1
|
Meng S, Liu R, Zhang H, Hu G, Shuai L, Guo H, Dang Y, Cao Y, Bu Z, Wen Z. Susceptibility of Ferret and Cat to Porcine Deltacoronavirus: Evidence of Infection in Ferrets But Not Cats. Transbound Emerg Dis 2025; 2025:9997711. [PMID: 40529623 PMCID: PMC12173537 DOI: 10.1155/tbed/9997711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 05/02/2025] [Indexed: 06/20/2025]
Abstract
Coronaviruses (CoVs) cause gastrointestinal and respiratory disorders and have a wide host range. Porcine deltacoronavirus (PDCoV) is an enteropathogenic CoV and a member of the Deltacoronavirus (δ-CoV) genus and was discovered in 2012. With a high fatality rate, PDCoV is primarily responsible for severe diarrhea in pigs, especially in newborn piglets, and has been reported worldwide since the first outbreak in 2014. PDCoV is confirmed as a zoonotic virus, and one of the few CoVs currently known to infect both birds and mammals, including humans. Infection studies have demonstrated the susceptibility of mice and calves to PDCoV, but little is known about its transmission in other mammals. Before it was reported in pigs, deltacoronavruses had been reported in ferret badgers and Asian leopard cats in China in 2007. This implies the possibility that wild mustelids and feline species contribute to the virus's spread. In this study, we investigated the susceptibility of ferrets and domestic cats to PDCoV. The results revealed that ferrets can be infected with PDCoV, while cats cannot. In ferrets, viral RNA was detected in the intestines, parenchymal organs, and feces. Histopathological analysis showed no visible lesions in the intestine of infected ferret and cat. Neither infected ferrets nor cats exhibited any clinical signs of diarrhea, but seroconversion occurred in ferrets 14 days post-inoculation (dpi). In brief, ferrets may play a significant role in the interspecies transmission of PDCoV. Our study expands the known host range of PDCoV and provides valuable insights into the interspecies transmission of the virus.
Collapse
Affiliation(s)
- Shuhuai Meng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang, China
| | - Renqiang Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Guangli Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Lei Shuai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang, China
| | - Huijuan Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang, China
| | - Yijing Dang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Zhiyuan Wen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang, China
| |
Collapse
|
2
|
Li Z, Tang W, Lai Y, Chen C, Fang P, Zhou Y, Fang L, Xiao S. SIRT5-mediated desuccinylation of the porcine deltacoronavirus M protein drives pexophagy to enhance viral proliferation. PLoS Pathog 2025; 21:e1013163. [PMID: 40344161 DOI: 10.1371/journal.ppat.1013163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus capable of infecting various animal species, including humans. In this study, we explored the roles of sirtuins (SIRTs), a conserved family of protein deacylases and mono-adenosine diphosphate-ribosyltransferases, in PDCoV replication. Surprisingly, we found that SIRT5-a unique member of SIRTs with distinct desuccinylation, demalonylation, and deglutarylation activities-is a proviral factor essential for PDCoV replication; its catalytic activities are crucial in this process. Mechanistically, SIRT5 interacts with and desuccinylates the PDCoV membrane (M) protein. This modification activates the ataxia-telangiectasia mutated (ATM) pathway, facilitates ubiquitination of peroxisomal biogenesis protein 5 (PEX5), and recruits sequestosome 1 (SQSTM1/p62) to initiate selective peroxisomal autophagy (pexophagy). The pexophagy process disrupts peroxisomal function, elevates reactive oxygen species (ROS) levels, and suppresses type I and III interferon production, thereby enhancing viral replication. We also identified lysine 207 (K207) as the primary succinylation site of the M protein. Mutations mimicking the desuccinylated or succinylated states of K207 substantially influence viral replication and the ability to induce pexophagy. These findings reveal a novel role for SIRT5 in regulating pexophagy during viral infection and suggest a therapeutic target for efforts to combat coronavirus infections.
Collapse
Affiliation(s)
- Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wenbing Tang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yinan Lai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chaoqun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Yanrong Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
3
|
Bai Y, Yu R, Zhou G, Zhang L, Wang T, Liu Y, Wang D, Zhang Z, Wang Y, Guo H, Pan L, Liu X. A novel double-antibody sandwich ELISA based on monoclonal antibodies against the viral spike protein detects porcine deltacoronavirus infection. Microbiol Spectr 2025; 13:e0285424. [PMID: 40013808 PMCID: PMC11960065 DOI: 10.1128/spectrum.02854-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a significant emerging pathogen that causes severe enteric disease in swine, and therefore significant economic losses in the pig farming industry. Here, we developed a novel double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) based on two monoclonal antibodies directed against the PDCoV spike protein. These two monoclonal antibodies were obtained through hybridoma fusion and screening, and they can specifically react with the PDCoV spike protein. The detection limits of the DAS-ELISA for the recombinant spike protein and viral titer were approximately 0.12 ng/mL and 1.96 × 10³ copies/μL, respectively. The DAS-ELISA did not cross-react with other swine enteric coronaviruses, including porcine epidemic diarrhea virus, transmissible gastroenteritis virus, or porcine rotavirus. A total of 145 rectal swab samples were collected and tested for the presence of PDCoV with the DAS-ELISA and reverse transcription-quantitative PCR (RT-qPCR). The coincidence rate between the DAS-ELISA and RT-qPCR was 91.03%, with a kappa value of 0.814, indicating that the DAS-ELISA is a reliable method for viral antigen detection in clinical samples. DAS-ELISA had a sensitivity of 92.85% and a specificity of 89.89%. The positive predictive value and negative predictive value of this method are 85.25% and 95.24%, respectively. Furthermore, the DAS-ELISA can also be used to detect the spike protein in PDCoV vaccines, making it a valuable tool for assessing the efficacy of PDCoV vaccines. IMPORTANCE Since 2014, porcine deltacoronavirus (PDCoV) has spread widely across multiple countries and regions, causing significant economic losses to the global livestock industry. Currently, no commercially available vaccine exists for the prevention of PDCoV infection; therefore, accurate and effective diagnostic methods are crucial for its control and prevention. In this study, the PDCoV S protein expressed in Chinese Hamster Ovary (CHO) cells was used to immunize mice, and a novel double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) was established based on two monoclonal antibodies. The DAS-ELISA had high sensitivity, good repeatability, strong specificity, and high consistency for detecting clinical samples and spike protein in PDCoV vaccines. Therefore, the DAS-ELISA established in this study may be a reliable and effective tool for detecting PDCoV infection and the efficacy of PDCoV vaccines.
Collapse
Affiliation(s)
- Yingjie Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Ruiming Yu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Guangqing Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - TianTian Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ya Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Dongsheng Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
4
|
Chen R, Zhou G, Yang J, Yuan R, Sun Y, Liang Y, Wu R, Wen Y, Wang Y, Zhao Q, Du S, Yan Q, Cao S, Huang X. A novel neutralizing antibody recognizing a conserved conformational epitope in PDCoV S1 protein and its therapeutic efficacy in piglets. J Virol 2025; 99:e0202524. [PMID: 39840987 PMCID: PMC11853068 DOI: 10.1128/jvi.02025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an enteric pathogen that burdens the global pig industry and is a public health concern. The development of effective antiviral therapies is necessary for the prevention and control of PDCoV, yet to date, there are few studies on the therapeutic potential of PDCoV-neutralizing antibodies. Here, we investigate the therapeutic potential of a novel monoclonal antibody (mAb 4A6) which targets the PDCoV S1 protein and effectively neutralizes PDCoV, both pre- and post-attachment on cells, with IC50 values of 0.537 and 8.487 µg/mL, respectively. A phage-display peptide library was used to determine the epitope recognized by mAb 4A6, and two mimotopes, QYPVSYA (P1) and FPHWPTI (P2), were identified. KLH-P1 reacted with PDCoV-positive sera but failed to induce PDCoV-specific IgG and neutralizing antibodies in mice, suggesting P1 does not fully mimic the conformational epitope. Molecular docking and alanine scanning mutagenesis revealed that S461, P462, T463, E465, and Y467 on the S protein are essential for mAb 4A6 binding. Antibody therapy experiments in PDCoV-infected piglets showed that administering mAb 4A6 once or twice could delay the onset of diarrhea symptoms, reduce the severity of diarrhea, and decrease virus shedding. Taken together, our findings demonstrate that mAb 4A6 holds promise as a treatment against PDCoV, and the amino acids recognized by mAb 4A6 will be valuable for developing novel epitope-based vaccines or antiviral drugs. IMPORTANCE Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that poses a potential threat to public health. Developing effective antiviral therapies is crucial for its prevention and control. Here, we demonstrated that mAb 4A6 shows promise as a treatment against PDCoV. Antibody therapy experiments conducted on PDCoV-infected piglets revealed that administering mAb 4A6 once or twice could delay the onset of diarrhea symptoms, reduce the severity of diarrhea, and decrease virus shedding. Furthermore, we characterized the conformational epitope (S461, P462, T463, E465, and Y467) recognized by mAb 4A6 through an integrated approach involving phage display peptide library, molecular docking, and alanine scanning mutagenesis. More importantly, mAb 4A6 exhibits a broad-spectrum neutralizing activity against different PDCoV strains. These findings indicate that mAb 4A6 has promising therapeutic value for PDCoV-infected piglets, and the identification of mAb 4A6 recognized epitope may provide a new idea for the identification of conformational epitopes.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Swine
- Epitopes/immunology
- Epitopes/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- Swine Diseases/virology
- Swine Diseases/immunology
- Swine Diseases/therapy
- Swine Diseases/drug therapy
- Mice
- Molecular Docking Simulation
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Deltacoronavirus/immunology
- Peptide Library
- Protein Conformation
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guiping Zhou
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junpeng Yang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rong Yuan
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, China
| | - Ying Sun
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yixiao Liang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| |
Collapse
|
5
|
Jiang H, Jia M, Xiong J, Zhao C, Wang T, Kong L, Peng Q. The network interactions between the porcine deltacoronavirus nucleocapsid protein and host cellular proteins. Vet Microbiol 2024; 298:110225. [PMID: 39154555 DOI: 10.1016/j.vetmic.2024.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine coronavirus that can cause diarrhea in pigs of all ages with varying severity. Host-virus protein interactions are critical for intracellular viral replication. Elucidating the interactions between cellular and viral proteins can help us to design antiviral strategies. PDCoV N protein is the most abundant and vital regulator in virus replication. In this study, 604 host proteins were identified to interact with PDCoV N protein by Co-IP combined with LC-MS, of which 243 proteins were specifically bound to N protein. PPI analysis revealed that the N-interacting host proteins are categorized into three groups: ribonucleoprotein complex biogenesis modulation, cellular nitrogen compound metabolism, and nucleic acid binding. GO and KEGG analyses showed that the host proteins are primarily involved in mRNA splicing, stress granule assembly, spliceosomal snRNP assembly. Additionally, four host proteins-TRIM25, HNRNPUL1, RPS27A, and SLC3A2-were selected to validate the interactome data through Co-IP and Confocal assays. This study can help in designing anti-PDCoV strategies and understanding the replication mechanism of PDCoV.
