1
|
Bazzoni E, Cacciotto C, Zobba R, Pittau M, Martella V, Alberti A. Bat Ecology and Microbiome of the Gut: A Narrative Review of Associated Potentials in Emerging and Zoonotic Diseases. Animals (Basel) 2024; 14:3043. [PMID: 39457973 PMCID: PMC11504201 DOI: 10.3390/ani14203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
In this review, we tentatively tried to connect the most recent findings on the bat microbiome and to investigate on their microbial communities, that may vary even in conspecific hosts and are influenced by host physiology, feeding behavior and diet, social interactions, but also by habitat diversity and climate change. From a conservation perspective, understanding the potentially negative and indirect effects of habitat destruction on animal microbiota can also play a crucial role in the conservation and management of the host itself. According to the One Health concept, which recognizes an interdependence between humans, animals, and the environment, bat microbiota represents an indicator of host and environmental health, besides allowing for evaluation of the risk of emerging infectious diseases. We noticed that a growing number of studies suggest that animal microbiota may respond in various ways to changes in land use, particularly when such changes lead to altered or deficient food resources. We have highlighted that the current literature is strongly focused on the initial phase of investigating the microbial communities found in Chiroptera from various habitats. However, there are gaps in effectively assessing the impacts of pathogens and microbial communities in general in animal conservation, veterinary, and public health. A deeper understanding of bat microbiomes is paramount to the implementation of correct habitat and host management and to the development of effective surveillance protocols worldwide.
Collapse
Affiliation(s)
- Emanuela Bazzoni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
| | - Carla Cacciotto
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
- Mediterranean Center for Disease Control, 07100 Sassari, Italy
| | - Rosanna Zobba
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
| | - Marco Pittau
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
- Mediterranean Center for Disease Control, 07100 Sassari, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Bari, Italy;
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Alberto Alberti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
- Mediterranean Center for Disease Control, 07100 Sassari, Italy
| |
Collapse
|
2
|
Muzeniek T, Perera T, Siriwardana S, Bas D, Bayram F, Öruc M, Becker-Ziaja B, Perera I, Weerasena J, Handunnetti S, Schwarz F, Premawansa G, Premawansa S, Yapa W, Nitsche A, Kohl C. Comparative virome analysis of individual shedding routes of Miniopterus phillipsi bats inhabiting the Wavul Galge cave, Sri Lanka. Sci Rep 2023; 13:12859. [PMID: 37553373 PMCID: PMC10409741 DOI: 10.1038/s41598-023-39534-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Bats are described as the natural reservoir host for a wide range of viruses. Although an increasing number of bat-associated, potentially human pathogenic viruses were discovered in the past, the full picture of the bat viromes is not explored yet. In this study, the virome composition of Miniopterus phillipsi bats (formerly known as Miniopterus fuliginosus bats in Sri Lanka) inhabiting the Wavul Galge cave, Sri Lanka, was analyzed. To assess different possible excretion routes, oral swabs, feces and urine were collected and analyzed individually by using metagenomic NGS. The data obtained was further evaluated by using phylogenetic reconstructions, whereby a special focus was set on RNA viruses that are typically associated with bats. Two different alphacoronavirus strains were detected in feces and urine samples. Furthermore, a paramyxovirus was detected in urine samples. Sequences related to Picornaviridae, Iflaviridae, unclassified Riboviria and Astroviridae were identified in feces samples and further sequences related to Astroviridae in urine samples. No viruses were detected in oral swab samples. The comparative virome analysis in this study revealed a diversity in the virome composition between the collected sample types which also represent different potential shedding routes for the detected viruses. At the same time, several novel viruses represent first reports of these pathogens from bats in Sri Lanka. The detection of two different coronaviruses in the samples indicates the potential general persistence of this virus species in M. phillipsi bats. Based on phylogenetics, the identified viruses are closely related to bat-associated viruses with comparably low estimation of human pathogenic potential. In further studies, the seasonal variation of the virome will be analyzed to identify possible shedding patterns for particular viruses.
