes the need for continuous surveillance in the region.
Collapse
Affiliation(s)
- Erin Robert
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (E.R.); (K.G.); (L.L.); (O.P.); (M.G.); (C.L.); (C.N.G.E.); (O.L.); (K.H.); (E.M.); (C.E.-H.); (A.C.)
| | - Kalhari Goonewardene
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (E.R.); (K.G.); (L.L.); (O.P.); (M.G.); (C.L.); (C.N.G.E.); (O.L.); (K.H.); (E.M.); (C.E.-H.); (A.C.)
| | - Lindsey Lamboo
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (E.R.); (K.G.); (L.L.); (O.P.); (M.G.); (C.L.); (C.N.G.E.); (O.L.); (K.H.); (E.M.); (C.E.-H.); (A.C.)
| | - Orlando Perez
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (E.R.); (K.G.); (L.L.); (O.P.); (M.G.); (C.L.); (C.N.G.E.); (O.L.); (K.H.); (E.M.); (C.E.-H.); (A.C.)
| | - Melissa Goolia
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (E.R.); (K.G.); (L.L.); (O.P.); (M.G.); (C.L.); (C.N.G.E.); (O.L.); (K.H.); (E.M.); (C.E.-H.); (A.C.)
| | - Charles Lewis
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (E.R.); (K.G.); (L.L.); (O.P.); (M.G.); (C.L.); (C.N.G.E.); (O.L.); (K.H.); (E.M.); (C.E.-H.); (A.C.)
| | - Cassidy N. G. Erdelyan
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (E.R.); (K.G.); (L.L.); (O.P.); (M.G.); (C.L.); (C.N.G.E.); (O.L.); (K.H.); (E.M.); (C.E.-H.); (A.C.)
| | - Oliver Lung
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (E.R.); (K.G.); (L.L.); (O.P.); (M.G.); (C.L.); (C.N.G.E.); (O.L.); (K.H.); (E.M.); (C.E.-H.); (A.C.)
| | - Katherine Handel
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (E.R.); (K.G.); (L.L.); (O.P.); (M.G.); (C.L.); (C.N.G.E.); (O.L.); (K.H.); (E.M.); (C.E.-H.); (A.C.)
| | - Estella Moffat
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (E.R.); (K.G.); (L.L.); (O.P.); (M.G.); (C.L.); (C.N.G.E.); (O.L.); (K.H.); (E.M.); (C.E.-H.); (A.C.)
| | - Carissa Embury-Hyatt
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (E.R.); (K.G.); (L.L.); (O.P.); (M.G.); (C.L.); (C.N.G.E.); (O.L.); (K.H.); (E.M.); (C.E.-H.); (A.C.)
| | - Nancy Naranjo Amaya
- National Veterinary Laboratory, Instituto Colombiano Agropecurio, Bogota 110911, DC, Colombia; (N.N.A.); (C.P.C.P.); (D.C.G.R.); (M.A.R.M.)
| | - Claudia Patricia Calderón Parra
- National Veterinary Laboratory, Instituto Colombiano Agropecurio, Bogota 110911, DC, Colombia; (N.N.A.); (C.P.C.P.); (D.C.G.R.); (M.A.R.M.)
| | - Diana Cristina Gómez Rueda
- National Veterinary Laboratory, Instituto Colombiano Agropecurio, Bogota 110911, DC, Colombia; (N.N.A.); (C.P.C.P.); (D.C.G.R.); (M.A.R.M.)
| | - Maria Antonia Rincón Monroy
- National Veterinary Laboratory, Instituto Colombiano Agropecurio, Bogota 110911, DC, Colombia; (N.N.A.); (C.P.C.P.); (D.C.G.R.); (M.A.R.M.)
| | - Alfonso Clavijo
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (E.R.); (K.G.); (L.L.); (O.P.); (M.G.); (C.L.); (C.N.G.E.); (O.L.); (K.H.); (E.M.); (C.E.-H.); (A.C.)
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (E.R.); (K.G.); (L.L.); (O.P.); (M.G.); (C.L.); (C.N.G.E.); (O.L.); (K.H.); (E.M.); (C.E.-H.); (A.C.)