Collapse
Affiliation(s)
- Hui Jiang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China; Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Mengle Jia
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiaqi Xiong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Changrun Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ting Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi Peng
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
6
|
Li M, Zhang L, Zhou P, Zhang Z, Yu R, Zhang Y, Wang Y, Guo H, Pan L, Xiao S, Liu X. Porcine deltacoronavirus nucleocapsid protein interacts with the Grb2 through its proline-rich motifs to induce activation of the Raf-MEK-ERK signal pathway and promote virus replication. J Gen Virol 2024; 105. [PMID: 39136113 DOI: 10.1099/jgv.0.002014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV), an enteropathogenic coronavirus, causes severe watery diarrhoea, dehydration and high mortality in piglets, which has the potential for cross-species transmission in recent years. Growth factor receptor-bound protein 2 (Grb2) is a bridging protein that can couple cell surface receptors with intracellular signal transduction events. Here, we investigated the reciprocal regulation between Grb2 and PDCoV. It is found that Grb2 regulates PDCoV infection and promotes IFN-β production through activating Raf/MEK/ERK/STAT3 pathway signalling in PDCoV-infected swine testis cells to suppress viral replication. PDCoV N is capable of interacting with Grb2. The proline-rich motifs in the N- or C-terminal region of PDCoV N were critical for the interaction between PDCoV-N and Grb2. Except for Deltacoronavirus PDCoV N, the Alphacoronavirus PEDV N protein could interact with Grb2 and affect the regulation of PEDV replication, while the N protein of Betacoronavirus PHEV and Gammacoronavirus AIBV could not interact with Grb2. PDCoV N promotes Grb2 degradation by K48- and K63-linked ubiquitin-proteasome pathways. Overexpression of PDCoV N impaired the Grb2-mediated activated effect on the Raf/MEK/ERK/STAT3 signal pathway. Thus, our study reveals a novel mechanism of how host protein Grb2 protein regulates viral replication and how PDCoV N escaped natural immunity by interacting with Grb2.
Collapse
Affiliation(s)
- Mingxia Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Peng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Ruiming Yu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Yongguang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| |
Collapse
|
7
|
Sun K, Zhang Z, Xing J, Ma S, Ge Y, Xia L, Diao X, Li Y, Wei Z, Wang Z. Synthesis and pharmacodynamic evaluation of Dihydropteridone derivatives against PDCoV in vivo and in vitro. Bioorg Chem 2024; 146:107322. [PMID: 38555797 DOI: 10.1016/j.bioorg.2024.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Porcine Delta Coronavirus (PDCoV) infection can induce serious dehydration, diarrhea and even death of piglets, which has caused huge losses to the breeding industry. PDCoV has been reported to have the potential for cross species transmission, and even reports of infecting humans have emerged. At present, there are still no effective prevention and control measures for PDCoV. In this study, we have designed and synthesized a series of unreported Dihydropteridone derivatives. All of these compounds were evaluated for the against PDCoV in vivo and in vitro for the first time. In this study, antiviral activity (17.34 ± 7.20 μM) and low cytotoxicity (>800 μM) was found in compound W8. Compound W8 exerts antiviral effect on PDCoV by inhibiting cell apoptosis and inflammatory factors caused by virus infection in vitro. In addition, lung and small intestinal lesions caused by PDCoV infection in mice could be significantly reduced by compound W8. These findings highlight the potential of compound W8 as a valuable therapeutic option against PDCoV infection, and lay a foundation for further research and development in this field.
Collapse
Affiliation(s)
- Kai Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, China
| | - Zhongmou Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
| | - Jiani Xing
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shouye Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongzhuang Ge
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
| | - Lu Xia
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaoqiong Diao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yonghong Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhanyong Wei
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Zhenya Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Zhao Y, Zhang T, Zhou C, Guo B, Wang H. Pyrococcus furiosus Argonaute Based Detection Assays for Porcine Deltacoronavirus. ACS Synth Biol 2024; 13:1323-1331. [PMID: 38567812 DOI: 10.1021/acssynbio.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Porcine deltacoronavirus (PDCoV) is a major cause of diarrhea and diarrhea-related deaths among piglets and results in massive losses to the overall porcine industry. The clinical manifestations of porcine diarrhea brought on by the porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV), and PDCoV are oddly similar to each other. Hence, the identification of different pathogens through molecular diagnosis and serological techniques is crucial. Three novel detection methods for identifying PDCoV have been developed utilizing recombinase-aided amplification (RAA) or reverse transcription recombinase-aided amplification (RT-RAA) in conjunction with Pyrococcus furiosus Argonaute (PfAgo): RAA-PfAgo, one-pot RT-RAA-PfAgo, and one-pot RT-RAA-PfAgo-LFD. The indicated approaches have a detection limit of around 60 copies/μL of PDCoV and do not cross-react with other viruses including PEDV, TGEV, RVA, PRV, PCV2, or PCV3. The applicability of one-pot RT-RAA-PfAgo and one-pot RT-RAA-PfAgo-LFD were examined using clinical samples and showed a positive rate comparable to the qPCR method. These techniques offer cutting-edge technical assistance for identifying, stopping, and managing PDCoV.
Collapse
Affiliation(s)
- Yu Zhao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Tiejun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Changyu Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Boyan Guo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
9
|
Guo J, Lai Y, Yang Z, Song W, Zhou J, Li Z, Su W, Xiao S, Fang L. Coinfection and Nonrandom Recombination Drive the Evolution of Swine Enteric Coronaviruses. Emerg Microbes Infect 2024:2332653. [PMID: 38517703 DOI: 10.1080/22221751.2024.2332653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Coinfection with multiple viruses is a common phenomenon in clinical settings and is a crucial driver of viral evolution. Although numerous studies have demonstrated viral recombination arising from coinfections of different strains of a specific species, the role of coinfections of different species or genera during viral evolution is rarely investigated. Here, we analyzed coinfections of and recombination events between four different swine enteric coronaviruses that infect the jejunum and ileum in pigs, including porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and swine acute diarrhea syndrome coronavirus (SADS-CoV), and a deltacoronavirus, porcine deltacoronavirus (PDCoV). Various coinfection patterns were observed in 4,468 fecal and intestinal tissue samples collected from pigs in a 4-year survey. PEDV/PDCoV was the most frequent coinfection. However, recombination analyses have only detected events involving PEDV/TGEV and SADS-CoV/TGEV, indicating that inter-species recombination among coronaviruses is most likely to occur within the same genus. We also analyzed recombination events within the newly identified genus Deltacoronavirus and found that sparrows have played a unique host role in the recombination history of the deltacoronaviruses. The emerging virus PDCoV, which can infect humans, has a different recombination history. In summary, our study demonstrates that swine enteric coronaviruses are a valuable model for investigating the relationship between viral coinfection and recombination, which provide new insights into both inter- and intraspecies recombination events among swine enteric coronaviruses, and extend our understanding of the relationship between coronavirus coinfection and recombination.
Collapse
Affiliation(s)
- Jiahui Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Yinan Lai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Zhixiang Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Wenbo Song
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Junwei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Wen Su
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| |
Collapse
|
10
|
Li Z, Lai Y, Qiu R, Tang W, Ren J, Xiao S, Fang P, Fang L. Hyperacetylated microtubules assist porcine deltacoronavirus nsp8 to degrade MDA5 via SQSTM1/p62-dependent selective autophagy. J Virol 2024; 98:e0000324. [PMID: 38353538 PMCID: PMC10949429 DOI: 10.1128/jvi.00003-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/21/2024] [Indexed: 03/20/2024] Open
Abstract
The microtubule (MT) is a highly dynamic polymer that functions in various cellular processes through MT hyperacetylation. Thus, many viruses have evolved mechanisms to hijack the MT network of the cytoskeleton to allow intracellular replication of viral genomic material. Coronavirus non-structural protein 8 (nsp8), a component of the viral replication transcriptional complex, is essential for viral survival. Here, we found that nsp8 of porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with a zoonotic potential, inhibits interferon (IFN)-β production by targeting melanoma differentiation gene 5 (MDA5), the main pattern recognition receptor for coronaviruses in the cytoplasm. Mechanistically, PDCoV nsp8 interacted with MDA5 and induced autophagy to degrade MDA5 in wild-type cells, but not in autophagy-related (ATG)5 or ATG7 knockout cells. Further screening for autophagic degradation receptors revealed that nsp8 interacts with sequestosome 1/p62 and promotes p62-mediated selective autophagy to degrade MDA5. Importantly, PDCoV nsp8 induced hyperacetylation of MTs, which in turn triggered selective autophagic degradation of MDA5 and subsequent inhibition of IFN-β production. Overall, our study uncovers a novel mechanism employed by PDCoV nsp8 to evade host innate immune defenses. These findings offer new insights into the interplay among viruses, IFNs, and MTs, providing a promising target to develop anti-viral drugs against PDCoV.IMPORTANCECoronavirus nsp8, a component of the viral replication transcriptional complex, is well conserved and plays a crucial role in viral replication. Exploration of the role mechanism of nsp8 is conducive to the understanding of viral pathogenesis and development of anti-viral strategies against coronavirus. Here, we found that nsp8 of PDCoV, an emerging enteropathogenic coronavirus with a zoonotic potential, is an interferon antagonist. Further studies showed that PDCoV nsp8 interacted with MDA5 and sequestosome 1/p62, promoting p62-mediated selective autophagy to degrade MDA5. We further found that PDCoV nsp8 could induce hyperacetylation of MT, therefore triggering selective autophagic degradation of MDA5 and inhibiting IFN-β production. These findings reveal a novel immune evasion strategy used by PDCoV nsp8 and provide insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yinan Lai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Runhui Qiu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wenbing Tang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jie Ren
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
11
|
Wang Y, Song J, Deng X, Wang J, Zhang M, Liu Y, Tang P, Liu H, Zhou Y, Tong G, Li G, Yu L. Nanoparticle vaccines based on the receptor binding domain of porcine deltacoronavirus elicit robust protective immune responses in mice. Front Immunol 2024; 15:1328266. [PMID: 38550592 PMCID: PMC10972852 DOI: 10.3389/fimmu.2024.1328266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/28/2024] [Indexed: 04/02/2024] Open
Abstract
Background Porcine deltacoronavirus (PDCoV), a novel swine enteropathogenic coronavirus, challenges the global swine industry. Currently, there are no approaches preventing swine from PDCoV infection. Methods A new PDCoV strain named JS2211 was isolated. Next, the dimer receptor binding domain of PDCoV spike protein (RBD-dimer) was expressed using the prokaryotic expression system, and a novel nanoparticle containing RBD-dimer and ferritin (SC-Fe) was constructed using the SpyTag/SpyCatcher system. Finally, the immunoprotection of RBD-Fe nanoparticles was evaluated in mice. Results The novel PDCoV strain was located in the clade of the late Chinese isolate strains and close to the United States strains. The RBD-Fe nanoparticles were successfully established. Immune responses of the homologous prime-boost regime showed that RBD-Fe nanoparticles efficiently elicited specific humoral and cellular immune responses in mice. Notably, high level PDCoV RBD-specific IgG and neutralizing antibody (NA) could be detected, and the histopathological results showed that PDCoV infection was dramatically reduced in mice immunized with RBD-Fe nanoparticles. Conclusion This study effectively developed a candidate nanoparticle with receptor binding domain of PDCoV spike protein that offers protection against PDCoV infection in mice.
