1
|
Tahir F, Sadique U, Tahir F, Almutairi MH, Alrefaei AF, Naz S, Ullah Khan R, Khan Momand N, Ragni M. Molecular epidemiology of bovine leukemia virus in cattle and phylogenetic analysis for determining its prevailing genotype in Khyber Pukhtunkhwa, Pakistan. Anim Biotechnol 2025; 36:2486029. [PMID: 40243132 DOI: 10.1080/10495398.2025.2486029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
This research focused on assessing the molecular prevalence of Bovine Leukemia Virus (BLV) in different cattle farms throughout Khyber Pakhtunkhwa and characterizing the dominant BLV genotypes by analyzing partial sequences of the gp51 gene. A total of 1,250 blood samples were collected from cattle of both sexes, various age groups (<1 year, 1-3 years, 3-5 years, and >5 years), and different breeds (Friesian, Jersey, Sahiwal, Achai, and crossbred) from multiple cattle farms. Of the 1,250 samples tested, BLV was detected in 136 (10.88%) using nested PCR. Risk factor analysis revealed a significantly higher prevalence of BLV in exotic breeds and older cattle. To confirm the findings and genotype the BLV isolates, four PCR-positive samples were sequenced. Phylogenetic analysis identified the isolates as belonging to genotype I, closely related to GI BLV isolates from Japan. Furthermore, the isolates in this study formed a tightly clustered group, suggesting a common origin from an earlier virus introduced into the host population in the study area.
Collapse
Affiliation(s)
- Farida Tahir
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Umer Sadique
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Farkhanda Tahir
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Shabana Naz
- Department of Zoology, Government College Univeristy, Faisalabad, Pakistan
| | - Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | | | - Marco Ragni
- Soil, Plant and Food, University of Bari, Aldomoro, Itay
| |
Collapse
|
2
|
Pluta A, Rola-Łuszczak M, Hoffmann FG, Donnik I, Petropavlovskiy M, Kuźmak J. Genetic Variability of Bovine Leukemia Virus: Evidence of Dual Infection, Recombination and Quasi-Species. Pathogens 2024; 13:178. [PMID: 38392916 PMCID: PMC10893129 DOI: 10.3390/pathogens13020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
We have characterized the intrahost genetic variation in the bovine leukemia virus (BLV) by examining 16 BLV isolates originating from the Western Siberia-Tyumen and South Ural-Chelyabinsk regions of Russia. Our research focused on determining the genetic composition of an 804 bp fragment of the BLV env gene, encoding for the entire gp51 protein. The results provide the first indication of the quasi-species genetic nature of BLV infection and its relevance for genome-level variation. Furthermore, this is the first phylogenetic evidence for the existence of a dual infection with BLV strains belonging to different genotypes within the same host: G4 and G7. We identified eight cases of recombination between these two BLV genotypes. The detection of quasi-species with cases of dual infection and recombination indicated a higher potential of BLV for genetic variability at the intra-host level than was previously considered.
Collapse
Affiliation(s)
- Aneta Pluta
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Puławy, Poland; (M.R.-Ł.); (J.K.)
| | - Marzena Rola-Łuszczak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Puławy, Poland; (M.R.-Ł.); (J.K.)
| | - Federico G. Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA;
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS 39762, USA
| | - Irina Donnik
- Ural State Agrarian University, Ekaterinburg 620075, Russia;
| | - Maxim Petropavlovskiy
- Ural Federal Agrarian Scientific Research Centre of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia;
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Puławy, Poland; (M.R.-Ł.); (J.K.)