Collapse
Affiliation(s)
- Therese Muzeniek
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Thejanee Perera
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 00300, Sri Lanka
| | - Sahan Siriwardana
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo, 00300, Sri Lanka
| | - Dilara Bas
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Fatimanur Bayram
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Mizgin Öruc
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Beate Becker-Ziaja
- Centre for International Health Protection, Public Health Laboratory Support (ZIG 4), Robert Koch Institute, 13353, Berlin, Germany
| | - Inoka Perera
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo, 00300, Sri Lanka
| | - Jagathpriya Weerasena
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 00300, Sri Lanka
| | - Shiroma Handunnetti
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 00300, Sri Lanka
| | - Franziska Schwarz
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | | | - Sunil Premawansa
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo, 00300, Sri Lanka
| | - Wipula Yapa
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo, 00300, Sri Lanka
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Claudia Kohl
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany.
| |
Collapse
|
3
|
Cohen LE, Fagre AC, Chen B, Carlson CJ, Becker DJ. Coronavirus sampling and surveillance in bats from 1996-2019: a systematic review and meta-analysis. Nat Microbiol 2023; 8:1176-1186. [PMID: 37231088 PMCID: PMC10234814 DOI: 10.1038/s41564-023-01375-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/24/2023] [Indexed: 05/27/2023]
Abstract
The emergence of SARS-CoV-2 highlights a need for evidence-based strategies to monitor bat viruses. We performed a systematic review of coronavirus sampling (testing for RNA positivity) in bats globally. We identified 110 studies published between 2005 and 2020 that collectively reported positivity from 89,752 bat samples. We compiled 2,274 records of infection prevalence at the finest methodological, spatiotemporal and phylogenetic level of detail possible from public records into an open, static database named datacov, together with metadata on sampling and diagnostic methods. We found substantial heterogeneity in viral prevalence across studies, reflecting spatiotemporal variation in viral dynamics and methodological differences. Meta-analysis identified sample type and sampling design as the best predictors of prevalence, with virus detection maximized in rectal and faecal samples and by repeat sampling of the same site. Fewer than one in five studies collected and reported longitudinal data, and euthanasia did not improve virus detection. We show that bat sampling before the SARS-CoV-2 pandemic was concentrated in China, with research gaps in South Asia, the Americas and sub-Saharan Africa, and in subfamilies of phyllostomid bats. We propose that surveillance strategies should address these gaps to improve global health security and enable the origins of zoonotic coronaviruses to be identified.
Collapse
Affiliation(s)
- Lily E Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Anna C Fagre
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Binqi Chen
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
4
|
Ch’ng L, Tsang SM, Ong ZA, Low DH, Wiantoro S, Smith IL, Simmons NB, Su YC, Lohman DJ, Smith GJ, Mendenhall IH. Co-circulation of alpha- and beta-coronaviruses in Pteropus vampyrus flying foxes from Indonesia. Transbound Emerg Dis 2022; 69:3917-3925. [PMID: 36382687 PMCID: PMC9898127 DOI: 10.1111/tbed.14762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/03/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Bats are important reservoirs for alpha- and beta-coronaviruses. Coronaviruses (CoV) have been detected in pteropodid bats from several Southeast Asian countries, but little is known about coronaviruses in the Indonesian archipelago in proportion to its mammalian biodiversity. In this study, we screened pooled faecal samples from the Indonesian colonies of Pteropus vampyrus with unbiased next-generation sequencing. Bat CoVs related to Rousettus leschenaultii CoV HKU9 and Eidolon helvum CoV were detected. The 121 faecal samples were further screened using a conventional hemi-nested pan-coronavirus PCR assay. Three positive samples were successfully sequenced, and phylogenetic reconstruction revealed the presence of alpha- and beta-coronaviruses. CoVs belonging to the subgenera Nobecovirus, Decacovirus and Pedacovirus were detected in a single P. vampyrus roost. This study expands current knowledge of coronavirus diversity in Indonesian flying foxes, highlighting the need for longitudinal surveillance of colonies as continuing urbanization and deforestation heighten the risk of spillover events.