Collapse
Affiliation(s)
- Yuanhong Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Junhan Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiaoying Deng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Junna Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Miao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Pan Tang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Huang H, Lei X, Zhao C, Qin Y, Li Y, Zhang X, Li C, Lan T, Zhao B, Sun W, Lu H, Jin N. Porcine deltacoronavirus nsp5 antagonizes type I interferon signaling by cleaving IFIT3. J Virol 2024; 98:e0168223. [PMID: 38289117 PMCID: PMC10878044 DOI: 10.1128/jvi.01682-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) has caused enormous economic losses to the global pig industry. However, the immune escape mechanism of PDCoV remains to be fully clarified. Transcriptomic analysis revealed a high abundance of interferon (IFN)-induced protein with tetratricopeptide repeats 3 (IFIT3) transcripts after PDCoV infection, which initially implied a correlation between IFIT3 and PDCoV. Further studies showed that PDCoV nsp5 could antagonize the host type I interferon signaling pathway by cleaving IFIT3. We demonstrated that PDCoV nsp5 cleaved porcine IFIT3 (pIFIT3) at Gln-406. Similar cleavage of endogenous IFIT3 has also been observed in PDCoV-infected cells. The pIFIT3-Q406A mutant was resistant to nsp5-mediated cleavage and exhibited a greater ability to inhibit PDCoV infection than wild-type pIFIT3. Furthermore, we found that cleavage of IFIT3 is a common characteristic of nsp5 proteins of human coronaviruses, albeit not alphacoronavirus. This finding suggests that the cleavage of IFIT3 is an important mechanism by which PDCoV nsp5 antagonizes IFN signaling. Our study provides new insights into the mechanisms by which PDCoV antagonizes the host innate immune response.IMPORTANCEPorcine deltacoronavirus (PDCoV) is a potential emerging zoonotic pathogen, and studies on the prevalence and pathogenesis of PDCoV are ongoing. The main protease (nsp5) of PDCoV provides an excellent target for antivirals due to its essential and conserved function in the viral replication cycle. Previous studies have revealed that nsp5 of PDCoV antagonizes type I interferon (IFN) production by targeting the interferon-stimulated genes. Here, we provide the first demonstration that nsp5 of PDCoV antagonizes IFN signaling by cleaving IFIT3, which affects the IFN response after PDCoV infection. Our findings reveal that PDCoV nsp5 is an important interferon antagonist and enhance the understanding of immune evasion by deltacoronaviruses.
Collapse
Affiliation(s)
- Haixin Huang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Xiaoxiao Lei
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Chenchen Zhao
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yan Qin
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yuying Li
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Xinyu Zhang
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Chengkai Li
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Tian Lan
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Baopeng Zhao
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Wenchao Sun
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Huijun Lu
- Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Ningyi Jin
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
- Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
13
|
Li Z, Xiao W, Yang Z, Guo J, Zhou J, Xiao S, Fang P, Fang L. Cleavage of HDAC6 to dampen its antiviral activity by nsp5 is a common strategy of swine enteric coronaviruses. J Virol 2024; 98:e0181423. [PMID: 38289103 PMCID: PMC10878235 DOI: 10.1128/jvi.01814-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
HDAC6, a structurally and functionally unique member of the histone deacetylase (HDAC) family, is an important host factor that restricts viral infection. The broad-spectrum antiviral activity of HDAC6 makes it a potent antiviral agent. Previously, we found that HDAC6 functions to antagonize porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. However, the final outcome is typically a productive infection that materializes as cells succumb to viral infection, indicating that the virus has evolved sophisticated mechanisms to combat the antiviral effect of HDAC6. Here, we demonstrate that PDCoV nonstructural protein 5 (nsp5) can cleave HDAC6 at glutamine 519 (Q519), and cleavage of HDAC6 was also detected in the context of PDCoV infection. More importantly, the anti-PDCoV activity of HDAC6 was damaged by nsp5 cleavage. Mechanistically, the cleaved HDAC6 fragments (amino acids 1-519 and 520-1159) lost the ability to degrade PDCoV nsp8 due to their impaired deacetylase activity. Furthermore, nsp5-mediated cleavage impaired the ability of HDAC6 to activate RIG-I-mediated interferon responses. We also tested three other swine enteric coronaviruses (transmissible gastroenteritis virus, porcine epidemic diarrhea virus, and swine acute diarrhea syndrome-coronavirus) and found that all these coronaviruses have adopted similar mechanisms to cleave HDAC6 in both an overexpression system and virus-infected cells, suggesting that cleavage of HDAC6 is a common strategy utilized by swine enteric coronaviruses to antagonize the host's antiviral capacity. Together, these data illustrate how swine enteric coronaviruses antagonize the antiviral function of HDAC6 to maintain their infection, providing new insights to the interaction between virus and host.IMPORTANCEViral infections and host defenses are in constant opposition. Once viruses combat or evade host restriction, productive infection is achieved. HDAC6 is a broad-spectrum antiviral protein that has been demonstrated to inhibit many viruses, including porcine deltacoronavirus (PDCoV). However, whether HDAC6 is reciprocally targeted and disabled by viruses remains unclear. In this study, we used PDCoV as a model and found that HDAC6 is targeted and cleaved by nsp5, a viral 3C-like protease. The cleaved HDAC6 loses its deacetylase activity as well as its ability to degrade viral proteins and activate interferon responses. Furthermore, this cleavage mechanism is shared among other swine enteric coronaviruses. These findings shed light on the intricate interplay between viruses and HDAC6, highlighting the strategies employed by viruses to evade host antiviral defenses.
Collapse
Affiliation(s)
- Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wenwen Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhixiang Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiahui Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Junwei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
14
|
Lu Y, Yu R, Tong L, Zhang L, Zhang Z, Pan L, Wang Y, Guo H, Hu Y, Liu X. Transcriptome Analysis of LLC-PK Cells Single or Coinfected with Porcine Epidemic Diarrhea Virus and Porcine Deltacoronavirus. Viruses 2023; 16:74. [PMID: 38257774 PMCID: PMC10818665 DOI: 10.3390/v16010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are the two most prevalent swine enteric coronaviruses worldwide. They commonly cause natural coinfections, which worsen as the disease progresses and cause increased mortality in piglets. To better understand the transcriptomic changes after PEDV and PDCoV coinfection, we compared LLC porcine kidney (LLC-PK) cells infected with PEDV and/or PDCoV and evaluated the differential expression of genes by transcriptomic analysis and real-time qPCR. The antiviral efficacy of interferon-stimulated gene 20 (ISG20) against PDCoV and PEDV infections was also assessed. Differentially expressed genes (DEGs) were detected in PEDV-, PDCoV-, and PEDV + PDCoV-infected cells at 6, 12, and 24 h post-infection (hpi), and at 24 hpi, the number of DEGs was the highest. Furthermore, changes in the expression of interferons, which are mainly related to apoptosis and activation of the host innate immune pathway, were found in the PEDV and PDCoV infection and coinfection groups. Additionally, 43 ISGs, including GBP2, IRF1, ISG20, and IFIT2, were upregulated during PEDV or PDCoV infection. Furthermore, we found that ISG20 significantly inhibited PEDV and PDCoV infection in LLC-PK cells. The transcriptomic profiles of cells coinfected with PEDV and PDCoV were reported, providing reference data for understanding the host response to PEDV and PDCoV coinfection.
Collapse
Affiliation(s)
- Yanzhen Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Ruiming Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Lixin Tong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Yonghao Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| |
Collapse
|
15
|
Ibrahim YM, Zhang W, Wang X, Werid GM, Fu L, Yu H, Wang Y. Molecular characterization and pathogenicity evaluation of enterovirus G isolated from diarrheic piglets. Microbiol Spectr 2023; 11:e0264323. [PMID: 37830808 PMCID: PMC10715025 DOI: 10.1128/spectrum.02643-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/03/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Enterovirus G is a species of positive-sense single-stranded RNA viruses associated with several mammalian diseases. The porcine enterovirus strains isolated here were chimeric viruses with the PLCP gene of porcine torovirus, which grouped together with global EV-G1 strains. The isolated EV-G strain could infect various cell types from different species, suggesting its potential cross-species infection risk. Animal experiment showed the pathogenic ability of the isolated EV-G to piglets. Additionally, the EV-Gs were widely distributed in the swine herds. Our findings suggest that EV-G may have evolved a novel mechanism for broad tropism, which has important implications for disease control and prevention.
Collapse
Affiliation(s)
- Yassein M. Ibrahim
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenli Zhang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinrong Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Gebremeskel Mamu Werid
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lizhi Fu
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Haidong Yu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| |
Collapse
|
16
|
Wang N, Wang Z, Ma M, Jia X, Liu H, Qian M, Lu S, Xiang Y, Wei Z, Zheng L. Expression of codon-optimized PDCoV-RBD protein in baculovirus expression system and immunogenicity evaluation in mice. Int J Biol Macromol 2023; 252:126113. [PMID: 37541479 DOI: 10.1016/j.ijbiomac.2023.126113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is a global epidemic enteropathogenic coronavirus that mainly infects piglets, and causes huge losses to the pig industry. However, there are still no commercial vaccines available for PDCoV prevention and controlment. Receptor-binding domain (RBD) is located at the S1 subunit of PDCoV and is the major target for developing viral inhibitor and vaccine. In this study, the characteristics of the RBD were analyzed by bioinformatic tools, and codon optimization was performed to efficiently express the PDCoV-RBD protein in the insect baculovirus expression system. The purified PDCoV-RBD protein was obtained and fully emulsified with CPG2395 adjuvant, aqueous adjuvant and Al(OH)3 adjuvant, respectively, to develop vaccines. The humoral and cellular immune responses were assessed on mice. The results showed that both the RBD/CPG2395 and RBD/aqueous adjuvant could induce stronger immune responses in mice than that of RBD/Al(OH)3. In addition, the PDCoV challenge infection was conducted and the RBD/CPG2395 could provide better protection against PDCoV in mice. Our study showed that the RBD protein has good antigenicity and can be used as a protective antigen, which provided a basis for the development of the PDCoV vaccine.
Collapse
Affiliation(s)
- Nianxiang Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zi Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengyao Ma
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinhao Jia
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Hang Liu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengwei Qian
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Sijia Lu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuqiang Xiang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhanyong Wei
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Lanlan Zheng
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
17
|
Miao X, Zhang L, Zhou P, Yu R, Zhang Z, Wang C, Guo H, Wang Y, Pan L, Liu X. Adenovirus-vectored PDCoV vaccines induce potent humoral and cellular immune responses in mice. Vaccine 2023; 41:6661-6671. [PMID: 37777448 DOI: 10.1016/j.vaccine.2023.09.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that causes severe watery diarrhea, vomiting, dehydration and high mortality in piglets, resulting in significant economic losses by the global pig industry. Recently, PDCoV has also shown the potential for cross-species transmission. However, there are currently few vaccine studies and no commercially available vaccines for PDCoV. Hence, here, two novel human adenovirus 5 (Ad5)-vectored vaccines expressing codon-optimized forms of the PDCoV spike (S) glycoprotein (Ad-PD-tPA-Sopt) and S1 glycoprotein (Ad-PD-oriSIP-S1opt) were constructed, and their effects were evaluated via intramuscular (IM) injection in BALB/c mice with different doses and times. Both vaccines elicited robust humoral and cellular immune responses; moreover, Ad-PD-tPA-Sopt-vaccinated mice after two IM injections with 108 infectious units (IFU)/mouse had significantly higher anti-PDCoV-specific neutralizing antibody titers. In contrast, the mice immunized with Ad-PD-tPA-Sopt via oral gavage (OG) did not generate robust systemic and mucosal immunity. Thus, IM Ad-PD-tPA-Sopt administration is a promising strategy against PDCoV and provides useful information for future animal vaccine development.
Collapse
Affiliation(s)
- Xin Miao
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Peng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Ruiming Yu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Cancan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China.