| |
Collapse
|
3
|
Lv G, Wang J, Lian S, Wang H, Wu R. The Global Epidemiology of Bovine Leukemia Virus: Current Trends and Future Implications. Animals (Basel) 2024; 14:297. [PMID: 38254466 PMCID: PMC10812804 DOI: 10.3390/ani14020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis (EBL), which is the most significant neoplastic disease in cattle. Although EBL has been successfully eradicated in most European countries, infections continue to rise in Argentina, Brazil, Canada, Japan, and the United States. BLV imposes a substantial economic burden on the cattle industry, particularly in dairy farming, as it leads to a decline in animal production performance and increases the risk of disease. Moreover, trade restrictions on diseased animals and products between countries and regions further exacerbate the problem. Recent studies have also identified fragments of BLV nucleic acid in human breast cancer tissues, raising concerns for public health. Due to the absence of an effective vaccine, controlling the disease is challenging. Therefore, it is crucial to accurately detect and diagnose BLV at an early stage to control its spread and minimize economic losses. This review provides a comprehensive examination of BLV, encompassing its genomic structure, epidemiology, modes of transmission, clinical symptoms, detection methods, hazards, and control strategies. The aim is to provide strategic information for future BLV research.
Collapse
Affiliation(s)
- Guanxin Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Hai Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- College of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
4
|
Pereira JG, Silva CDA, Silva LD, Lima CAA, do Rosário CJRM, Silva EMC, Oliveira MDSC, Ribeiro LSDS, Santos HP, Abreu-Silva AL, Melo FA. Diagnosis and phylogenetic analysis of bovine leukemia virus in dairy cattle in northeastern Brazil. Front Vet Sci 2023; 9:1080994. [PMID: 36713884 PMCID: PMC9880491 DOI: 10.3389/fvets.2022.1080994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Enzootic bovine leukosis (EBL) is a chronic viral disease of wide distribution in cattle herds and may take several years for the first manifestation of clinical signs. Most animals do not present clinical signs. However, the economic losses are underestimated due to this disease. Thus, this work aimed to detect and characterize BLV in dairy cattle in the Maranhão state, northeastern Brazil. Blood samples were collected from 176 animals from 8 municipalities in the southeastern state of Maranhão. Bovine blood samples were subjected to DNA extraction and molecular diagnosis using nested PCR assays for BLV, targeting gp51 gene. Positive samples were then sequenced and then subjected to phylogenetic inferences. BLV DNA was detected in 16 cattle (16/176, 9.09%) in 4 municipalities. Phylogenetic analyzes showed that the sequence obtained clustered in a clade containing BLV sequences classified as genotype 6, with a high degree of support. Our data shows BLV occurrence in the Northeast of Brazil and the identification of genotype 6 in this region. These findings contribute to the molecular epidemiology of this agent in Brazil.
Collapse
|
5
|
LE DT, NGUYEN SV, LE TAN, NGUYEN VH, LE PD, DINH DV, DUONG HT, VU HV, FUJIMOTO Y, KUNIEDA T, HAGA T. Detection of bovine leukemia virus in beef cattle kept in the Central Coast Regions of Vietnam. J Vet Med Sci 2023; 85:111-116. [PMID: 36450501 PMCID: PMC9887213 DOI: 10.1292/jvms.22-0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Bovine leukemia virus (BLV) is the etiologic agent of enzootic bovine leucosis. Our previous study showed the BLV existence in cattle kept in the Red River Delta Region of Vietnam. However, no positive samples were identified in beef cattle. Besides, information related to the BLV circulation in the remained parts of Vietnam is limited. Therefore, we tested the existence of BLV in 48 beef cattle kept in the Central Coast Regions. Nested PCR targeting the BLV-env-gp51 confirmed the prevalence of 14.6% in investigated regions. Phylogenetic analysis suggested the co-existence of genotypes 1 and 10. The close relationship between strains found in Vietnam, Thailand, Myanmar, and China was revealed suggesting the possibility of BLV transmission through the movement of live cattle.