Collapse
Affiliation(s)
- Lena Ch’ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Susan M. Tsang
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Biology Department, City College of New York, City University of New York, New York, NY 10031, USA
- Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY 10016, USA
- Zoology Division, National Museum of Natural History, Manila 1000, Philippines
| | - Zoe A. Ong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Dolyce H.W. Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Sigit Wiantoro
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency, Cibinong, West Java 16911, Indonesia
| | - Ina L. Smith
- Health and Biosecurity, The Commonwealth Scientific and Industrial Research Organization, Black Mountain, ACT 2601, Australia
| | - Nancy B. Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Yvonne C.F. Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - David J. Lohman
- Biology Department, City College of New York, City University of New York, New York, NY 10031, USA
- Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY 10016, USA
- Zoology Division, National Museum of Natural History, Manila 1000, Philippines
| | - Gavin J.D. Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore
- SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA
| | - Ian H. Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore
| |
Collapse
|
5
|
Lawrence P, Escudero-Pérez B. Henipavirus Immune Evasion and Pathogenesis Mechanisms: Lessons Learnt from Natural Infection and Animal Models. Viruses 2022; 14:v14050936. [PMID: 35632678 PMCID: PMC9146692 DOI: 10.3390/v14050936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Nipah henipavirus (NiV) and Hendra henipavirus (HeV) are zoonotic emerging paramyxoviruses causing severe disease outbreaks in humans and livestock, mostly in Australia, India, Malaysia, Singapore and Bangladesh. Both are bat-borne viruses and in humans, their mortality rates can reach 60% in the case of HeV and 92% for NiV, thus being two of the deadliest viruses known for humans. Several factors, including a large cellular tropism and a wide zoonotic potential, con-tribute to their high pathogenicity. This review provides an overview of HeV and NiV pathogenicity mechanisms and provides a summary of their interactions with the immune systems of their different host species, including their natural hosts bats, spillover-hosts pigs, horses, and humans, as well as in experimental animal models. A better understanding of the interactions between henipaviruses and their hosts could facilitate the development of new therapeutic strategies and vaccine measures against these re-emerging viruses.
Collapse
Affiliation(s)
- Philip Lawrence
- Science and Humanities Confluence Research Centre (EA 1598), Catholic University of Lyon (UCLy), 69002 Lyon, France
- Correspondence: (P.L.); (B.E.-P.)
| | - Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, 38124 Braunschweig, Germany
- Correspondence: (P.L.); (B.E.-P.)
| |
Collapse
|
6
|
Paramyxovirus Diversity within One Population of Miniopterus fuliginosus Bats in Sri Lanka. Pathogens 2022; 11:pathogens11040434. [PMID: 35456109 PMCID: PMC9030695 DOI: 10.3390/pathogens11040434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 01/06/2023] Open
Abstract
Bats are known as typical reservoirs for a number of viruses, including viruses of the family Paramyxoviridae. Representatives of the subfamily Orthoparamyxovirinae are distributed worldwide and can cause mild to fatal diseases when infecting humans. The research on Paramyxoviruses (PMVs) from different bat hosts all over the world aims to understand the diversity, evolution and distribution of these viruses and to assess their zoonotic potential. A high number of yet unclassified PMVs from bats are recorded. In our study, we investigated bat species from the families Rhinolophidae, Hipposiderae, Pteropodidae and Miniopteridae that are roosting sympatrically in the Wavul Galge cave (Koslanda, Sri Lanka). The sampling at three time points (March and July 2018; January 2019) and screening for PMVs with a generic PCR show the presence of different novel PMVs in 10 urine samples collected from Miniopterus fuliginosus. Sequence analysis revealed a high similarity of the novel strains among each other and to other unclassified PMVs collected from Miniopterus bats. In this study, we present the first detection of PMVs in Sri Lanka and the presence of PMVs in the bat species M. fuliginosus for the first time.