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China.
| |
Collapse
|
18
|
Lee D, Shin S, Jang G, Gim Y, Son HK, Kang SC, Eo Y, Chae YG, Koh PO, Lee HJ, Lee C. Genomic and Virulence Investigations of a Novel Porcine Deltacoronavirus Strain Identified in South Korea. Transbound Emerg Dis 2023; 2023:5569675. [PMID: 40303825 PMCID: PMC12016722 DOI: 10.1155/2023/5569675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 01/05/2025]
Abstract
Porcine deltacoronavirus (PDCoV) has emerged as a significant issue in multiple pork-producing countries. This study isolated a novel PDCoV strain, GNU-2105/KOR/2021, which caused a severe diarrhea outbreak with a high mortality rate among neonatal piglets in South Korea. The growth properties and sialic acid dependency of the GNU-2105 strain in cell culture were comparable to those of the 2016 domestic isolate, KNU-1607. Interestingly, phylogenetic analysis using the complete genome of GNU-2105 identified in 2021 demonstrated that this novel strain belongs to the US/South Korean/Japanese clade; however, it is more closely placed around the Chinese isolates. To investigate the potential pathogenic diversity between the previous and recent PDCoVs, we performed an experimental infection using conventional suckling piglets with KNU-1607 or GNU-2105. The KNU-1607-inoculated piglets suffered from acute, watery diarrhea; however, all piglets recovered and survived. In the KNU-1607-inoculated group, histopathological observation detected viral antigens in the jejunum and ileum. However, the virulence of the GNU-2105 virus was enhanced and presented severe clinical symptoms, including thin, transparent intestinal walls, with 100% mortality in piglets. Furthermore, viruses and severe villous atrophy were observed from the duodenum to the colon in all the piglets inoculated with GNU-2105 by quantitative RT-PCR and microscopic assessments, confirming the high enteropathogenicity of PDCoV in neonatal piglets. These findings could expand our understanding of the genetic and pathogenic variation of the PDCoV strain and highlight the necessity of vaccine development providing protection against virulent PDCoV.
Collapse
Affiliation(s)
- Duri Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sangjune Shin
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- ChoongAng Vaccine Laboratories, Daejeon 34055, Republic of Korea
| | - Guehwan Jang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yunhee Gim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyun-Kyoung Son
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | | | - Yongjoon Eo
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Nawoo Veterinary Group, Yangsan 50573, Republic of Korea
| | | | - Phil-Ok Koh
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hu-Jang Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Changhee Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
19
|
Zhao Y, Zhang T, Zhou C, Ma P, Gu K, Li H, Li W, Yang X, Wang H. Development of an RT-PCR-based RspCas13d system to detect porcine deltacoronavirus. Appl Microbiol Biotechnol 2023; 107:5739-5747. [PMID: 37477697 DOI: 10.1007/s00253-023-12690-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is an enteropathogen that causes diarrhea in piglets and may undergo cross-species transmission. The prevention and control of PDCoV are complicated, and a sensitive, specific, and accessible method of diagnosis would be advantageous. Whereas qPCR is a standard approach for detecting PDCoV, it is not effectively sensitive. In the present study, we report such a strategy using an RT-PCR-based RspCas13d detection system and its efficacy in clinical sample diagnosis. The detection limit of this method was 4 copies/μL and no cross-reaction with other viruses such as the porcine epidemic diarrhea virus, classical swine fever virus, pseudorabies virus, porcine reproductive and respiratory syndrome virus, transmissible gastroenteritis virus and porcine rotavirus. The method was also effective in clinical samples. In summary, we demonstrate that RT-PCR-based RspCas13d detection system is an extremely sensitive and specific nucleic acid-based approach for detecting PDCoV. KEY POINTS: • RspCas13d can be used as a candidate molecular diagnostic tool to diagnose viral genomes. • A novel method is proposed using an RT-PCR-based RspCas13d detection system and its effectiveness in the detection of PDCoV. • The RT-PCR-based RspCas13d detection system has excellent sensitivity and specificity.
Collapse
Affiliation(s)
- Yu Zhao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Tiejun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Changyu Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Peng Ma
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Kui Gu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Hao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Wenjing Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Xin Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
20
|
Sun J, Zhang Q, Zhang C, Liu Z, Zhang J. Epidemiology of porcine deltacoronavirus among Chinese pig populations in China: systematic review and meta-analysis. Front Vet Sci 2023; 10:1198593. [PMID: 37483295 PMCID: PMC10361067 DOI: 10.3389/fvets.2023.1198593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a newly emerging and important porcine enteropathogenic coronavirus that seriously threatens the swine industry in China and worldwide. We conducted a systematic review and meta-analysis to access the prevalence of PDCoV infection in pig population from mainland China. Electronic databases were reviewed for PDCoV infection in pig population, and meta-analysis was performed to calculate the overall estimated prevalence using random-effect models. Thirty-nine studies were included (including data from 31,015 pigs). The overall estimated prevalence of PDCoV infection in pigs in China was 12.2% [95% confidence interval (CI), 10.2-14.2%], and that in Central China was 24.5% (95%CI, 16.1-32.9%), which was higher than those in other regions. During 2014-2021, the estimated prevalence of PDCoV infection was the highest in 2015 at 20.5% (95%CI, 10.1-31.0%) and the lowest in 2021 at 4.8% (95%CI, 2.3-7.3%). The prevalence of PDCoV infection in sows was 23.6% (95%CI, 15.8-31.4%), which was higher than those in suckling piglets, nursery piglets, and finishing pigs. The prevalence of PDCoV infection was significantly associated with sampling region, sampling year, pig stage, and clinical signs (diarrhea). This study systematically evaluated the epidemiology of PDCoV infection in Chinese pig population. The findings provide us with a comprehensive understanding of PDCoV infection and are beneficial for establishing new controlling strategies worldwide.
Collapse
Affiliation(s)
- Junying Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qin Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chunhong Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Zhicheng Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jianfeng Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
21
|
Li Z, Duan P, Qiu R, Fang L, Fang P, Xiao S. HDAC6 Degrades nsp8 of Porcine Deltacoronavirus through Deacetylation and Ubiquitination to Inhibit Viral Replication. J Virol 2023; 97:e0037523. [PMID: 37133375 PMCID: PMC10231189 DOI: 10.1128/jvi.00375-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that has the potential to infect humans. Histone deacetylase 6 (HDAC6) is a unique type IIb cytoplasmic deacetylase with both deacetylase activity and ubiquitin E3 ligase activity, which mediates a variety of cellular processes by deacetylating histone and nonhistone substrates. In this study, we found that ectopic expression of HDAC6 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC6-specific inhibitor (tubacin) or knockdown of HDAC6 expression by specific small interfering RNA. Furthermore, we demonstrated that HDAC6 interacted with viral nonstructural protein 8 (nsp8) in the context of PDCoV infection, resulting in its proteasomal degradation, which was dependent on the deacetylation activity of HDAC6. We further identified the key amino acid residues lysine 46 (K46) and K58 of nsp8 as acetylation and ubiquitination sites, respectively, which were required for HDAC6-mediated degradation. Through a PDCoV reverse genetics system, we confirmed that recombinant PDCoV with a mutation at either K46 or K58 exhibited resistance to the antiviral activity of HDAC6, thereby exhibiting higher replication compared with wild-type PDCoV. Collectively, these findings contribute to a better understanding of the function of HDAC6 in regulating PDCoV infection and provide new strategies for the development of anti-PDCoV drugs. IMPORTANCE As an emerging enteropathogenic coronavirus with zoonotic potential, porcine deltacoronavirus (PDCoV) has sparked tremendous attention. Histone deacetylase 6 (HDAC6) is a critical deacetylase with both deacetylase activity and ubiquitin E3 ligase activity and is extensively involved in many important physiological processes. However, little is known about the role of HDAC6 in the infection and pathogenesis of coronaviruses. Our present study demonstrates that HDAC6 targets PDCoV-encoded nonstructural protein 8 (nsp8) for proteasomal degradation through the deacetylation at the lysine 46 (K46) and the ubiquitination at K58, suppressing viral replication. Recombinant PDCoV with a mutation at K46 and/or K58 of nsp8 displayed resistance to the antiviral activity of HDAC6. Our work provides significant insights into the role of HDAC6 in regulating PDCoV infection, opening avenues for the development of novel anti-PDCoV drugs.
Collapse
Affiliation(s)
- Zhuang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Panpan Duan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Runhui Qiu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
22
|
Lee D, Jang G, Min KC, Lee IH, Won H, Yoon IJ, Kang SC, Lee C. Coinfection with porcine epidemic diarrhea virus and Clostridium perfringens type A enhances disease severity in weaned pigs. Arch Virol 2023; 168:166. [PMID: 37217624 DOI: 10.1007/s00705-023-05798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
Clostridium perfringens is a constituent of the normal gut microbiome in pigs; however, it can potentially cause pre- and post-weaning diarrhea. Nevertheless, the importance of this bacterium as a primary pathogen of diarrhea in piglets needs to be better understood, and the epidemiology of C. perfringens in Korean pig populations is unknown. To study the prevalence and typing of C. perfringens, 203 fecal samples were collected from diarrheal piglets on 61 swine farms during 2021-2022 and examined for the presence of C. perfringens and enteric viruses, including porcine epidemic diarrhea virus (PEDV). We determined that the most frequently identified type of C. perfringens was C. perfringens type A (CPA; 64/203, 31.5%). Among the CPA infections, single infections with CPA (30/64, 46.9%) and coinfections with CPA and PEDV (29/64, 45.3%) were the most common in diarrheal samples. Furthermore, we conducted animal experiments to investigate the clinical outcome of single infections and coinfections with highly pathogenic (HP)-PEDV and CPA in weaned piglets. The pigs infected with HP-PEDV or CPA alone showed mild or no diarrhea, and none of them died. However, animals that were co-inoculated with HP-PEDV and CPA showed more-severe diarrheal signs than those of the singly infected pigs. Additionally, CPA promoted PEDV replication in coinfected piglets, with high viral titers in the feces. A histopathological examination revealed more-severe villous atrophy in the small intestine of coinfected pigs than in singly infected pigs. This indicates a synergistic effect of PEDV and CPA coinfection on clinical disease in weaned piglets.
Collapse
Affiliation(s)
- Duri Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, 52828, Jinju, Republic of Korea
| | - Guehwan Jang
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, 52828, Jinju, Republic of Korea
| | - Kyeng-Cheol Min
- ChoongAng Vaccine Laboratories, 34055, Daejeon, Republic of Korea
| | - Inn Hong Lee
- ChoongAng Vaccine Laboratories, 34055, Daejeon, Republic of Korea
| | - Hokeun Won
- ChoongAng Vaccine Laboratories, 34055, Daejeon, Republic of Korea
| | - In-Joong Yoon
- ChoongAng Vaccine Laboratories, 34055, Daejeon, Republic of Korea
| | | | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, 52828, Jinju, Republic of Korea.
- College of Veterinary Medicine, Gyeongsang National University, 52828, Jinju, Republic of Korea.
| |
Collapse
|
23
|
Kim HR, Park J, Lee KK, Jeoung HY, Lyoo YS, Park SC, Park CK. Genetic Characterization and Evolution of Porcine Deltacoronavirus Isolated in the Republic of Korea in 2022. Pathogens 2023; 12:pathogens12050686. [PMID: 37242356 DOI: 10.3390/pathogens12050686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging coronavirus that causes diarrhea in nursing piglets. Since its first outbreak in the United States in 2014, this novel porcine coronavirus has been detected worldwide, including in Korea. However, no PDCoV case has been reported since the last report in 2016 in Korea. In June 2022, the Korean PDCoV strain KPDCoV-2201 was detected on a farm where sows and piglets had black tarry and watery diarrhea, respectively. We isolated the KPDCoV-2201 strain from the intestinal samples of piglets and sequenced the viral genome. Genetically, the full-length genome and spike gene of KPDCoV-2201 shared 96.9-99.2% and 95.8-98.8% nucleotide identity with other global PDCoV strains, respectively. Phylogenetic analysis suggested that KPDCoV-2201 belongs to G1b. Notably, the molecular evolutionary analysis indicated that KPDCoV-2201 evolved from a clade different from that of previously reported Korean PDCoV strains and is closely related to the emergent Peruvian and Taiwanese PDCoV strains. Furthermore, KPDCoV-2201 had one unique and two Taiwanese strain-like amino acid substitutions in the receptor-binding domain of the S1 region. Our findings suggest the possibility of transboundary transmission of the virus and expand our knowledge about the genetic diversity and evolution of PDCoV in Korea.
