1
|
Differentiation of Antibodies against Selected Simbu Serogroup Viruses by a Glycoprotein Gc-Based Triplex ELISA. Vet Sci 2021; 8:vetsci8010012. [PMID: 33477718 PMCID: PMC7831895 DOI: 10.3390/vetsci8010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
Abstract
The Simbu serogroup of orthobunyaviruses includes several pathogens of veterinary importance, among them Schmallenberg virus (SBV), Akabane virus (AKAV) and Shuni virus (SHUV). They infect predominantly ruminants and induce severe congenital malformation. In adult animals, the intra vitam diagnostics by direct virus detection is limited to only a few days due to a short-lived viremia. For surveillance purposes the testing for specific antibodies is a superior approach. However, the serological differentiation is hampered by a considerable extent of cross-reactivity, as viruses were assigned into this serogroup based on antigenic relatedness. Here, we established a glycoprotein Gc-based triplex enzyme-linked immunosorbent assay (ELISA) for the detection and differentiation of antibodies against SBV, AKAV, and SHUV. A total of 477 negative samples of various ruminant species, 238 samples positive for SBV-antibodies, 36 positive for AKAV-antibodies and 53 SHUV antibody-positive samples were tested in comparison to neutralization tests. For the newly developed ELISA, overall diagnostic specificities of 84.56%, 94.68% and 89.39% and sensitivities of 89.08%, 69.44% and 84.91% were calculated for SBV, AKAV and SHUV, respectively, with only slight effects of serological cross-reactivity on the diagnostic specificity. Thus, this test system could be used for serological screening in suspected populations or as additional tool during outbreak investigations.
Collapse
|
2
|
Endalew AD, Faburay B, Wilson WC, Richt JA. Schmallenberg Disease-A Newly Emerged Culicoides-borne Viral Disease of Ruminants. Viruses 2019; 11:v11111065. [PMID: 31731618 PMCID: PMC6893508 DOI: 10.3390/v11111065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 12/28/2022] Open
Abstract
First appearing in 2011 in Northern Europe, Schmallenberg virus (SBV), an Orthobunyavirus of the Simbu serogroup, is associated with clinical disease mainly in ruminants such as cattle, sheep and goats. The clinical signs are characterized by abortion and congenital deformities in newborns. The virus is transmitted by Culicoides midges of the Obsoletus complex. SBV infection induces a solid protective immunity that persists for at least 4 or 6 years in sheep and cattle, respectively. SBV infection can be diagnosed directly by real-time RT-qPCR and virus isolation or indirectly by serological assays. Three vaccines are commercially available in Europe. This article provides a comprehensive literature review on this emerging disease regarding pathogenesis, transmission, diagnosis, control and prevention. This review also highlights that although much has been learned since SBV’s first emergence, there are still areas that require further study to devise better mitigation strategies.
Collapse
Affiliation(s)
- Abaineh D. Endalew
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (A.D.E.); (B.F.)
| | - Bonto Faburay
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (A.D.E.); (B.F.)
| | - William C. Wilson
- United States Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Disease Research Unit, Manhattan, KS 66506, USA
- Correspondence: (W.C.W.); (J.A.R.)
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (A.D.E.); (B.F.)
- Correspondence: (W.C.W.); (J.A.R.)
| |
Collapse
|
3
|
Golender N, Bumbarov V, Erster O, Beer M, Khinich Y, Wernike K. Development and validation of a universal S-segment-based real-time RT-PCR assay for the detection of Simbu serogroup viruses. J Virol Methods 2018; 261:80-85. [DOI: 10.1016/j.jviromet.2018.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 11/28/2022]
|
4
|
Wernike K, Mundt A, Link EK, Aebischer A, Schlotthauer F, Sutter G, Fux R, Beer M. N-terminal domain of Schmallenberg virus envelope protein Gc delivered by recombinant equine herpesvirus type 1 and modified vaccinia virus Ankara: Immunogenicity and protective efficacy in cattle. Vaccine 2018; 36:5116-5123. [PMID: 30049630 DOI: 10.1016/j.vaccine.2018.07.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 01/08/2023]
Abstract
Schmallenberg virus (SBV), which emerged in 2011 in Central Europe and subsequently spread very rapidly throughout the continent, affects predominantly ruminants. SBV is transmitted by insect vectors, and therefore vaccination is one of the major tools of disease control. Only recently, a domain connected to virus neutralization has been identified at the amino-terminal part of the viral envelope protein Gc. Here, this Gc domain delivered by recombinant EHV-1 or MVA vector viruses was tested in a vaccination-challenge trial in cattle, one of the major target species of SBV. The EHV-1-based vaccine conferred protection in two of four animals, whereas immunization using the MVA vector vaccine efficiently induced an SBV-specific antibody response and full protection against SBV challenge infection in all the vaccinated animals. Moreover, due to the absence of antibodies against SBVs N-protein, both vector vaccines enable the differentiation between vaccinated and field-infected animals making them to a promising tool to control SBV spread as well as to prevent disease in domestic ruminants.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany.