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
2
|
Park GN, Shin J, Choe S, Kim KS, Kim JJ, Lim SI, An BH, Hyun BH, An DJ. Safety and Immunogenicity of Chimeric Pestivirus KD26_E2LOM in Piglets and Calves. Vaccines (Basel) 2023; 11:1622. [PMID: 37897024 PMCID: PMC10610696 DOI: 10.3390/vaccines11101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
A chimeric pestivirus (KD26_E2LOM) was prepared by inserting the E2 gene of the classical swine fever virus (CSFV) LOM strain into the backbone of the bovine viral diarrhea virus (BVDV) KD26 strain. KD26_E2LOM was obtained by transfecting the cDNA pACKD26_E2LOM into PK-15 cells. KD26_E2LOM chimeric pestivirus proliferated to titers of 106.5 TCID50/mL and 108.0 TCID50/mL at 96 h post-inoculation into PK-15 cells or MDBK cells, respectively. It also reacted with antibodies specific for CSFV E2 and BVDV Erns, but not with an anti-BVDV E2 antibody. Piglets (55-60 days old) inoculated with a high dose (107.0 TCID50/mL) of KD26_E2LOM produced high levels of CSFV E2 antibodies. In addition, no co-habiting pigs were infected with KD26_E2LOM; however, some inoculated pigs excreted the virus, and the virus was detected in some organs. When pregnant sows were inoculated during the first trimester (55-60 days) with a high dose (107.0 TCID50/mL) of KD26_E2LOM, anti-CSFV E2 antibodies were produced at high levels; chimeric pestivirus was detected in one fetus and in the ileum of one sow. When 5-day-old calves that did not consume colostrum received a high dose (107.0 TCID50/mL) of KD26_E2LOM, one calf secreted the virus in both feces and nasal fluid on Day 2. A high dose of KD26_E2LOM does not induce specific clinical signs in most animals, does not spread from animal to animal, and generates CSFV E2 antibodies with DVIA functions. Therefore, chimeric pestivirus KD26_E2LOM is a potential CSFV live marker vaccine.
Collapse
Affiliation(s)
- Gyu-Nam Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Jihye Shin
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Ki-Sun Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Jae-Jo Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Seong-In Lim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Byung-Hyun An
- College of Veterinary Medicine, Seoul University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea;
| | - Bang-Hun Hyun
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| |
Collapse
|
3
|
Matsuyama R, Yamamoto T, Hayama Y, Omori R. Estimation of the Lethality Rate, Recovery Rate, and Case Fatality Ratio of Classical Swine Fever in Japanese Wild Boar: An Analysis of the Epidemics From September 2018 to March 2019. Front Vet Sci 2021; 8:772995. [PMID: 34977211 PMCID: PMC8714742 DOI: 10.3389/fvets.2021.772995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the morbidity and lethality of diseases is necessary to evaluate the effectiveness of countermeasure against the epidemics (e.g., vaccination). To estimate them, detailed data on host population dynamics are required; however, estimating the population size for wildlife is often difficult. We aimed to elucidate the morbidity and lethality of classical swine fever (CSF) currently highly prevalent in the wild boar population in Japan. To this end, we estimated lethality rate, recovery rate, and case fatality ratio (CFR) of CSF without detailed data on the population estimates of wild boar. A mathematical model was constructed to describe the CSF dynamics and population dynamics of wild boar. We fitted the model to the (i) results of the reverse transcription polymerase chain reaction (RT-PCR) test for the CSFV gene and the (ii) results of the enzyme-linked immunosorbent assay (ELISA) test for the antibody against CSFV in sampled wild boar. In the 280 wild boar sampled from September 2018 to March 2019 in the major CSF-affected area in Japan, the lethality rate and recovery rate of CSF per week were estimated as 0.165 (95% confidence interval: 0.081–0.250) and 0.004 (0–0.009), respectively. While the estimate of lethality rate of CSF was similar with the estimates in previous studies, the recovery rate was lower than those reported previously. CFR was estimated as 0.959 (0.904–0.981) using our estimate of recovery rate. This study is the first to estimate lethality rate of CSF from the dynamics of CSF epidemics in the wild boar population. Since the value of CFR is sensitive to the value of recovery rate, the accuracy in the estimate of recovery rate is a key for the accurate estimation of CFR. A long-term transmission experiment of moderately virulent strains may lead to more accurate estimation of the recovery rate and CFR of CSF.