Collapse
Affiliation(s)
- Hye-Ryung Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
- DIVA Bio Incorporation, Daegu 41519, Republic of Korea
| | - Jonghyun Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
- DIVA Bio Incorporation, Daegu 41519, Republic of Korea
| | - Kyoung-Ki Lee
- Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Hye-Young Jeoung
- Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Young S Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Chun Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine and Cardiovascular Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
24
|
Wang Z, Qu K, Li J, Wang Y, Wang L, Yu Y. Prevalence and potential risk factors of PDCoV in pigs based on publications during 2015-2021 in China: Comprehensive literature review and meta-analysis. Microb Pathog 2023; 179:106118. [PMID: 37062492 DOI: 10.1016/j.micpath.2023.106118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/18/2023]
Abstract
Porcine deltacoronavirus (PDCoV), a novel coronavirus which infects pigs, spreading around the world and causing huge economic losses. In recent years, there have also been human cases of PDCoV infection, which poses a potential threat to public health. Therefore, we conducted a systematic review and meta-analysis to assess the prevalence of PDCoV in pigs in China between 2015 and 2021. The prevalence of PDCoV in China was searched from five databases (CNKI, VIP, WanFang, PubMed and ScienceDirect) and 65 articles met the inclusion criteria, with a total of 25,977 samples, including 3828 positive cases. The overall prevalence of PDCoV was 13.61% (3828/25,977), with the highest prevalence in northern China (19.18%) and the lowest prevalence in southwest China (7.19%). We also analyzed other subgroup information, such as sampling years, test methods, age and geographic factors. The results show that PDCoV is endemic in China and climate may be a potential risk factor for PDCoV infection. It is suggested that appropriate measures should be taken in different climatic areas to reduce local PDCoV infection.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin Province, 130021, PR China; Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, First Hospital of Jilin University, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin Province, 130021, PR China
| | - Kuo Qu
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, First Hospital of Jilin University, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin Province, 130021, PR China
| | - Jianhua Li
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, First Hospital of Jilin University, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin Province, 130021, PR China
| | - Yangyang Wang
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, First Hospital of Jilin University, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin Province, 130021, PR China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, First Hospital of Jilin University, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin Province, 130021, PR China.
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin Province, 130021, PR China.
| |
Collapse
|
25
|
Shu X, Han F, Hu Y, Hao C, Li Z, Wei Z, Zhang H. Co-infection of porcine deltacoronavirus and porcine epidemic diarrhoea virus alters gut microbiota diversity and composition in the colon of piglets. Virus Res 2022; 322:198954. [PMID: 36198372 DOI: 10.1016/j.virusres.2022.198954] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022]
Abstract
Porcine deltacoronavirus (PDCoV) and porcine epidemic diarrhoea virus (PEDV) are the main porcine enteric coronaviruses that cause severe diarrhoea in piglets, posing huge threat to the swine industry. Our previous study verified that the co-infection of PDCoV and PEDV is common in natural swine infections and obviously enhances the disease severity in piglets. However, the effects of co-infection of PDCoV and PEDV on intestinal microbial community are unknown. In current study, the microbial composition and diversity in the colon of piglets were analyzed. Our results showed that both of PDCoV and PEDV were mainly distributed in the small intestines and caused severe damage of ileum but not colon in the co-inoculated piglets. Furthermore, we observed that PDCoV and PEDV co-infection alters the gut microbiota composition at the phylum, family and genus levels. The abundance of Mitsuokella and Collinsella at genus level were significantly increased in PDCoV-PEDV co-infection piglets. Spearman's correlation analysis further suggested that there existed strong positive correlation between Mitsuokella and TNF-α, IL-6 and IL-8 secretion, these two factors may together aggravating the small intestine pathological lesions. These results proved there existed obvious correlation between the disease severity caused by PDCoV-PEDV co-infection and intestinal microbial community.
Collapse
Affiliation(s)
- Xiangli Shu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Fangfang Han
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Yating Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Chenlin Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zhaoyang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zhanyong Wei
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Key Laboratory for Animal-Derived Food Safety of Henan Province, Zhengzhou 450002, China.
| | - Honglei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Key Laboratory for Animal-Derived Food Safety of Henan Province, Zhengzhou 450002, China.
| |
Collapse
|
26
|
Triacetyl Resveratrol Inhibits PEDV by Inducing the Early Apoptosis In Vitro. Int J Mol Sci 2022; 23:ijms232314499. [PMID: 36498827 PMCID: PMC9737061 DOI: 10.3390/ijms232314499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
PEDV represents an ancient Coronavirus still causing huge economic losses to the porcine breeding industry. Resveratrol has excellent antiviral effects. Triacetyl resveratrol (TCRV), a novel natural derivative of resveratrol, has been recently discovered, and its pharmacological effects need to be explored further. This paper aims to explore the relationship between PEDV and TCRV, which offers a novel strategy in the research of antivirals. In our study, Vero cells and IPEC-J2 cells were used as an in vitro model. First, we proved that TCRV had an obvious anti-PEDV effect and a strong inhibitory effect at different time points. Then, we explored the mechanism of inhibition of PEDV infection by TCRV. Our results showed that TCRV could induce the early apoptosis of PEDV-infected cells, in contrast to PEDV-induced apoptosis. Moreover, we observed that TCRV could promote the expression and activation of apoptosis-related proteins and release mitochondrial cytochrome C into cytoplasm. Based on these results, we hypothesized that TCRV induced the early apoptosis of PEDV-infected cells and inhibited PEDV infection by activating the mitochondria-related caspase pathway. Furthermore, we used the inhibitors Z-DEVD-FMK and Pifithrin-α (PFT-α) to support our hypothesis. In conclusion, the TCRV-activated caspase pathway triggered early apoptosis of PEDV-infected cells, thereby inhibiting PEDV infections.
Collapse
|
27
|
Chen Y, Li P, Zhen R, Wang L, Feng J, Xie Y, Yang B, Xiong Y, Niu J, Wu Q, Jiang Z, He D, Yi H. Effects of niacin on intestinal epithelial Barrier, intestinal Immunity, and microbial community in weaned piglets challenged by PDCoV. Int Immunopharmacol 2022; 111:109054. [PMID: 35921778 DOI: 10.1016/j.intimp.2022.109054] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
|
28
|
Li Z, Fang P, Duan P, Chen J, Fang L, Xiao S. Porcine Deltacoronavirus Infection Cleaves HDAC2 to Attenuate Its Antiviral Activity. J Virol 2022; 96:e0102722. [PMID: 35916536 PMCID: PMC9400482 DOI: 10.1128/jvi.01027-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Protein acetylation plays an important role during virus infection. Thus, it is not surprising that viruses always evolve elaborate mechanisms to regulate the functions of histone deacetylases (HDACs), the essential transcriptional and epigenetic regulators for deacetylation. Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes severe diarrhea in suckling piglets and has the potential to infect humans. In this study, we found that PDCoV infection inhibited cellular HDAC activity. By screening the expressions of different HDAC subfamilies after PDCoV infection, we unexpectedly found that HDAC2 was cleaved. Ectopic expression of HDAC2 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC2 inhibitor (CAY10683) or the knockdown of HDAC2 expression by specific siRNA. Furthermore, we demonstrated that PDCoV-encoded nonstructural protein 5 (nsp5), a 3C-like protease, was responsible for HDAC2 cleavage through its protease activity. Detailed analyses showed that PDCoV nsp5 cleaved HDAC2 at glutamine 261 (Q261), and the cleaved fragments (amino acids 1 to 261 and 262 to 488) lost the ability to inhibit PDCoV replication. Interestingly, the Q261 cleavage site is highly conserved in HDAC2 homologs from other mammalian species, and the nsp5s encoded by seven tested mammalian coronaviruses also cleaved HDAC2, suggesting that cleaving HDAC2 may be a common strategy used by different mammalian coronaviruses to antagonize the antiviral role of HDAC2. IMPORTANCE As an emerging porcine enteropathogenic coronavirus that possesses the potential to infect humans, porcine deltacoronavirus (PDCoV) is receiving increasing attention. In this work, we found that PDCoV infection downregulated cellular histone deacetylase (HDAC) activity. Of particular interest, the viral 3C-like protease, encoded by the PDCoV nonstructural protein 5 (nsp5), cleaved HDAC2, and this cleavage could be observed in the context of PDCoV infection. Furthermore, the cleavage of HDAC2 appears to be a common strategy among mammalian coronaviruses, including the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to antagonize the antiviral role of HDAC2. To our knowledge, PDCoV nsp5 is the first identified viral protein that can cleave cellular HDAC2. Results from our study provide new targets to develop drugs combating coronavirus infection.
Collapse
Affiliation(s)
- Zhuang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Panpan Duan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiyao Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
29
|
Ren Z, Yu Y, Zhang X, Wang Q, Deng J, Chen C, Shi R, Wei Z, Hu H. Exploration of PDCoV-induced apoptosis through mitochondrial dynamics imbalance and the antagonistic effect of SeNPs. Front Immunol 2022; 13:972499. [PMID: 36081520 PMCID: PMC9446457 DOI: 10.3389/fimmu.2022.972499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine Deltacoronavirus (PDCoV), an enveloped positive-strand RNA virus that causes respiratory and gastrointestinal diseases, is widely spread worldwide, but there is no effective drug or vaccine against it. This study investigated the optimal Selenium Nano-Particles (SeNPs) addition concentration (2 - 10 μg/mL) and the mechanism of PDCoV effect on ST (Swine Testis) cell apoptosis, the antagonistic effect of SeNPs on PDCoV. The results indicated that 4 μg/mL SeNPs significantly decreased PDCoV replication on ST cells. SeNPs relieved PDCoV-induced mitochondrial division and antagonized PDCoV-induced apoptosis via decreasing Cyt C release and Caspase 9 and Caspase 3 activation. The above results provided an idea and experimental basis associated with anti-PDCoV drug development and clinical use.
Collapse
Affiliation(s)
- Zhihua Ren
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yueru Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaojie Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiuxiang Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chaoxi Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Zhanyong Wei
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Zhanyong Wei,
| | - Hui Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
30
|
Duan C. An Updated Review of Porcine Deltacoronavirus in Terms of Prevalence, Pathogenicity, Pathogenesis and Antiviral Strategy. Front Vet Sci 2022; 8:811187. [PMID: 35097055 PMCID: PMC8792470 DOI: 10.3389/fvets.2021.811187] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023] Open
Abstract
The recent experience with SARS-COV-2 has raised our alarm about the cross-species transmissibility of coronaviruses and the emergence of new coronaviruses. Knowledge of this family of viruses needs to be constantly updated. Porcine deltacoronavirus (PDCoV), a newly emerging member of the genus Deltacoronavirus in the family Coronaviridae, is a swine enteropathogen that causes diarrhea in pigs and may lead to death in severe cases. Since PDCoV diarrhea first broke out in the United States in early 2014, PDCoV has been detected in many countries, such as South Korea, Japan and China. More importantly, PDCoV can also infect species other than pigs, and infections have even been reported in children, highlighting its potential for cross-species transmission. A thorough and systematic knowledge of the epidemiology and pathogenesis of PDCoV will not only help us control PDCoV infection, but also enable us to discover the common cellular pathways and key factors of coronaviruses. In this review, we summarize the current knowledge on the prevalence, pathogenicity and infection dynamics, pathogenesis and immune evasion strategies of PDCoV. The existing anti-PDCoV strategies and corresponding mechanisms of PDCoV infection are also introduced, aiming to provide suggestions for the prevention and treatment of PDCoV and zoonotic diseases.