Collapse
Affiliation(s)
- Dung Thi LE
- Division of Infection Control and Disease Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Son Vu NGUYEN
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thu Anh Nu LE
- Faculty of Animal Science and Veterinary, University of Agriculture and Forestry, Hue University, Hue, Vietnam,Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Van Huu NGUYEN
- Faculty of Animal Science and Veterinary, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Phung Dinh LE
- Faculty of Animal Science and Veterinary, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Dung Van DINH
- Faculty of Animal Science and Veterinary, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Hai Thanh DUONG
- Faculty of Animal Science and Veterinary, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Hai Van VU
- Faculty of Animal Science and Veterinary, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Yuri FUJIMOTO
- Laboratory of OSG Veterinary Science for Global Disease Management, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo,
Japan
| | - Tetsuo KUNIEDA
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Takeshi HAGA
- Division of Infection Control and Disease Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Laboratory of OSG Veterinary Science for Global Disease Management, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo,
Japan,Correspondence to: Haga T: , Division of Infection Control and Disease
Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Molecular Characterization of Bovine Leukemia Virus with the Evidence of a New Genotype Circulating in Cattle from Kazakhstan. Pathogens 2022; 11:pathogens11020180. [PMID: 35215125 PMCID: PMC8875264 DOI: 10.3390/pathogens11020180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leukosis (EBL) and has worldwide distribution. Infections with BLV have been reported in cattle from Kazakhstan but the virus has not yet been thoroughly characterized. In this study, we detect and estimate the level of BLV proviral DNA by qPCR in DNA samples from 119 cattle naturally infected with BLV, from 18 farms located in four different geographical regions of Kazakhstan. Furthermore, we conducted the phylogenetic and molecular analysis of 41 BLV env-gp51 gene sequences from BLV infected cattle. Phylogenetic analysis showed the affiliation of sequences to two already known genotypes G4 and G7 and also to a new genotype, classified as genotype G12. In addition, a multivariate method was employed for analysis of the association between proviral load and different variables such as the geographical location of the herd, cattle breeds, age of animals, and the presence of particular BLV genotypes. In summary, the results of this study provide the first evidence on molecular characterization of BLV circulating in cattle from Kazakhstan.
Collapse
|
7
|
Nishikaku K, Noguchi T, Murakami S, Torii Y, Kobayashi T. Molecular analysis of bovine leukemia virus in early epidemic phase in Japan using archived formalin fixed paraffin embedded histopathological specimens. J Vet Med Sci 2022; 84:350-357. [PMID: 35046241 PMCID: PMC8983278 DOI: 10.1292/jvms.21-0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine leukemia virus (BLV) is an important pathogen associated with enzootic bovine leukosis. In this study, we performed PCR and sequencing analysis to characterize BLVgp51 sequences from
formalin-fixed paraffin-embedded (FFPE) specimens made from 1974 to 2000 and successfully obtained BLV proviral genome sequences from 94% of the analyzed samples. Furthermore, from these
samples, we reconstructed eight full-length and nearly full-length BLVgp51 sequences. These sequences were classified as BLV genotype 1, implying that genotype1 has already been circulating
in Japan since the 1970s. In our results, the proviral DNA was detected in the 1970s, 1980s, and 1990s in the same manner, indicating that the detection of BLV proviral genome depends on
storage conditions rather than storage period. The sequences obtained in this study provide direct insights into BLV sequences before 2000, which serves as a good calibrator for inferring
ancient BLV diversity.