| | - Alice Mundt
- Boehringer Ingelheim Veterinary Research Centre, Bemeroder Str. 31, 30559 Hannover, Germany
| | - Ellen Kathrin Link
- Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Ludwig-Maximilians-Universität, Veterinärstraße 13, 80539 Munich, Germany
| | - Andrea Aebischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Felicia Schlotthauer
- Boehringer Ingelheim Veterinary Research Centre, Bemeroder Str. 31, 30559 Hannover, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Ludwig-Maximilians-Universität, Veterinärstraße 13, 80539 Munich, Germany
| | - Robert Fux
- Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Ludwig-Maximilians-Universität, Veterinärstraße 13, 80539 Munich, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
5
|
Zhai SL, Lv DH, Wen XH, Zhu XL, Yang YQ, Chen QL, Wei WK. Preliminary serological evidence for Schmallenberg virus infection in China. Trop Anim Health Prod 2017; 50:449-453. [DOI: 10.1007/s11250-017-1433-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/20/2017] [Indexed: 11/28/2022]
|
6
|
Tirosh-Levy S, Gelman B, Zivotofsky D, Quraan L, Khinich E, Nasereddin A, Abdeen Z, Steinman A. Seroprevalence and risk factor analysis for exposure to equine encephalosis virus in Israel, Palestine and Jordan. Vet Med Sci 2017; 3:82-90. [PMID: 28713576 PMCID: PMC5488184 DOI: 10.1002/vms3.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Equine encephalosis virus (EEV) is an orbivirus transmitted by Culicoides species. Most infected horses show mild clinical signs and mortality is usually very low. EEV is closely related and similarly transmitted to other, more pathogenic and economically important, orbiviruses such as African horse sickness virus (AHSV), bluetongue virus (BTV) and epizootic haemorrhagic disease viruses (EHDV), and may serve as an indicator for possible transmission of the latter. Israel has been reported to be endemic for EEV since 2001. This study was initiated to re‐evaluate the current seroprevalence and risk factors for EEV exposure in Israel, and to assess, for the first time, the seroprevalence of EEV in Palestine and Jordan. Three hundred and sixteen serum samples were collected from apparently healthy horses at 21 farms in Israel, 66 horses at nine farms in Palestine and 100 horses at three farms in Jordan. The presence of EEV antibodies was detected by a serum neutralization assay. Seroprevalence of EEV was 58.2% (184/316 horses) in Israel, 48.5% (32/66 horses) in Palestine and 2% (2/100 horses) in Jordan. Seroprevalence in Jordan was significantly lower than in Israel and Palestine (P < 0.001). The farm (P < 0.001) and horse age (P = 0.003) were found as significant risk factors for EEV exposure in Israel in multivariable statistical analysis. The results of this study further demonstrate that EEV is no longer limited to South Africa and is endemic in both Israel and Palestine and horses in Jordan were also exposed to this virus emphasizing the potential of pathogens to invade new ecological niches.