Collapse
|
7
|
Muzeniek T, Perera T, Siriwardana S, Bas D, Kaplan F, Öruc M, Becker-Ziaja B, Perera I, Weerasena J, Handunnetti S, Schwarz F, Premawansa G, Premawansa S, Yapa W, Nitsche A, Kohl C. Full Genome of batCoV/MinFul/2018/SriLanka, a Novel Alpha-Coronavirus Detected in Miniopterus fuliginosus, Sri Lanka. Viruses 2022; 14:v14020337. [PMID: 35215931 PMCID: PMC8874963 DOI: 10.3390/v14020337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
Coronaviruses (CoV) are divided into the genera α-CoVs, β-CoVs, γ-CoVs and δ-CoVs. Of these, α-CoVs and β-CoVs are solely capable of causing infections in humans, resulting in mild to severe respiratory symptoms. Bats have been identified as natural reservoir hosts for CoVs belonging to these two genera. Consequently, research on bat populations, CoV prevalence in bats and genetic characterization of bat CoVs is of special interest to investigate the potential transmission risks. We present the genome sequence of a novel α-CoV strain detected in rectal swab samples of Miniopterus fuliginosus bats from a colony in the Wavul Galge cave (Koslanda, Sri Lanka). The novel strain is highly similar to Miniopterus bat coronavirus 1, an α-CoV located in the subgenus of Minunacoviruses. Phylogenetic reconstruction revealed a high identity of the novel strain to other α-CoVs derived from Miniopterus bats, while human-pathogenic α-CoV strains like HCoV-229E and HCoV-NL63 were more distantly related. Comparison with selected bat-related and human-pathogenic strains of the β-CoV genus showed low identities of ~40%. Analyses of the different genes on nucleotide and amino acid level revealed that the non-structural ORF1a/1b are more conserved among α-CoVs and β-CoVs, while there are higher variations in the structural proteins known to be important for host specificity. The novel strain was named batCoV/MinFul/2018/SriLanka and had a prevalence of 50% (66/130) in rectal swab samples and 58% (61/104) in feces samples that were collected from Miniopterus bats in Wavul Galge cave. Based on the differences between strain batCoV/MinFul/2018/SriLanka and human-pathogenic α-CoVs and β-CoVs, we conclude that there is a rather low transmission risk to humans. Further studies in the Wavul Galge cave and at other locations in Sri Lanka will give more detailed information about the prevalence of this virus.
Collapse
Affiliation(s)
- Therese Muzeniek
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
| | - Thejanee Perera
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka; (T.P.); (J.W.); (S.H.)
| | - Sahan Siriwardana
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo 00300, Sri Lanka; (S.S.); (I.P.); (S.P.); (W.Y.)
| | - Dilara Bas
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
| | - Fatimanur Kaplan
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
| | - Mizgin Öruc
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
| | - Beate Becker-Ziaja
- Centre for International Health Protection, Public Health Laboratory Support (ZIG 4), Robert Koch Institute, 13353 Berlin, Germany;
| | - Inoka Perera
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo 00300, Sri Lanka; (S.S.); (I.P.); (S.P.); (W.Y.)
| | - Jagathpriya Weerasena
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka; (T.P.); (J.W.); (S.H.)
| | - Shiroma Handunnetti
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka; (T.P.); (J.W.); (S.H.)
| | - Franziska Schwarz
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
| | | | - Sunil Premawansa
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo 00300, Sri Lanka; (S.S.); (I.P.); (S.P.); (W.Y.)
| | - Wipula Yapa
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo 00300, Sri Lanka; (S.S.); (I.P.); (S.P.); (W.Y.)
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
| | - Claudia Kohl
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
- Correspondence: ; Tel.: +49-301-8754-2144
| |
Collapse
|
8
|
Muzeniek T, Perera T, Siriwardana S, Bas D, Kaplan F, Öruc M, Becker-Ziaja B, Schwarz F, Premawansa G, Premawansa S, Perera I, Yapa W, Nitsche A, Kohl C. Detection of Alpha- and Betacoronaviruses in Miniopterus fuliginosus and Rousettus leschenaultii, two species of Sri Lankan Bats. Vaccines (Basel) 2021; 9:vaccines9060650. [PMID: 34203592 PMCID: PMC8232336 DOI: 10.3390/vaccines9060650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022] Open
Abstract
Bats are known to be potential reservoirs of numerous human-pathogenic viruses. They have been identified as natural hosts for coronaviruses, causing Severe Acute Respiratory Syndrome (SARS) in humans. Since the emergence of SARS-CoV-2 in 2019 interest in the prevalence of coronaviruses in bats was newly raised. In this study we investigated different bat species living in a sympatric colony in the Wavul Galge cave (Koslanda, Sri Lanka). In three field sessions (in 2018 and 2019), 395 bats were captured (Miniopterus, Rousettus, Hipposideros and Rhinolophus spp.) and either rectal swabs or fecal samples were collected. From these overall 396 rectal swab and fecal samples, the screening for coronaviruses with nested PCR resulted in 33 positive samples, 31 of which originated from Miniopterus fuliginosus and two from Rousettus leschenaultii. Sanger sequencing and phylogenetic analysis of the obtained 384-nt fragment of the RNA-dependent RNA polymerase revealed that the examined M. fuliginosus bats excrete alphacoronaviruses and the examined R. leschenaultii bats excrete betacoronaviruses. Despite the sympatric roosting habitat, the coronaviruses showed host specificity and seemed to be limited to one species. Our results represent an important basis to better understand the prevalence of coronaviruses in Sri Lankan bats and may provide a basis for pursuing studies on particular bat species of interest.