Collapse
Affiliation(s)
- Kohei Nishikaku
- Department of Animal Science, Faculty of agriculture, Tokyo University of Agriculture
| | - Tatsuo Noguchi
- Department of Animal Science, Faculty of agriculture, Tokyo University of Agriculture
| | - Satoshi Murakami
- Department of Animal Science, Faculty of agriculture, Tokyo University of Agriculture
| | - Yasushi Torii
- Department of Animal Science, Faculty of agriculture, Tokyo University of Agriculture
| | - Tomoko Kobayashi
- Department of Animal Science, Faculty of agriculture, Tokyo University of Agriculture
| |
Collapse
|
8
|
Marawan MA, Alouffi A, El Tokhy S, Badawy S, Shirani I, Dawood A, Guo A, Almutairi MM, Alshammari FA, Selim A. Bovine Leukaemia Virus: Current Epidemiological Circumstance and Future Prospective. Viruses 2021; 13:v13112167. [PMID: 34834973 PMCID: PMC8618541 DOI: 10.3390/v13112167] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/23/2022] Open
Abstract
Bovine leukaemia virus (BLV) is a deltaretrovirus that is closely related to human T-cell leukaemia virus types 1 and 2 (HTLV-1 and -2). It causes enzootic bovine leukosis (EBL), which is the most important neoplastic disease in cattle. Most BLV-infected cattle are asymptomatic, which potentiates extremely high shedding rates of the virus in many cattle populations. Approximately 30% of them show persistent lymphocytosis that has various clinical outcomes; only a small proportion of animals (less than 5%) exhibit signs of EBL. BLV causes major economic losses in the cattle industry, especially in dairy farms. Direct costs are due to a decrease in animal productivity and in cow longevity; indirect costs are caused by restrictions that are placed on the import of animals and animal products from infected areas. Most European regions have implemented an efficient eradication programme, yet BLV prevalence remains high worldwide. Control of the disease is not feasible because there is no effective vaccine against it. Therefore, detection and early diagnosis of the disease are essential in order to diminish its spreading and the economic losses it causes. This review comprises an overview of bovine leukosis, which highlights the epidemiology of the disease, diagnostic tests that are used and effective control strategies.
Collapse
Affiliation(s)
- Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia;
- The Chair of Vaccines Research for Infectious Diseases, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Suleiman El Tokhy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt;
| | - Sara Badawy
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Natural Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues Huazhong Agricultural University, Wuhan 430070, China
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad 2601, Afghanistan
| | - Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Infectious Diseases, Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| | - Mashal M. Almutairi
- The Chair of Vaccines Research for Infectious Diseases, King Saud University, Riyadh 11495, Saudi Arabia;
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 22334, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Arar 73211, Saudi Arabia;
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| |
Collapse
|
9
|
Molecular Characterization of the env Gene of Bovine Leukemia Virus in Cattle from Pakistan with NGS-Based Evidence of Virus Heterogeneity. Pathogens 2021; 10:pathogens10070910. [PMID: 34358060 PMCID: PMC8308526 DOI: 10.3390/pathogens10070910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Characterization of the global genetic diversity of the bovine leukemia virus (BLV) is an ongoing international research effort. Up to now BLV sequences have been classified into eleven distinct genotypes. Although BLV genotyping and molecular analysis of field isolates were reported in many countries, there is no report describing BLV genotypes present in cattle from Pakistan. In this study we examined 27 env gene sequences from BLV-infected cattle coming from four farms located in Khyber Pakhtunkwa, Gilgit Baltisan and Punjab provinces. Phylogenetic analyses revealed the classification of Pakistani sequences into genotypes G1 and G6. The alignment with the FLK-BLV sequence revealed the presence of 45 mutations, namely, seven in genotype G1 and 33 in genotype G6. Five mutations were found in both, G1 and G6 genotypes. Twelve amino acid substitutions were found in the analyzed sequences, of which only one P264S was specific for sequences from Pakistan. Furthermore, a certain degree of nucleotide heterogeneity was identified by NGS. These results highlight the need for further study on the importance of genetic variability of BLV, especially in the context of its pathogenicity and potential effect on serological detection.
Collapse
|
10
|
Blazhko N, Shatokhin K, Khripko Y, Ngirande C, Kochnev N. Mutational and phylogenetic status of west siberian strains of BLV. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213606025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The study is devoted of full-genome BLV sequences circulating in cattle populations of the Novosibirsk region, Russia. The phylogenetic tree shows that the West Siberian isolates are quite closely related to such previously isolated strains as AF399704 (Brazil), AP018007, AP018016, AP018019, LC007988, LC007991 (Japan) and EF065638 (Belgium) we calculations show that the number of mutations that could independently occur in parallel evolving BLV strains significantly exceeds the expected number based on the probability of corresponding substitutions. It was also found that the studied isolates have some mutations, the presence of which, at first glance, is possible only with their divergent development in different independently evolving branches. However, calculations show that the probability of an independent origin of an identical mutation is extremely small, which indicates the possibility of exchanging RNA sites between isolates circulating in West Siberian cattle populations.