Collapse
Affiliation(s)
- Ryota Matsuyama
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takehisa Yamamoto
- Epidemiology Research Unit, Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Yoko Hayama
- Epidemiology Research Unit, Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Ryosuke Omori
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- *Correspondence: Ryosuke Omori
| |
Collapse
|
4
|
Investigation of congenital tremor associated with Classical swine fever virus genotype 2.2 in an organized pig farm in north-eastern India. Virusdisease 2021; 32:173-182. [PMID: 33748346 PMCID: PMC7965332 DOI: 10.1007/s13337-021-00678-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 12/04/2022] Open
Abstract
The present study describes an outbreak of Classical swine fever (CSF) in an organized pig farm followed by an episode of CSF virus (CSFV) associated congenital tremors in piglets. The outbreak was recorded in a newly procured herd of Hampshire pigs housed adjacent to the existing pigs of the farm. The recorded CSF outbreak caused a mortality of 100% in the newly procured and 54.28% in the existing herd. As the disease subsides, the clinically recovered boars were served naturally with Tamworth gilts. Though, the sows farrowed on usual gestation period, litters born to each sow showed congenital tremors and eventually died within 24 h of birth. Necropsy analysis of affected piglets was indicative of CSFV infection and was further confirmed using RT-PCR signifying a transplacental infection. The CSFV strains from the initial outbreak and post outbreak episode of congenital tremors were successfully isolated in PK-15 cells and detected in indirect FAT and RT-PCR. Phylogenetic analysis based on E2 gene and 5′NTR of CSFV grouped the isolates within the genotype 2.2 and revealed close resemblance with previously reported Indian isolates of CSFV genotype 2.2 origin. To the best of our knowledge, this is the first report of CSFV induced congenital form reported from India under natural conditions.
Collapse
|
5
|
Bazarragchaa E, Isoda N, Kim T, Tetsuo M, Ito S, Matsuno K, Sakoda Y. Efficacy of Oral Vaccine against Classical Swine Fever in Wild Boar and Estimation of the Disease Dynamics in the Quantitative Approach. Viruses 2021; 13:v13020319. [PMID: 33672749 PMCID: PMC7924559 DOI: 10.3390/v13020319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
Classical swine fever virus (CSFV) in the wild boar population has been spreading in Japan, alongside outbreaks on pigs, since classical swine fever (CSF) reemerged in September 2018. The vaccination using oral bait vaccine was initially implemented in Gifu prefecture in March 2019. In the present study, antibodies against CSFV in wild boar were assessed in 1443 captured and dead wild boars in Gifu prefecture. After the implementation of oral vaccination, the increase of the proportion of seropositive animals and their titer in wild boars were confirmed. Quantitative analysis of antigen and antibodies against CSFV in wild boar implies potential disease diversity in the wild boar population. Animals with status in high virus replication (Ct < 30) and non- or low-immune response were confirmed and were sustained at a certain level after initial oral vaccination. Through continuous vaccination periods, the increase of seroprevalence among wild boar and the decrease of CSFV-positive animals were observed. The epidemiological analysis based on the quantitative virological outcomes could provide more information on the efficacy of oral vaccination and dynamics of CSF in the wild boar population, which will help to improve the implementation of control measures for CSF in countries such as Japan and neighboring countries.
Collapse
Affiliation(s)
- Enkhbold Bazarragchaa
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo 060-0818, Hokkaido, Japan; (E.B.); (T.K.); (M.T.)
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo 060-0818, Hokkaido, Japan; (E.B.); (T.K.); (M.T.)
- Unit of Risk Analysis and Management, Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-Ku, Sapporo 001-0020, Hokkaido, Japan; (S.I.); (K.M.)
- Correspondence: (N.I.); (Y.S.); Tel.: +81-11-706-5208 (N.I.); +81-11-706-5207 (Y.S.)
| | - Taksoo Kim
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo 060-0818, Hokkaido, Japan; (E.B.); (T.K.); (M.T.)
| | - Madoka Tetsuo
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo 060-0818, Hokkaido, Japan; (E.B.); (T.K.); (M.T.)
| | - Satoshi Ito
- Unit of Risk Analysis and Management, Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-Ku, Sapporo 001-0020, Hokkaido, Japan; (S.I.); (K.M.)
| | - Keita Matsuno
- Unit of Risk Analysis and Management, Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-Ku, Sapporo 001-0020, Hokkaido, Japan; (S.I.); (K.M.)
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-Ku, Sapporo 001-0020, Hokkaido, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo 060-0818, Hokkaido, Japan; (E.B.); (T.K.); (M.T.)