Collapse
|
31
|
Kong F, Wang Q, Kenney SP, Jung K, Vlasova AN, Saif LJ. Porcine Deltacoronaviruses: Origin, Evolution, Cross-Species Transmission and Zoonotic Potential. Pathogens 2022; 11:79. [PMID: 35056027 PMCID: PMC8778258 DOI: 10.3390/pathogens11010079] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus of swine that causes acute diarrhoea, vomiting, dehydration and mortality in seronegative neonatal piglets. PDCoV was first reported in Hong Kong in 2012 and its etiological features were first characterized in the United States in 2014. Currently, PDCoV is a concern due to its broad host range, including humans. Chickens, turkey poults, and gnotobiotic calves can be experimentally infected by PDCoV. Therefore, as discussed in this review, a comprehensive understanding of the origin, evolution, cross-species transmission and zoonotic potential of epidemic PDCoV strains is urgently needed.
Collapse
Affiliation(s)
- Fanzhi Kong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Scott P. Kenney
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
32
|
Zhao Y, Xiao D, Zhang L, Song D, Chen R, Li S, Liao Y, Wen Y, Liu W, Yu E, Wen Y, Wu R, Zhao Q, Du S, Wen X, Cao S, Huang X. HSP90 inhibitors 17-AAG and VER-82576 inhibit porcine deltacoronavirus replication in vitro. Vet Microbiol 2021; 265:109316. [PMID: 34954542 DOI: 10.1016/j.vetmic.2021.109316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is highly pathogenic to piglets, and no specific drugs or vaccines are available for the prevention and treatment of PDCoV infection, the need for antiviral therapies is pressing. HSP90 inhibitors have potent inhibitory effects against the replication of numerous viruses, hence we evaluated three HSP90 inhibitors, 17-AAG, VER-82576, and KW-2478, for their effects on PDCoV infection in vitro. We evaluated their effectivenesses at suppressing PDCoV by qRT-PCR, western blot, and TCID50 assay, and found that 17-AAG and VER-82576 inhibited PDCoV at the early stage of replication, while KW-2478 showed no significant antiviral activity at any stage of infection. These results indicated that the PDCoV-inhibitory effects of 17-AAG and VER-82576 might be exerted by targeting host cell factor HSP90AB1 but not HSP90AA1. Further study showed that HSP90AB1 mRNA and protein levels were not significantly different in 17-AAG and VER-82576-treated cells versus control cells. 17-AAG and VER-82576 were also evaluated for their effects on the expressions of TNF-α, IL-6, and IL-12, which are PDCoV-induced proinflammatory cytokines. We found that both 17-AAG and VER-82576 inhibited the expressions of TNF-α, IL-6, and IL-12 to varying degrees, but in a dose dependent manner. From our data we can conclude that the HSP90 inhibitors 17-AAG and VER-82576 are promising candidates for the treatment of PDCoV infection.
Collapse
Affiliation(s)
- Yujia Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dai Xiao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Luwen Zhang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Daili Song
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shiqian Li
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yijie Liao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yimin Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Weizhe Liu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Enbo Yu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xintian Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-observation Experiment Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China; National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-observation Experiment Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China; National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
33
|
Fang P, Zhang H, Sun H, Wang G, Xia S, Ren J, Zhang J, Tian L, Fang L, Xiao S. Construction, Characterization and Application of Recombinant Porcine Deltacoronavirus Expressing Nanoluciferase. Viruses 2021; 13:v13101991. [PMID: 34696421 PMCID: PMC8541611 DOI: 10.3390/v13101991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 02/07/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes diarrhoea in suckling piglets and has the potential for cross-species transmission. No effective PDCoV vaccines or antiviral drugs are currently available. Here, we successfully generated an infectious clone of PDCoV strain CHN-HN-2014 using a combination of bacterial artificial chromosome (BAC)-based reverse genetics system with a one-step homologous recombination. The recued virus (rCHN-HN-2014) possesses similar growth characteristics to the parental virus in vitro. Based on the established infectious clone and CRISPR/Cas9 technology, a PDCoV reporter virus expressing nanoluciferase (Nluc) was constructed by replacing the NS6 gene. Using two drugs, lycorine and resveratrol, we found that the Nluc reporter virus exhibited high sensibility and easy quantification to rapid antiviral screening. We further used the Nluc reporter virus to test the susceptibility of different cell lines to PDCoV and found that cell lines derived from various host species, including human, swine, cattle and monkey enables PDCoV replication, broadening our understanding of the PDCoV cell tropism range. Taken together, our reporter viruses are available to high throughput screening for antiviral drugs and uncover the infectivity of PDCoV in various cells, which will accelerate our understanding of PDCoV.
Collapse
Affiliation(s)
- Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huichang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - He Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Gang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jie Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiansong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liyuan Tian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan Street, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-6884; Fax: +86-27-8728-2608
| |
Collapse
|
34
|
Porcine deltacoronavirus enters porcine IPI-2I intestinal epithelial cells via macropinocytosis and clathrin-mediated endocytosis dependent on pH and dynamin. J Virol 2021; 95:e0134521. [PMID: 34586858 DOI: 10.1128/jvi.01345-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes serious diarrhoea in suckling piglets and has the potential for cross-species transmission. Although extensive studies have been reported on the biology and pathogenesis of PDCoV, the mechanisms by which PDCoV enters cells are not well characterized. In this study, we investigated how PDCoV enters IPI-2I cells, a line of porcine intestinal epithelial cells derived from pig ileum. Immunofluorescence assays, siRNA interference, specific pharmacological inhibitors and dominant-negative mutation results revealed that PDCoV entry into IPI-2I cells depended on clathrin, dynamin and a low-pH environment, but was independent of caveolae. Specific inhibition of phosphatidylinositol 3-kinase (PI3K) and the Na+/H+ exchanger (NHE) revealed that PDCoV entry involves macropinocytosis and depends on NHE rather than on PI3K. Additionally, Rab5 and Rab7, but not Rab11, regulated PDCoV endocytosis. This is the first study to demonstrate that PDCoV uses clathrin-mediated endocytosis and macropinocytosis as alternative endocytic pathways to enter porcine intestinal epithelial cells. We also discussed the entry pathways of PDCoV into other porcine cell lines. Our findings reveal the entry mechanisms of PDCoV and provide new insight into the PDCoV life cycle. IMPORTANCE An emerging enteropathogenic coronavirus, PDCoV has the potential for cross-species transmission, attracting extensive attenuation. Characterizing the detailed process of PDCoV entry into cells will deepen our understanding of the viral infection and pathogenesis, and provide the clues for therapeutic intervention against PDCoV. With the objective, we used complementary approaches to dissect the process in PDCoV-infected IPI-2I cells, a line of more physiologically relevant intestinal epithelial cells to PDCoV infection in vivo. Here, we demonstrate that PDCoV enters IPI-2I cells via macropinocytosis that does not require a specific receptor and clathrin-mediated endocytosis that requires a low-pH environment and dynamin, while a caveola-mediated endocytic pathway is used by PDCoV to enter swine testicular (ST) cells and porcine kidney (LLC-PK1) cells. These findings provide a molecular detail of the cellular entry pathways of PDCoV and may direct us toward novel antiviral drug development.
Collapse
|
35
|
Phylogenetic Classification of Global Porcine Deltacoronavirus (PDCoV) Reference Strains and Molecular Characterization of PDCoV in Taiwan. Viruses 2021; 13:v13071337. [PMID: 34372544 PMCID: PMC8310012 DOI: 10.3390/v13071337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV), a highly transmissible intestinal pathogen, causes mild to severe clinical symptoms, such as anorexia, vomiting and watery diarrhea, in piglets and/or sows. Since the first report of PDCoV infection in Hong Kong in 2012, the virus has readily disseminated to North America and several countries in Asia. However, to date, no unified phylogenetic classification system has been developed. To fill this gap, we classified historical PDCoV reference strains into two major genogroups (G-I and G-II) and three subgroups (G-II-a, G-II-b and G-II-c). In addition, no genetic research on the whole PDCoV genome or spike gene has been conducted on isolates from Taiwan so far. To delineate the genetic characteristics of Taiwanese PDCoV, we performed whole-genome sequencing to decode the viral sequence. The PDCoV/104-553/TW-2015 strain is closely related to the G-II-b group, which is mainly composed of PDCoV variants from China. Additionally, various mutations in the Taiwanese PDCoV (104-553/TW-2015) strain might be linked to the probability of recombination with other genogroups of PDCoVs or other porcine coronaviruses. These results represent a pioneering phylogenetic characterization of the whole genome of a PDCoV strain isolated in Taiwan in 2015 and will potentially facilitate the development of applicable preventive strategies against this problematic virus.
Collapse
|
36
|
Duan C, Wang J, Liu Y, Zhang J, Si J, Hao Z, Wang J. Antiviral effects of ergosterol peroxide in a pig model of porcine deltacoronavirus (PDCoV) infection involves modulation of apoptosis and tight junction in the small intestine. Vet Res 2021; 52:86. [PMID: 34127062 PMCID: PMC8201433 DOI: 10.1186/s13567-021-00955-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a newly discovered swine enteropathogenic coronavirus with worldwide distribution. However, efficient strategies to prevent or treat the infection remain elusive. Our in vitro study revealed that ergosterol peroxide (EP) from the mushroom Cryptoporus volvatus has efficient anti-PDCoV properties. The aim of this study is to evaluate the potential of EP as a treatment for PDCoV in vivo and elucidate the possible mechanisms. Seven-day-old piglets were infected with PDCoV by oral administration in the presence or absence of EP. Piglets infected with PDCoV were most affected, whereas administration of EP reduced diarrhea incidence, alleviated intestinal lesion, and decreased viral load in feces and tissues. EP reduced PDCoV-induced apoptosis and enhanced tight junction protein expressions in the small intestine, maintaining the integrity of the intestinal barrier. EP showed immunomodulatory effect by suppressing PDCoV-induced pro-inflammatory cytokines and the activation of IκBα and NF-κB p65, and upregulating IFN-I expression. Knockdown of p38 inhibited PDCoV replication and alleviated PDCoV-induced apoptosis, implying that EP inhibited PDCoV replication and alleviated PDCoV-induced apoptosis via p38/MAPK signaling pathway. Collectively, ergosterol peroxide can protect piglets from PDCoV, revealing the potential of EP for development as a promising strategy for treating and controlling the infection of PDCoV.