Collapse
Affiliation(s)
- Sharon Tirosh-Levy
- Koret School of Veterinary MedicineThe Robert H. Smith Faculty of AgricultureFood and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Boris Gelman
- Virology DivisionKimron Veterinary InstituteBeit-DaganIsrael
| | | | - Lara Quraan
- Koret School of Veterinary MedicineThe Robert H. Smith Faculty of AgricultureFood and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Evgeny Khinich
- Virology DivisionKimron Veterinary InstituteBeit-DaganIsrael
| | - Abdelmajeed Nasereddin
- Al-Quds Public Health SocietyJerusalemPalestine and Al-Quds Nutrition and Health Research InstituteFaculty of MedicineAl-Quds UniversityAbu-DeisPalestine
| | - Ziad Abdeen
- Al-Quds Public Health SocietyJerusalemPalestine and Al-Quds Nutrition and Health Research InstituteFaculty of MedicineAl-Quds UniversityAbu-DeisPalestine
| | - Amir Steinman
- Koret School of Veterinary MedicineThe Robert H. Smith Faculty of AgricultureFood and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
7
|
Wernike K, Aebischer A, Roman-Sosa G, Beer M. The N-terminal domain of Schmallenberg virus envelope protein Gc is highly immunogenic and can provide protection from infection. Sci Rep 2017; 7:42500. [PMID: 28211908 PMCID: PMC5304187 DOI: 10.1038/srep42500] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/13/2017] [Indexed: 01/30/2023] Open
Abstract
Schmallenberg virus (SBV) is transmitted by insect vectors, and therefore vaccination is one of the most important tools of disease control. In our study, novel subunit vaccines on the basis of an amino-terminal domain of SBV Gc of 234 amino acids (“Gc Amino”) first were tested and selected using a lethal small animal challenge model and then the best performing formulations also were tested in cattle. We could show that neither E. coli expressed nor the reduced form of “Gc Amino” protected from SBV infection. In contrast, both, immunization with “Gc Amino”-encoding DNA plasmids and “Gc-amino” expressed in a mammalian system, conferred protection in up to 66% of the animals. Interestingly, the best performance was achieved with a multivalent antigen containing the covalently linked Gc domains of both, SBV and the related Akabane virus. All vaccinated cattle and mice were fully protected against SBV challenge infection. Furthermore, in the absence of antibodies against the viral N-protein, differentiation between vaccinated and field-infected animals allows an SBV marker vaccination concept. Moreover, the presented vaccine design also could be tested for other members of the Simbu serogroup and might allow the inclusion of additional immunogenic domains.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald - Insel Riems, Germany
| | - Andrea Aebischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald - Insel Riems, Germany
| | - Gleyder Roman-Sosa
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
8
|
Golender N, Wernike K, Bumbarov V, Aebischer A, Panshin A, Jenckel M, Khinich Y, Beer M. Characterization of Shuni viruses detected in Israel. Virus Genes 2016; 52:806-813. [PMID: 27540741 DOI: 10.1007/s11262-016-1381-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/12/2016] [Indexed: 12/11/2022]
Abstract
Shuni virus (SHUV) was recently identified in Israel in several brains of ovine, bovine, and goat fetuses and newborn animals with congenital arthrogryposis-hydranencephaly syndrome. In the present study, the sequences of several Israeli SHUV strains were analyzed in detail; based on the small genome segment which encodes the nucleocapsid protein and the small nonstructural protein (NSs), a very high similarity of 99-100 % among each other was found. In contrast to the highly conserved N protein, several mutations were found within the NSs-coding sequence of SHUVs present in brain samples of malformed fetuses, resulting in a considerably frequent appearance of stop codons. Interferon alpha/beta production was demonstrated in an in-vitro interferon bioassay; hence, the virus isolated from the brain of a malformed sheep fetus acquired mutations, resulting in the loss of its NSs protein function.
Collapse
Affiliation(s)
- Natalia Golender
- Divisions of Virology, Kimron Veterinary Institute, 50250, Bet Dagan, Israel
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany.
| | - Velizar Bumbarov
- Divisions of Virology, Kimron Veterinary Institute, 50250, Bet Dagan, Israel
| | - Andrea Aebischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Alexander Panshin
- Divisions of Virology, Kimron Veterinary Institute, 50250, Bet Dagan, Israel
| | - Maria Jenckel
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Yevgeny Khinich
- Divisions of Virology, Kimron Veterinary Institute, 50250, Bet Dagan, Israel
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| |
Collapse
|