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-Ku, Sapporo 001-0020, Hokkaido, Japan
- Correspondence: (N.I.); (Y.S.); Tel.: +81-11-706-5208 (N.I.); +81-11-706-5207 (Y.S.)
| |
Collapse
|
6
|
A Polyuridine Insertion in the 3' Untranslated Region of Classical Swine Fever Virus Activates Immunity and Reduces Viral Virulence in Piglets. J Virol 2020; 94:JVI.01214-19. [PMID: 31645448 PMCID: PMC6955259 DOI: 10.1128/jvi.01214-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/11/2019] [Indexed: 01/15/2023] Open
Abstract
Classical swine fever (CSF), a highly contagious viral disease of pigs, is still endemic in some countries of Asia and Central and South America. Considering that the 3′ untranslated region (3′ UTR) plays an important role in flavivirus replication, the present study showed for the first time that a long polyuridine sequence acquired in the 3′ UTR by an endemic CSFV isolate can activate immunity, control viral replication, and modulate disease in piglets. Our findings provide new avenues for the development of novel vaccines against infections with CSF virus and other flaviviruses. Knowledge of molecular virulence determinants is also relevant for future development of rapid and efficient diagnostic tools for the prediction of the virulence of field isolates and for efficient CSF control. Low-virulence classical swine fever virus (CSFV) strains make CSF eradication particularly difficult. Few data are available on the molecular determinants of CSFV virulence. The aim of the present study was to assess a possible role for CSFV virulence of a unique, uninterrupted 36-uridine (poly-U) sequence found in the 3′ untranslated region (3′ UTR) of the low-virulence CSFV isolate Pinar de Rio (PdR). To this end, a pair of cDNA-derived viruses based on the PdR backbone were generated, one carrying the long poly-U insertion in the 3′ UTR (vPdR-36U) and the other harboring the standard 5 uridines at this position (vPdR-5U). Two groups of 20 5-day-old piglets were infected with vPdR-36U and vPdR-5U. Ten contact piglets were added to each group. Disease progression, virus replication, and immune responses were monitored for 5 weeks. The vPdR-5U virus was significantly more virulent than the vPdR-36U virus, with more severe disease, higher mortality, and significantly higher viral loads in serum and body secretions, despite similar replication characteristics in cell culture. The two viruses were transmitted to all contact piglets. Ninety percent of the piglets infected with vPdR-36U seroconverted, while only one vPdR-5U-infected piglet developed antibodies. The vPdR-5U-infected piglets showed only transient alpha interferon (IFN-α) responses in serum after 1 week of infection, while the vPdR-36U-infected piglets showed sustained IFN-α levels during the first 2 weeks. Taken together, these data show that the 3′ UTR poly-U insertion acquired by the PdR isolate reduces viral virulence and activates the innate and humoral immune responses without affecting viral transmission. IMPORTANCE Classical swine fever (CSF), a highly contagious viral disease of pigs, is still endemic in some countries of Asia and Central and South America. Considering that the 3′ untranslated region (3′ UTR) plays an important role in flavivirus replication, the present study showed for the first time that a long polyuridine sequence acquired in the 3′ UTR by an endemic CSFV isolate can activate immunity, control viral replication, and modulate disease in piglets. Our findings provide new avenues for the development of novel vaccines against infections with CSF virus and other flaviviruses. Knowledge of molecular virulence determinants is also relevant for future development of rapid and efficient diagnostic tools for the prediction of the virulence of field isolates and for efficient CSF control.