Collapse
Affiliation(s)
- Cong Duan
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junchi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jialu Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianyong Si
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhihui Hao
- College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
37
|
Zhang H, Han F, Shu X, Li Q, Ding Q, Hao C, Yan X, Xu M, Hu H. Co-infection of porcine epidemic diarrhoea virus and porcine deltacoronavirus enhances the disease severity in piglets. Transbound Emerg Dis 2021; 69:1715-1726. [PMID: 33960702 DOI: 10.1111/tbed.14144] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/08/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022]
Abstract
Porcine epidemic diarrhoea virus (PEDV) and porcine deltacoronavirus (PDCoV) are the main enteric coronaviruses that cause acute diarrhoea and dehydration in pigs. The co-infection of PDCoV and PEDV is common in natural swine infections, but the clinical outcomes of the interaction between the co-circulating PDCoV and PEDV are unknown. In current study, we established a co-infection model by inoculating the cell culture-adapted PDCoV HNZK-02 strain and PEDV CV777 simultaneously or sequentially using 4-day-old piglets. The weight loss, clinical scores, viral load and titre, histopathological changes and serum cytokines expression were compared with piglets challenged by either virus. Our results indicated the piglets co-inoculated with PDCoV and PEDV showed more serious diarrhoeal symptoms, mainly characterized by longer diarrhoeal period when compared to those of the mono-infection piglets. Furthermore, we observed that PEDV could promote PDCoV replication in the co-inoculated piglets with evidence of prolonged faecal viral shedding, high viral titres in faeces and intestine tissues. Histological analysis indicated the co-infected piglets showed more extensive and serious pathological lesions in small intestine tissues than the mono-infection piglets. Our data also suggested that the co-infection of PDCoV and PEDV caused the excessive expression of pro-inflammatory cytokines (IL-6, IL-8 and TNF-α) in serum. These results proved there existed obvious synergistic pathogenic effects between PDCoV and PEDV co-infection, which provided new insights into the synergistic pathogenic mechanism caused by these two porcine coronaviruses.
Collapse
Affiliation(s)
- Honglei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, China
| | - Fangfang Han
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiangli Shu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qianqian Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qingwen Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chenlin Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiaoguang Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Menglong Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hui Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, China
| |
Collapse
|
38
|
Jeon JH, Lee C. Stress-activated protein kinases are involved in the replication of porcine deltacoronavirus. Virology 2021; 559:196-209. [PMID: 33964685 DOI: 10.1016/j.virol.2021.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
This study was conducted to examine the role of stress-activated protein kinases (SAPKs), including c-Jun NH2-terminal kinases (JNK1/2) and p38 mitogen-activated protein kinase (MAPK), in porcine deltacoronavirus (PDCoV) infection. Results demonstrated the activation of JNK1/2 and p38 MAPK in PDCoV-infected cells, which occurred concomitant with viral biosynthesis and irrespective of cell type. Pharmacological inhibition or knockdown of either SAPK significantly attenuated PDCoV replication, whereas addition of a signaling activator augmented virus infectivity. Moreover, pharmacological inhibition of JNK1/2 or p38 MAPK activation was innocuous to viral entry but significantly detrimental to post uncoating stages of the replication cycle. Remarkably, cytokine gene expression in PDCoV-infected IPEC-J2 cells was modified by inhibiting the activation of either SAPK. Collectively, these data indicate that JNK1/2 and p38 MAPK signaling pathways contribute to viral biosynthesis and regulate immune responses, thereby favoring the replication of PDCoV.
Collapse
Affiliation(s)
- Ji Hyun Jeon
- Animal Virology Laboratory, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Changhee Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 702-701, Republic of Korea.
| |
Collapse
|
39
|
Bile acids LCA and CDCA inhibited porcine deltacoronavirus replication in vitro. Vet Microbiol 2021; 257:109097. [PMID: 33933854 DOI: 10.1016/j.vetmic.2021.109097] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/25/2021] [Indexed: 12/12/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteric coronavirus that causes gastroenteritis in pigs and no vaccines or antiviral drugs are available. Bile acids are active factors in intestines and influence the replication of enteric viruses. Currently, the role of bile acids on PDCoV replication is unknown. In this study, we tested the effects of different types of bile acids on the replication of PDCoV in cell culture. We found that physiological concentrations of bile acids chenodeoxycholic acid (CDCA) and lithocholic acid (LCA) had antiviral activity against PDCoV in porcine kidney cell line (LLC-PK1) and porcine small intestinal epithelial cell line (IPEC-J2). In IPEC-J2 cells, CDCA and LCA inhibited PDCoV replication at post-entry stages by inducing the production of interferon (IFN)-λ3 and IFN-stimulated gene 15 (ISG15) via G protein-coupled receptor (GPCR). In summary, bile acids CDCA and LCA restricted PDCoV infection and LCA functioned through a GPCR-IFN-λ3-ISG15 signaling axis in IPEC-J2 cells. Our results may open new avenues for the development of antiviral drugs to treat PDCoV infection in pigs.
Collapse
|
40
|
Ergosterol peroxide suppresses porcine deltacoronavirus (PDCoV)-induced autophagy to inhibit virus replication via p38 signaling pathway. Vet Microbiol 2021; 257:109068. [PMID: 33894664 PMCID: PMC8035807 DOI: 10.1016/j.vetmic.2021.109068] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is a swine enteropathogenic coronavirus (CoV) that continues to spread globally, placing strain on economic and public health. Currently, the pathogenic mechanism of PDCoV remains largely unclear, and effective strategies to prevent or treat PDCoV infection are still limited. In this study, the interaction between autophagy and PDCoV replication in LLC-PK1 cells was investigated. We demonstrated that PDCoV infection induced a complete autophagy process. Pharmacologically induced autophagy with rapamycin increased the expression of PDCoV N, while pharmacologically inhibited autophagy with wortmannin decreased the expression of PDCoV N, suggesting that PDCoV-induced autophagy facilitates virus replication. Further experiments showed that PDCoV infection activated p38 signaling pathway to trigger autophagy. Besides, ergosterol peroxide (EP) alleviated PDCoV-induced activation of p38 to suppress autophagy, thus exerting its antiviral effects. Finally, we employed a piglet model of PDCoV infection to demonstrate that EP prevented PDCoV infection by suppressing PDCoV-induced autophagy via p38 signaling pathway in vivo. Collectively, these findings accelerate the understanding of the pathogenesis of PDCoV infection and provide new insights for the development of EP as an effective therapeutic strategy for PDCoV.
Collapse
|
41
|
Fang P, Hong Y, Xia S, Zhang J, Ren J, Zhou Y, Fang L, Xiao S. Porcine deltacoronavirus nsp10 antagonizes interferon-β production independently of its zinc finger domains. Virology 2021; 559:46-56. [PMID: 33813212 DOI: 10.1016/j.virol.2021.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/18/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that causes serious vomiting and diarrhea in piglets. Previous work demonstrated that PDCoV infection inhibits type I interferon (IFN) production. Here, we found that ectopic expression of PDCoV nsp10 significantly inhibited Sendai virus (SeV)-induced IFN-β production by impairing the phosphorylation and nuclear translocation of two transcription factors, IRF3 and NF-κB p65 subunit. Interestingly, experiments with truncated mutants and site-directed mutagenesis revealed that PDCoV nsp10 mutants with missing or destroyed zinc fingers (ZFs) domains also impeded SeV-induced IFN-β production, suggesting that nsp10 does not require its ZF domains to antagonize IFN-β production. Further work found that co-expression of nsp10 with nsp14 or nsp16, two replicative enzymes, significantly enhanced the inhibitory effects of nsp10 on IFN-β. Taken together, our results demonstrate that PDCoV nsp10 antagonizes IFN via a ZF-independent mechanism and has a synergistic effect with nsp14 and nsp16 on inhibiting IFN-β production.
Collapse
Affiliation(s)
- Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yingying Hong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jiansong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jie Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| |
Collapse
|
42
|
Jin XH, Zhang YF, Yuan YX, Han L, Zhang GP, Hu H. Isolation, characterization and transcriptome analysis of porcine deltacoronavirus strain HNZK-02 from Henan Province, China. Mol Immunol 2021; 134:86-99. [PMID: 33740580 DOI: 10.1016/j.molimm.2021.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/26/2020] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Porcine deltacoronavirus (PDCoV), an emerging porcine enteropathogenic coronavirus, causes acute watery diarrhea and vomiting in piglets. Here, we isolated a strain of PDCoV from intestinal content of a piglet with severe watery diarrhea on a farm located in Henan Province, named PDCoV strain HNZK-02. Subsequently, the complete genomes of cell-cultured PDCoV HNZK-02 passage 5 and 15 were sequenced and analyzed. There was a continuous 3-nucleotide deletion and 7 amino acid changes in S genes when compared with the other reported PDCoVs. RNA sequencing (RNA-seq)-based transcriptome analysis was used to quantitatively identify differentially expressed genes after PDCoV infection in ST cells. In total, 523 differentially expressed genes (DEGs) were identified, including 62 upregulated genes and 457 downregulated genes. The 62 upregulated genes were associated with TNF signaling pathway, cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, IL-17 signaling, chemokine signaling pathway and NF-κB signaling pathway. The significant expressing changed genes, including three antiviral genes (Mx1, OASL, OAS1) and three inflammatory chemokine related genes (CCL5, CXCL8, CXCL10) were further validated using quantitative real-time RT-PCR (qRT-PCR) assay. It showed the consistent expression patterns of the candidate genes with those from RNA-seq. Our results demonstrated that PDCoV infection activates NF-κB signaling pathway and leads to the expression of inflammatory factors, which may be related to TLRs but TLR2 is not a critical factor.In general, these results can help us to confirm the molecular regulation mechanism and also provide us a comprehensive resource of PDCoV infection.
Collapse
Affiliation(s)
- Xiao-Hui Jin
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Yun-Fei Zhang
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Yi-Xin Yuan
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Li Han
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, 450002, PR China
| | - Gai-Ping Zhang
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Hui Hu
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, PR China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, 450002, PR China.
| |
Collapse
|
43
|
Khamassi Khbou M, Daaloul Jedidi M, Bouaicha Zaafouri F, Benzarti M. Coronaviruses in farm animals: Epidemiology and public health implications. Vet Med Sci 2021; 7:322-347. [PMID: 32976707 PMCID: PMC7537542 DOI: 10.1002/vms3.359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022] Open
Abstract
Coronaviruses (CoVs) are documented in a wide range of animal species, including terrestrial and aquatic, domestic and wild. The geographic distribution of animal CoVs is worldwide and prevalences were reported in several countries across the five continents. The viruses are known to cause mainly gastrointestinal and respiratory diseases with different severity levels. In certain cases, CoV infections are responsible of huge economic losses associated or not to highly public health impact. Despite being enveloped, CoVs are relatively resistant pathogens in the environment. Coronaviruses are characterized by a high mutation and recombination rate, which makes host jumping and cross-species transmission easy. In fact, increasing contact between different animal species fosters cross-species transmission, while agriculture intensification, animal trade and herd management are key drivers at the human-animal interface. If contacts with wild animals are still limited, humans have much more contact with farm animals, during breeding, transport, slaughter and food process, making CoVs a persistent threat to both humans and animals. A global network should be established for the surveillance and monitoring of animal CoVs.