Collapse
Affiliation(s)
- Therese Muzeniek
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
| | - Thejanee Perera
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka;
| | - Sahan Siriwardana
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo 00300, Sri Lanka; (S.S.); (S.P.); (I.P.); (W.Y.)
| | - Dilara Bas
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
| | - Fatimanur Kaplan
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
| | - Mizgin Öruc
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
| | - Beate Becker-Ziaja
- Robert Koch Institute, Centre for International Health Protection, Public Health Laboratory Support (ZIG 4), 13353 Berlin, Germany;
| | - Franziska Schwarz
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
| | | | - Sunil Premawansa
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo 00300, Sri Lanka; (S.S.); (S.P.); (I.P.); (W.Y.)
| | - Inoka Perera
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo 00300, Sri Lanka; (S.S.); (S.P.); (I.P.); (W.Y.)
| | - Wipula Yapa
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo 00300, Sri Lanka; (S.S.); (S.P.); (I.P.); (W.Y.)
| | - Andreas Nitsche
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
| | - Claudia Kohl
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), 13353 Berlin, Germany; (T.M.); (D.B.); (F.K.); (M.Ö.); (F.S.); (A.N.)
- Correspondence: ; Tel.: +49-30-187-542-144
| |
Collapse
|
9
|
Dimkić I, Fira D, Janakiev T, Kabić J, Stupar M, Nenadić M, Unković N, Grbić ML. The microbiome of bat guano: for what is this knowledge important? Appl Microbiol Biotechnol 2021; 105:1407-1419. [PMID: 33512572 PMCID: PMC7845282 DOI: 10.1007/s00253-021-11143-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Bats as flying mammals are potent vectors and natural reservoir hosts for many infectious viruses, bacteria, and fungi, also detected in their excreta such as guano. Accelerated deforestation, urbanization, and anthropization hastily lead to overpopulation of the bats in urban areas allowing easy interaction with other animals, expansion, and emergence of new zoonotic disease outbreaks potentially harmful to humans. Therefore, getting new insights in the microbiome of bat guano from different places represents an imperative for the future. Furthermore, the use of novel high-throughput sequencing technologies allows better insight in guano microbiome and potentially indicated that some species could be typical guano-dwelling members. Bats are well known as a natural reservoir of many zoonotic viruses such as Ebola, Nipah, Marburg, lyssaviruses, rabies, henipaviruses, and many coronaviruses which caused a high number of outbreaks including ongoing COVID-19 pandemic. Additionally, many bacterial and fungal pathogens were identified as common guano residents. Thus, the presence of multi-drug-resistant bacteria as environmental reservoirs of extended spectrum β-lactamases and carbapenemase-producing strains has been confirmed. Bat guano is the most suitable substrate for fungal reproduction and dissemination, including pathogenic yeasts and keratinophilic and dimorphic human pathogenic fungi known as notorious causative agents of severe endemic mycoses like histoplasmosis and fatal cryptococcosis, especially deadly in immunocompromised individuals. This review provides an overview of bat guano microbiota diversity and the significance of autochthonous and pathogenic taxa for humans and the environment, highlighting better understanding in preventing emerging diseases. KEY POINTS: Bat guano as reservoir and source for spreading of autochthonous and pathogenic microbiota Bat guano vs. novel zoonotic disease outbreaks Destruction of bat natural habitats urgently demands increased human awareness.