Collapse
|
7
|
Adverse Effects of Classical Swine Fever Virus LOM Vaccine and Jeju LOM Strains in Pregnant Sows and Specific Pathogen-Free Pigs. Pathogens 2019; 9:pathogens9010018. [PMID: 31878101 PMCID: PMC7168605 DOI: 10.3390/pathogens9010018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 11/17/2022] Open
Abstract
In Jeju island of South Korea, a classical swine fever (CSF) non-vaccinated region, many pig farmers insisted on abortion and stillbirth in pregnant sows and high mortality of suckling/weaning piglets by circulating CSF virus from 2014 to 2018. We investigated whether CSF viruses isolated from pigs in Jeju Island (Jeju LOM) have recovered their pathogenicity by conducting experiments using pregnant sows and specific pathogen-free (SPF) pigs. The CSF modified live LOM vaccine (MLV-LOM) and Jeju LOM strains induced abortion and stillbirth in pregnant sows. Viral antigens were detected in the organs of fetuses and stillborn piglets in the absence of specific pathological lesions associated with the virulent CSF virus in both groups (MLV-LOM and Jeju LOM strain). However, antigen was detected in one newborn piglet from a sow inoculated with a Jeju LOM strain, suggesting that it may cause persistent infections in pigs. SPF pigs inoculated with the MLV-LOM or Jeju LOM strains were asymptomatic, but virus antigen was detected in several organ and blood samples. Virus shedding in both groups of animals was not detected in the feces or saliva until 21 days post inoculation. The serum concentration of the three major cytokines, IFN-α, TNF-α, and IL-10, known to be related to lymphocytopenia, were similar in both groups when the MLV-LOM or Jeju LOM strains were inoculated into SPF pigs. In conclusion, Jeju LOM strains exhibited most of the characteristics of the MLV-LOM in pigs and resulted in the same adverse effects as the MLV-LOM strain.
Collapse
|
8
|
Identification of an Immunosuppressive Cell Population during Classical Swine Fever Virus Infection and Its Role in Viral Persistence in the Host. Viruses 2019; 11:v11090822. [PMID: 31487968 PMCID: PMC6783970 DOI: 10.3390/v11090822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/25/2022] Open
Abstract
Classical swine fever virus (CSFV) remains a highly important pathogen, causing major losses in the swine industry. Persistent infection is highly relevant for CSFV maintenance in the field; however, this form of infection is not fully understood. An increase in the granulocyte population has been detected in CSFV persistently infected animals. The aim of this work was to evaluate the possible immunosuppressive role of these cells in CSFV persistent infection. The phenotype of peripheral blood and bone marrow cells from persistently infected and naïve animals was evaluated by flow cytometry, and the capacity of specific cell subsets to reduce the interferon gamma (IFN-γ) response against unspecific and specific antigen was determined using co-culture assays. The frequency of granulocytic cells was increased in cells from CSFV persistently infected pigs and they showed a phenotype similar to immunosuppressive cell populations found in persistent infection in humans. These cells from persistently infected animals were able to reduce the IFN-γ response against unspecific and specific antigen. Our results suggest that immature immunosuppressive cell populations play a role in CSFV persistent infection in swine. The information obtained by studying the role of myeloid derived suppressor cells (MDSC) during CSFV persistent infection may extrapolate to other viral persistent infections in mammals.
Collapse
|
9
|
Coronado L, Bohórquez JA, Muñoz-González S, Perez LJ, Rosell R, Fonseca O, Delgado L, Perera CL, Frías MT, Ganges L. Investigation of chronic and persistent classical swine fever infections under field conditions and their impact on vaccine efficacy. BMC Vet Res 2019; 15:247. [PMID: 31307464 PMCID: PMC6632193 DOI: 10.1186/s12917-019-1982-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 06/26/2019] [Indexed: 11/13/2022] Open
Abstract
Background Recent studies have hypothesized that circulation of classical swine fever virus (CSFV) variants when the immunity induced by the vaccine is not sterilizing might favour viral persistence. Likewise, in addition to congenital viral persistence, CSFV has also been proven to generate postnatal viral persistence. Under experimental conditions, postnatal persistently infected pigs were unable to elicit a specific immune response to a CSFV live attenuated vaccine via the mechanism known as superinfection exclusion (SIE). Here, we study whether subclinical forms of classical swine fever (CSF) may be present in a conventional farm in an endemic country and evaluate vaccine efficacy under these types of infections in field conditions. Results Six litters born from CSF-vaccinated gilts were randomly chosen from a commercial Cuban farm at 33 days of age (weaning). At this time, the piglets were vaccinated with a lapinized live attenuated CSFV C-strain vaccine. Virological and immunological analyses were performed before and after vaccination. The piglets were clinically healthy at weaning; however, 82% were viraemic, and the rectal swabs in most of the