Collapse
|
11
|
Hamada R, Metwally S, Polat M, Borjigin L, Ali AO, Abdel-Hady AAA, Mohamed AEA, Wada S, Aida Y. Detection and Molecular Characterization of Bovine Leukemia Virus in Egyptian Dairy Cattle. Front Vet Sci 2020; 7:608. [PMID: 33134337 PMCID: PMC7511665 DOI: 10.3389/fvets.2020.00608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/28/2020] [Indexed: 11/23/2022] Open
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leukosis (EBL), the most common neoplastic disease in cattle worldwide. The first EBL outbreak in Egypt was reported in 1997. To date, there are few studies regarding BLV diagnosis using only serological detection and no studies investigating the distribution of BLV provirus, which is the retroviral genome integrated into the host genome, in Egypt. The genetic characteristics of Egyptian BLV strains are also unknown. Therefore, we aimed to detect BLV provirus and determine BLV genetic variability among dairy cattle in Egypt. We collected 270 blood samples of dairy cattle from 24 farms located in five provinces in Egypt. Out of the 270 samples, 58 (21.5%) were positive for BLV provirus. Phylogenetic analysis based on 18 420-bp selected sequences out of 50 isolates of the BLV env-gp51 gene demonstrated that Egyptian BLV isolates were clustered into genotype-1 and-4, among 11 genotypes detected worldwide. Furthermore, phylogenetic analysis and alignment of the 501-bp sequence of the env-gp51 gene revealed that at least six genetically different strains are present in Egypt. Genotype-1 isolates comprised four different strains (G1-a, G1-b, G1-c, and G1-d) and genotype-4 isolates included two different strains (G4-x and G4-y). Moreover, in one farm with 100% infection rate, we identified three isolates of G1-a strain, 35 isolates of G4-x strain, and two isolates of G4-y strain. Overall, this study provides the new report on molecular prevalence of BLV in Egypt and records the coexistence of BLV genotype-1 and-4 in Egyptian cattle.
Collapse
Affiliation(s)
- Rania Hamada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Saitama, Japan.,Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Samy Metwally
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Saitama, Japan.,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Meripet Polat
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Saitama, Japan
| | - Liushiqi Borjigin
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Saitama, Japan
| | - Alsagher O Ali
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - A A A Abdel-Hady
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adel E A Mohamed
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Yoko Aida
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Saitama, Japan
| |
Collapse
|
12
|
LE DT, Yamashita-Kawanishi N, Okamoto M, Nguyen SV, Nguyen NH, Sugiura K, Miura T, Haga T. Detection and genotyping of bovine leukemia virus (BLV) in Vietnamese cattle. J Vet Med Sci 2020; 82:1042-1050. [PMID: 32475959 PMCID: PMC7399327 DOI: 10.1292/jvms.20-0094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine leukemia virus (BLV) belongs to the genus, Deltaretrovirus of the family, Retroviridae and it is the causative agent of enzootic bovine leukosis. The prevalence of BLV in three provinces in the Red River Delta Region in the North of Vietnam, Hanoi, Vinhphuc and Bacninh was studied from April 2017 to June 2018. A total of 275 blood samples collected from cattle were used for serum isolation and DNA extraction. Of these samples, 266 sera were subjected to ELISA test for detecting antibody against BLV gp51 protein and 152 DNA samples were used to detect the 444 bp fragment corresponding to a part of the gp51 region of the env by nested PCR. The results showed that 16.5% (n=44) and 21.1% (n=32) of samples were positive for BLV gp51 antibody and BLV proviral DNA, respectively. Phylogenetic analysis of the partial (423 bp) and complete (913 bp) BLV env-gp51 gene indicated that Vietnamese strains were clustered into genotypes 1, 6 and 10 (G1, G6 and G10). Of those genotypes, G1 genotype was dominant; G6 strains were designated as G6e and G6f subgenotypes; the existence of genotype 10 was confirmed for the first time in Vietnam. The present study provides important information regarding the prevalence of BLV infection and genetic characteristics of BLV strains identified in Vietnam, contributing to promote the establishment of disease control and eradication strategies in Vietnam.