Collapse
Affiliation(s)
- Ivica Dimkić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, 11000, Serbia.
| | - Djordje Fira
- Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, 11000, Serbia
| | - Tamara Janakiev
- Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, 11000, Serbia
| | - Jovana Kabić
- Faculty of Medicine, University of Belgrade, dr Subotića starijeg 1, Belgrade, 11000, Serbia
| | - Miloš Stupar
- Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, 11000, Serbia
| | - Marija Nenadić
- Institute for Biological Research "Siniša Stanković", Bulevar despota Stefana 142, Belgrade, 11060, Serbia
| | - Nikola Unković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, 11000, Serbia
| | | |
Collapse
|
10
|
Yadav PD, Shete-Aich A, Nyayanit DA, Pardeshi P, Majumdar T, Balasubramanian R, Ullas PT, Mohandas S, Dighe H, Sawant P, Patil S, Patil D, Gokhale MD, Mathapati B, Sudeep AB, Baradkar S, Kumar A, Kharde R, Salve M, Joshi Y, Gupta N, Mourya DT. Detection of coronaviruses in Pteropus & Rousettus species of bats from different States of India. Indian J Med Res 2020; 151:226-235. [PMID: 32317409 PMCID: PMC7366549 DOI: 10.4103/ijmr.ijmr_795_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background & objectives: Bats are considered to be the natural reservoir for many viruses, of which some are potential human pathogens. In India, an association of Pteropus medius bats with the Nipah virus was reported in the past. It is suspected that the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also has its association with bats. To assess the presence of CoVs in bats, we performed identification and characterization of bat CoV (BtCoV) in P. medius and Rousettus species from representative States in India, collected during 2018 and 2019. Methods: Representative rectal swab (RS) and throat swab specimens of Pteropus and Rousettus spp. bats were screened for CoVs using a pan-CoV reverse transcription-polymerase chain reaction (RT-PCR) targeting the RNA-dependent RNA polymerase (RdRp) gene. A single-step RT-PCR was performed on the RNA extracted from the bat specimens. Next-generation sequencing (NGS) was performed on a few representative bat specimens that were tested positive. Phylogenetic analysis was carried out on the partial sequences of RdRp gene sequences retrieved from both the bat species and complete viral genomes recovered from Rousettus spp. Results: Bat samples from the seven States were screened, and the RS specimens of eight Rousettus spp. and 21 Pteropus spp. were found positive for CoV RdRp gene. Among these, by Sanger sequencing, partial RdRp sequences could be retrieved from three Rousettus and eight Pteropus bat specimens. Phylogenetic analysis of the partial RdRp region demonstrated distinct subclustering of the BtCoV sequences retrieved from these Rousettus and Pteropus spp. bats. NGS led to the recovery of four sequences covering approximately 94.3 per cent of the whole genome of the BtCoVs from Rousettus bats. Three BtCoV sequences had 93.69 per cent identity to CoV BtRt-BetaCoV/GX2018. The fourth BtCoV sequence was 96.8 per cent identical to BtCoV HKU9-1. Interpretation & conclusions: This study was a step towards understanding the CoV circulation in Indian bats. Detection of potentially pathogenic CoVs in Indian bats stresses the need for enhanced screening for novel viruses in them. One Health approach with collaborative activities by the animal health and human health sectors in these surveillance activities shall be of use to public health. This would help in the development of diagnostic assays for novel viruses with outbreak potential and be useful in disease interventions. Proactive surveillance remains crucial for identifying the emerging novel viruses with epidemic potential and measures for risk mitigation.