remaining 18% were positive. Only five piglets from one litter showed a specific antibody response. The tonsils and rectal swabs of five sows were CSFV positive, and only one of the sows showed an antibody response. After vaccination, 98% of the piglets were unable to clear the virus and to seroconvert, and some of the piglets showed polyarthritis and wasting after 36 days post vaccination. The CSFV E2 glycoprotein sequences recovered from one pig per litter were the same. The amino acid positions 72(R), 20(L) and 195(N) of E2 were identified in silico as positions associated with adaptive advantage. Conclusions Circulation of chronic and persistent CSF infections was demonstrated in field conditions under a vaccination programme. Persistent infection was predominant. Here, we provide evidence that, in field conditions, subclinical infections are not detected by clinical diagnosis and, despite being infected with CSFV, the animals are vaccinated, rather than diagnosed and eliminated. These animals are refractory to vaccination, likely due to the SIE phenomenon. Improvement of vaccination strategies and diagnosis of subclinical forms of CSF is imperative for CSF eradication. Electronic supplementary material The online version of this article (10.1186/s12917-019-1982-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liani Coronado
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas, Mayabeque, Cuba
| | - Jose Alejandro Bohórquez
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Sara Muñoz-González
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Lester Josue Perez
- University of Illinois, College of Veterinary Science, Department of Clinical Veterinary Medicine, Urbana, Illinois, 61802, United States
| | - Rosa Rosell
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament d'Agricultura Ramaderia i Pesca (DARP), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Osvaldo Fonseca
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas, Mayabeque, Cuba
| | - Laiyen Delgado
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas, Mayabeque, Cuba
| | - Carmen Laura Perera
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas, Mayabeque, Cuba
| | - Maria Teresa Frías
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas, Mayabeque, Cuba
| | - Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
10
|
Cabezón O, Muñoz-González S, Colom-Cadena A, Pérez-Simó M, Rosell R, Lavín S, Marco I, Fraile L, de la Riva PM, Rodríguez F, Domínguez J, Ganges L. African swine fever virus infection in Classical swine fever subclinically infected wild boars. BMC Vet Res 2017; 13:227. [PMID: 28764692 PMCID: PMC5540480 DOI: 10.1186/s12917-017-1150-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently moderate-virulence classical swine fever virus (CSFV) strains have been proven capable of generating postnatal persistent infection (PI), defined by the maintenance of viremia and the inability to generate CSFV-specific immune responses in animals. These animals also showed a type I interferon blockade in the absence of clinical signs. In this study, we assessed the infection generated in 7-week-old CSFV PI wild boars after infection with the African swine fever virus (ASFV). The wild boars were divided in two groups and were infected with ASFV. Group A comprised boars who were CSFV PI in a subclinical form and Group B comprised pestivirus-free wild boars. Some relevant parameters related to CSFV replication and the immune response of CSFV PI animals were studied. Additionally, serum soluble factors such as IFN-α, TNF-α, IL-6, IL-10, IFN-γ and sCD163 were analysed before and after ASFV infection to assess their role in disease progression. RESULTS After ASFV infection, only the CSFV PI wild boars showed progressive acute haemorrhagic disease; however, the survival rates following ASFV infection was similar in both experimental groups. Notwithstanding, the CSFV RNA load of CSFV PI animals remained unaltered over the study; likewise, the ASFV DNA load detected after infection was similar between groups. Interestingly, systemic type I FN-α and IL-10 levels in sera were almost undetectable in CSFV PI animals, yet detectable in Group B, while detectable levels of IFN-γ were found in both groups. Finally, the flow cytometry analysis showed an increase in myelomonocytic cells (CD172a+) and a decrease in CD4+ T cells in the PBMCs from CSFV PI animals after ASFV infection. CONCLUSIONS Our results showed that the immune response plays a role in the progression of disease in CSFV subclinically infected wild boars after ASFV infection, and the immune response comprised the systemic type I interferon blockade. ASFV does not produce any interference with CSFV replication, or vice versa. ASFV infection could be a trigger factor for the disease progression in CSFV PI animals, as their survival after ASFV was similar to that of the pestivirus-free ASFV-infected group. This fact suggests a high resistance in CSFV PI animals even against a virus like ASFV; this may mean that there are relevant implications for CSF control in endemic countries. The diagnosis of ASFV and CSFV co-infection in endemic countries cannot be ruled out and need to be studied in greater depth.