Collapse
Affiliation(s)
- Médiha Khamassi Khbou
- Laboratory of Infectious Animal Diseases, Zoonoses, and Sanitary RegulationUniv. Manouba. Ecole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - Monia Daaloul Jedidi
- Laboratory of Microbiology and ImmunologyUniv. ManoubaEcole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - Faten Bouaicha Zaafouri
- Department of Livestock Semiology and MedicineUniv. ManoubaEcole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - M’hammed Benzarti
- Laboratory of Infectious Animal Diseases, Zoonoses, and Sanitary RegulationUniv. Manouba. Ecole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| |
Collapse
|
44
|
Duan C, Ge X, Wang J, Wei Z, Feng WH, Wang J. Ergosterol peroxide exhibits antiviral and immunomodulatory abilities against porcine deltacoronavirus (PDCoV) via suppression of NF-κB and p38/MAPK signaling pathways in vitro. Int Immunopharmacol 2021; 93:107317. [PMID: 33493866 PMCID: PMC9412180 DOI: 10.1016/j.intimp.2020.107317] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus (CoV) that poses economic and public health burdens. Currently, there are no effective antiviral agents against PDCoV. Cryptoporus volvatus often serves as an antimicrobial agent in Traditional Chinese Medicines. This study aimed to evaluate the antiviral activities of ergosterol peroxide (EP) from C. volvatus against PDCoV infection. The inhibitory activity of EP against PDCoV was assessed by using virus titration and performing Quantitative Reverse transcription PCR (RT-qPCR), Western blotting and immunofluorescence assays in LLC-PK1 cells. The mechanism of EP against PDCoV was analyzed by flow cytometry, RT-qPCR and Western blotting. We found that EP treatment inhibited PDCoV infection in LLC-PK1 cells in a dose-dependent manner. Subsequently, we demonstrated that EP blocked virus attachment and entry using RT-qPCR. Time-of-addition assays indicated that EP mainly exerted its inhibitory effect at the early and middle stages in the PDCoV replication cycle. EP also inactivated PDCoV infectivity directly as well as suppressed PDCoV-induced apoptosis. Furthermore, EP treatment decreased the phosphorylation of IκBα and p38 MAPK induced by PDCoV infection as well as the mRNA levels of cytokines (IL-1β, IL-6, IL-12, TNF-α, IFN-α, IFN-β, Mx1 and PKR). These results imply that EP can inhibit PDCoV infection and regulate host immune responses by downregulating the activation of the NF-κB and p38/MAPK signaling pathways in vitro. EP can be used as a potential candidate for the development of a new anti-PDCoV therapy.
Collapse
Affiliation(s)
- Cong Duan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinna Ge
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junchi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhanyong Wei
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Wen-Hai Feng
- State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China.
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
45
|
Replicative capacity of four porcine enteric coronaviruses in LLC-PK1 cells. Arch Virol 2021; 166:935-941. [PMID: 33492525 PMCID: PMC7831621 DOI: 10.1007/s00705-020-04947-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/13/2020] [Indexed: 01/24/2023]
Abstract
Enteric coronaviruses (CoVs) are major pathogens that cause diarrhea in piglets. To date, four porcine enteric CoVs have been identified: transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and HKU2-like porcine enteric alphacoronavirus (PEAV). In this study, we investigated the replicative capacity of these four enteric CoVs in LLC-PK1 cells, a porcine kidney cell line. The results showed that LLC-PK1 cells are susceptible to all four enteric CoVs, particularly to TGEV and PDCoV infections, indicating that LLC-PK1 cells can be applied to porcine enteric CoV research in vitro, particularly for coinfection studies.
Collapse
|
46
|
Isolation and Tissue Culture Adaptation of Porcine Deltacoronavirus: A Case Study. Methods Mol Biol 2020. [PMID: 32833205 DOI: 10.1007/978-1-0716-0900-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Porcine deltacoronavirus (PDCoV) has emerged as a novel, contagious swine enteric coronavirus that causes watery diarrhea and/or vomiting and intestinal villous atrophy in nursing piglets. PDCoV-related diarrhea first occurred in the USA in 2014 and was subsequently reported in South Korea, China, Thailand, Vietnam, and Lao People's Democratic Republic, leading to massive economic losses and posing a threat to the swine industry worldwide. Currently, no treatments or vaccines for PDCoV are available. The critical step in the development of potential vaccines against PDCoV infection is the isolation and propagation of PDCoV in cell culture. This chapter provides a detailed protocol for isolation and propagation of PDCoV in swine testicular (ST) and LLC porcine kidney (LLC-PK) cell cultures supplemented with pancreatin and trypsin, respectively. Filtered clinical samples (swine intestinal contents or feces) applied to ST or LLC-PK cells produce cytopathic effects characterized by rounding, clumping, and detachment of cells. PDCoV replication in cells can be quantifiably monitored by qRT-PCR, immunofluorescence assays, and immune-electron microscopy. Infectious viral titers can be evaluated by using plaque assays or 50% tissue culture infectious dose (TCID50) assays. The ST or LLC-PK cells efficiently supported serial passage and propagation of PDCoV. After serial passage of PDCoV in either ST or LLC-PK cells, the virus can be purified further in ST cells by plaque assays.
Collapse
|
47
|
Prevalence and phylogenetic analysis of porcine deltacoronavirus in Sichuan province, China. Arch Virol 2020; 165:2883-2889. [PMID: 32892248 PMCID: PMC7474797 DOI: 10.1007/s00705-020-04796-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 08/04/2020] [Indexed: 10/25/2022]
Abstract
In order to understand the prevalence and genetic diversity of porcine deltacoronavirus (PDCoV) in diarrhoeal pigs in Sichuan province, 634 clinical samples were collected from individual pigs with diarrhoea in 13 regions of Sichuan province, China, from January 2017 and June 2019. The detection results showed that the infection rate of PDCoV was relatively low in diarrhoeal pigs, 13.25% (84/634), but the infection rate of PEDV (porcine epidemic diarrhea virus) was high, 32.18% (204/634). Coinfection with PEDV was common (55.95%, 47/84) in PDCoV-infected diarrhoeal pigs. Additionally, the chance of PDCoV infection was 2.77 times higher in suckling piglets than in sows, and about 3.30 times higher in spring and winter than in summer. PDCoV/PEDV coinfection was 75% less likely in sows than in suckling piglets. The complete genomes of four Sichuan PDCoV strains were sequenced and analysed. There were some insertion-deletion signatures in the whole genome sequences of four strains, including a 6-nt deletion in the non-structural gene 2 region, a 9-nt insertion in the non-structural gene 3 region, a 3-nt deletion in the S gene region, and a distinguishing 11-nt deletion in the 3'UTR region. Phylogenetic analysis based on complete genome sequences revealed that the PDCoV Sichuan strains were closely related to other Chinese PDCoV reference strains; however, phylogenetic analysis based on S gene sequences showed that the CH/SC/2019 strain clustered in a large clade with strains from the USA, Japan, and Korea. These data advance our understanding of the genetic diversity and evolutionary characteristics of PDCoV in China and may contribute to vaccine development.
Collapse
|
48
|
Liu S, Fang P, Ke W, Wang J, Wang X, Xiao S, Fang L. Porcine deltacoronavirus (PDCoV) infection antagonizes interferon-λ1 production. Vet Microbiol 2020; 247:108785. [PMID: 32768229 PMCID: PMC7331541 DOI: 10.1016/j.vetmic.2020.108785] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 01/10/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that causes watery diarrhea, vomiting and mortality in nursing piglets. Type III interferons (IFN-λs) are the major antiviral cytokines in intestinal epithelial cells, the target cells in vivo for PDCoV. In this study, we found that PDCoV infection remarkably inhibited Sendai virus-induced IFN-λ1 production by suppressing transcription factors IRF and NF-κB in IPI-2I cells, a line of porcine intestinal mucosal epithelial cells. We also confirmed that PDCoV infection impeded the activation of IFN-λ1 promoter stimulated by RIG-I, MDA5 and MAVS, but not by TBK1 and IRF1. Although the expression levels of IRF1 and MAVS were not changed, PDCoV infection resulted in reduction of the number of peroxisomes, the platform for MAVS to activate IRF1, and subsequent type III IFN production. Taken together, our study demonstrates that PDCoV suppresses type III IFN responses to circumvent the host's antiviral immunity.
Collapse
Affiliation(s)
- Shudan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wenting Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jing Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xunlei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
49
|
Zhao D, Gao X, Zhou P, Zhang L, Zhang Y, Wang Y, Liu X. Evaluation of the immune response in conventionally weaned pigs infected with porcine deltacoronavirus. Arch Virol 2020; 165:1653-1658. [PMID: 32399787 PMCID: PMC7215125 DOI: 10.1007/s00705-020-04590-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/14/2020] [Indexed: 12/27/2022]
Abstract
Although porcine deltacoronavirus (PDCoV) is a significant pandemic threat in the swine population and has caused significant economic losses, information regarding the immune response in conventionally weaned pigs infected with PDCoV is scarce. Hence, the immune response in conventionally weaned pigs infected with PDCoV was assessed after challenge and rechallenge. After the first challenge, obvious diarrhea and viral shedding developed successively in all pigs in the four inoculation dose groups from 3 to 14 days postinfection (dpi), and all pigs recovered (no clinical symptoms or viral shedding) by 21 dpi. All pigs in the four groups exhibited significantly increased PDCoV-specific IgG, IgA and virus-neutralizing (VN) antibody (Ab) titers and IFN-γ levels in the serum after the first challenge. All pigs were completely protected against rechallenge at 21 dpi. The serum levels of PDCoV-specific IgG, IgA, and VN Abs increased further after rechallenge. Notably, the IFN-γ level declined continuously after 7 dpi. In addition, the levels of PDCoV-specific IgG, IgA and VN Abs in saliva increased significantly after rechallenge and correlated well with the serum Ab titers. Furthermore, the appearance of clinical symptoms of PDCoV infection in conventionally weaned pigs was delayed with reduced inoculation doses. In summary, the data presented here offer important reference information for future PDCoV animal infection and vaccine-induced immunoprotection experiments.
Collapse
Affiliation(s)
- Donghong Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| | - Xiang Gao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| | - Peng Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| | - Liping Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| | - Yonglu Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| | - Xinsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| |
Collapse
|
50
|
Wang Z, Li X, Shang Y, Wu J, Dong Z, Cao X, Liu Y, Lan X. Rapid differentiation of PEDV wild-type strains and classical attenuated vaccine strains by fluorescent probe-based reverse transcription recombinase polymerase amplification assay. BMC Vet Res 2020; 16:208. [PMID: 32571305 PMCID: PMC7306936 DOI: 10.1186/s12917-020-02424-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/11/2020] [Indexed: 12/28/2022] Open
Abstract
Background Porcine epidemic diarrhea virus (PEDV), an intestinal coronavirus that causes acute diarrhea and high mortality in suckling piglets, can result in high economic losses in the swine industry. In recent years, despite the use of China’s current vaccine immunization strategy, multiple types of PEDV strains were still found in immunized swine herds. Our research aims to explore a new rapid differentiation method to distinguish the different types of PEDV strains and assess the safety evaluation of classical attenuated vaccine strains in swine herds. Results In the study, a differential one-step quantitative real-time fluorescent reverse transcription recombinase polymerase amplification (real-time RT-RPA) method based on the PEDV universal real-time RT-RPA assay was established according to the ORF1 deletion sequences of three classical attenuated vaccine strains (PEDV attenuated vaccine KC189944, attenuated CV777 and DR13) and five Vero cell-adapted isolates (JS2008, SDM, SQ2014, SC1402, HLJBY), which could effectively differentiate PEDV classical attenuated vaccine strains from wild-type strains (PEDV classical wild strains and variant strains). The detection limits of PEDV RNA in the both PEDV real-time RT-RPA assays were 300 copies within 20 min at 39 °C, and the detection limits of classical attenuated vaccine strain CV777, Vero-cell-adapted isolate JS2008, and PEDV wild-type strain DX were 100.5 TCID50/100 μL, 101.1 TCID50/100 μL, and 101.2 TCID50/100 μL, respectively. Both assays were highly specific for PEDV, showing no cross-reactivity with other enteral viruses. Conclusion This RPA method we developed is simple, time-effective, and safe and provides a reliable technical tool for the differential diagnosis and clinical epidemic surveillance of PEDV classical attenuated vaccine strains and wild-type strains.
Collapse
Affiliation(s)
- Zhilin Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Xuerui Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Jinyan Wu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Zhen Dong
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China.,College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Xiaoan Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Xi Lan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China.
| |
Collapse
|