Collapse
Affiliation(s)
- Pragya D Yadav
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Anita Shete-Aich
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Dimpal A Nyayanit
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Prachi Pardeshi
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Triparna Majumdar
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - R Balasubramanian
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, Maharashtra; ICMR-National Institute of Virology Kerala Unit, Alappuzha, Kerala, India
| | | | - Sreelekshmy Mohandas
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Hitesh Dighe
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Pradeep Sawant
- Enteric Virus Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Savita Patil
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Dilip Patil
- Animal House, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - M D Gokhale
- Entomology Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Basavaraj Mathapati
- Poliovirus Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - A B Sudeep
- Entomology Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Sreekant Baradkar
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Abhimanyu Kumar
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Rutuja Kharde
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Malvika Salve
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Yash Joshi
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Nivedita Gupta
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | | |
Collapse
|
11
|
Valitutto MT, Aung O, Tun KYN, Vodzak ME, Zimmerman D, Yu JH, Win YT, Maw MT, Thein WZ, Win HH, Dhanota J, Ontiveros V, Smith B, Tremeau-Brevard A, Goldstein T, Johnson CK, Murray S, Mazet J. Detection of novel coronaviruses in bats in Myanmar. PLoS One 2020; 15:e0230802. [PMID: 32271768 PMCID: PMC7144984 DOI: 10.1371/journal.pone.0230802] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/09/2020] [Indexed: 12/25/2022] Open
Abstract
The recent emergence of bat-borne zoonotic viruses warrants vigilant surveillance in their natural hosts. Of particular concern is the family of coronaviruses, which includes the causative agents of severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and most recently, Coronavirus Disease 2019 (COVID-19), an epidemic of acute respiratory illness originating from Wuhan, China in December 2019. Viral detection, discovery, and surveillance activities were undertaken in Myanmar to identify viruses in animals at high risk contact interfaces with people. Free-ranging bats were captured, and rectal and oral swabs and guano samples collected for coronaviral screening using broadly reactive consensus conventional polymerase chain reaction. Sequences from positives were compared to known coronaviruses. Three novel alphacoronaviruses, three novel betacoronaviruses, and one known alphacoronavirus previously identified in other southeast Asian countries were detected for the first time in bats in Myanmar. Ongoing land use change remains a prominent driver of zoonotic disease emergence in Myanmar, bringing humans into ever closer contact with wildlife, and justifying continued surveillance and vigilance at broad scales.
Collapse
Affiliation(s)
- Marc T. Valitutto
- Global Health Program, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, District of Columbia, United States of America
| | - Ohnmar Aung
- Global Health Program, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, District of Columbia, United States of America
| | - Kyaw Yan Naing Tun
- Global Health Program, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, District of Columbia, United States of America
| | - Megan E. Vodzak
- Global Health Program, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, District of Columbia, United States of America
| | - Dawn Zimmerman
- Global Health Program, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, District of Columbia, United States of America
| | - Jennifer H. Yu
- Global Health Program, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, District of Columbia, United States of America
| | - Ye Tun Win
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Naypyitaw, Myanmar
| | - Min Thein Maw
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Naypyitaw, Myanmar
| | - Wai Zin Thein
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Naypyitaw, Myanmar
| | - Htay Htay Win
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Naypyitaw, Myanmar
| | - Jasjeet Dhanota
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Victoria Ontiveros
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Brett Smith
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Alexandre Tremeau-Brevard
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Tracey Goldstein
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Christine K. Johnson
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Suzan Murray
- Global Health Program, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, District of Columbia, United States of America
| | - Jonna Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
12
|
Kudagammana HDWS, Thevanesam V, Chu DKW, Eriyagama NB, Peiris JSM, Noordeen F. Coronaviruses in guano from Pteropus medius bats in Peradeniya, Sri Lanka. Transbound Emerg Dis 2018; 65:1122-1124. [PMID: 29498228 PMCID: PMC7169738 DOI: 10.1111/tbed.12851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Indexed: 01/06/2023]
Abstract
Bats are a unique group of mammals well suited to be hosts for emerging viruses. With current rates of deforestation and urbanization, redistribution of bat habitats to urban and suburban areas may bring bats into closer contact with livestock and humans. Common flying fox, Pteropus medius (previously known as Pteropus giganteus), forms large communal roosts on treetops, often in close proximity to human habitation in Sri Lanka. This report describes the detection of coronavirus RNA in P. medius bat guano collected in Peradeniya, Sri Lanka. These viruses had >97% nucleotide identity with coronaviruses detected in Cynopterus sphinx, Scotophilus heathii and S. kuhlii bats in Thailand. Pteropus medius is widespread in Asia and appears to excrete group D coronaviruses, which are hitherto confined to bats; however, these findings may have public health implications in the future.
Collapse
Affiliation(s)
- H D W S Kudagammana
- Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka.,Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - V Thevanesam
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - D K W Chu
- School of Public Health, University of Hong Kong, Hong Kong, Hong Kong
| | - N B Eriyagama
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - J S M Peiris
- School of Public Health, University of Hong Kong, Hong Kong, Hong Kong
| | - F Noordeen
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|