Collapse
Affiliation(s)
- Oscar Cabezón
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Sara Muñoz-González
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Andreu Colom-Cadena
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Marta Pérez-Simó
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Rosa Rosell
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.,Departament d'Agricultura, Ramaderia, Pesca i Alimentació (DARP), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Santiago Lavín
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Ignasi Marco
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Lorenzo Fraile
- Departament de Producció Animal, ETSEA, Universidad de Lleida, 25198, Lleida, Spain
| | - Paloma Martínez de la Riva
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Javier Domínguez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain
| | - Llilianne Ganges
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
| |
Collapse
|
11
|
Classical Swine Fever-An Updated Review. Viruses 2017; 9:v9040086. [PMID: 28430168 PMCID: PMC5408692 DOI: 10.3390/v9040086] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 01/03/2023] Open
Abstract
Classical swine fever (CSF) remains one of the most important transboundary viral diseases of swine worldwide. The causative agent is CSF virus, a small, enveloped RNA virus of the genus Pestivirus. Based on partial sequences, three genotypes can be distinguished that do not, however, directly correlate with virulence. Depending on both virus and host factors, a wide range of clinical syndromes can be observed and thus, laboratory confirmation is mandatory. To this means, both direct and indirect methods are utilized with an increasing degree of commercialization. Both infections in domestic pigs and wild boar are of great relevance; and wild boars are a reservoir host transmitting the virus sporadically also to pig farms. Control strategies for epidemic outbreaks in free countries are mainly based on classical intervention measures; i.e., quarantine and strict culling of affected herds. In these countries, vaccination is only an emergency option. However, live vaccines are used for controlling the disease in endemically infected regions in Asia, Eastern Europe, the Americas, and some African countries. Here, we will provide a concise, updated review on virus properties, clinical signs and pathology, epidemiology, pathogenesis and immune responses, diagnosis and vaccination possibilities.
Collapse
|
12
|
Muñoz-González S, Pérez-Simó M, Colom-Cadena A, Cabezón O, Bohórquez JA, Rosell R, Pérez LJ, Marco I, Lavín S, Domingo M, Ganges L. Classical Swine Fever Virus vs. Classical Swine Fever Virus: The Superinfection Exclusion Phenomenon in Experimentally Infected Wild Boar. PLoS One 2016; 11:e0149469. [PMID: 26919741 PMCID: PMC4768946 DOI: 10.1371/journal.pone.0149469] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/31/2016] [Indexed: 12/02/2022] Open
Abstract
Two groups with three wild boars each were used: Group A (animals 1 to 3) served as the control, and Group B (animals 4 to 6) was postnatally persistently infected with the Cat01 strain of CSFV (primary virus). The animals, six weeks old and clinically healthy, were inoculated with the virulent strain Margarita (secondary virus). For exclusive detection of the Margarita strain, a specific qRT-PCR assay was designed, which proved not to have cross-reactivity with the Cat01 strain. The wild boars persistently infected with CSFV were protected from superinfection by the virulent CSFV Margarita strain, as evidenced by the absence of clinical signs and the absence of Margarita RNA detection in serum, swabs and tissue samples. Additionally, in PBMCs, a well-known target for CSFV viral replication, only the primary infecting virus RNA (Cat01 strain) could be detected, even after the isolation in ST cells, demonstrating SIE at the tissue level in vivo. Furthermore, the data analysis of the Margarita qRT-PCR, by means of calculated ΔCt values, supported that PBMCs from persistently infected animals were substantially protected from superinfection after in vitro inoculation with the Margarita virus strain, while this virus was able to infect naive PBMCs efficiently. In parallel, IFN-α values were undetectable in the sera from animals in Group B after inoculation with the CSFV Margarita strain. Furthermore, these animals were unable to elicit adaptive humoral (no E2-specific or neutralising antibodies) or cellular immune responses (in terms of IFN-γ-producing cells) after inoculation with the second virus. Finally, a sequence analysis could not detect CSFV Margarita RNA in the samples tested from Group B. Our results suggested that the SIE phenomenon might be involved in the evolution and phylogeny of the virus, as well as in CSFV control by vaccination. To the best of our knowledge, this study was one of the first showing efficient suppression of superinfection in animals, especially in the absence of IFN-α, which might be associated with the lack of innate immune mechanisms.
Collapse
Affiliation(s)
- Sara Muñoz-González
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marta Pérez-Simó
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Andreu Colom-Cadena
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Oscar Cabezón
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - José Alejandro Bohórquez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Rosa Rosell
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament d’Agricultura, Ramaderia, Pesca, Alimentació i Medi natural, Generalitat de Catalunya, 08007 Barcelona, Spain
| | | | - Ignasi Marco
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Santiago Lavín
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mariano Domingo
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals (DAAM), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Llilianne Ganges
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|