Collapse
Affiliation(s)
- Dung Thi LE
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nanako Yamashita-Kawanishi
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mari Okamoto
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Son Vu Nguyen
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi100000, Vietnam
| | - Nam Huu Nguyen
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi100000, Vietnam
| | - Katsuaki Sugiura
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomoyuki Miura
- Research Center for Infectious Diseases, Institute for Frontier Life and Medical Science, Kyoto University, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takeshi Haga
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
13
|
Moe KK, Polat M, Borjigin L, Matsuura R, Hein ST, Moe HH, Aida Y. New evidence of bovine leukemia virus circulating in Myanmar cattle through epidemiological and molecular characterization. PLoS One 2020; 15:e0229126. [PMID: 32084185 PMCID: PMC7034883 DOI: 10.1371/journal.pone.0229126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 01/30/2020] [Indexed: 11/29/2022] Open
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle. BLV infects cattle worldwide and causes serious problems for the cattle industry. In this study, we examined the prevalence of BLV infection and the distribution of BLV genotypes in cattle in the northern, central, and southern parts of Myanmar. The prevalence of BLV infection among Myanmar cattle (37.04%) in this study was markedly higher than the prevalence (9.1%) observed in our earlier study in which BLV was detected from the limited number of cattle only from a small area of Myanmar. Phylogenetic analysis of partial env-gp51 sequence of the isolated BLV strains revealed that there are at least three BLV genotypes (genotype-1, genotype-6, and genotype-10) in Myanmar, which have also been detected in the neighboring countries. We performed this study to estimate the BLV proviral load, which is a major diagnosis index for determining the virus transmission risk. The cattle of the three test regions with warm, wet, and humid climatic conditions (upper Sagaing, Yangon, and Kayin) exhibited a high mean proviral load, while cattle of three other regions with low annual rainfall and very high temperature (Mandalay, Magway, and upper Bago) exhibited a low mean proviral load. Further, the level of proviral load and the prevalence of BLV infection in Myanmar native cattle (N = 235) were lower than that in the hybrid cattle (Holstein Friesian × Myanmar native) (N = 62). We also observed that the cattle with high risk for BLV transmission, which have high proviral load, may enhance the BLV infection rate. Hence, to control BLV transmission, it is necessary to eliminate these cattle with high-risk for BLV transmission and to diagnose BLV provirus in cattle in the remaining regions/states of Myanmar sharing a boundary with neighboring countries.
Collapse
Affiliation(s)
- Kyaw Kyaw Moe
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, Japan
- Department of Pathology and Microbiology, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Meripet Polat
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, Japan
| | - Liushiqi Borjigin
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, Japan
| | - Ryosuke Matsuura
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, Japan
| | - Si Thu Hein
- Department of Anatomy, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Hla Hla Moe
- Department of Genetics and Animal Breeding, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Yoko Aida
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, Japan
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
14
|
Corredor-Figueroa AP, Salas S, Olaya-Galán NN, Quintero JS, Fajardo Á, Soñora M, Moreno P, Cristina J, Sánchez A, Tobón J, Ortiz D, Gutiérrez MF. Prevalence and molecular epidemiology of bovine leukemia virus in Colombian cattle. INFECTION GENETICS AND EVOLUTION 2020; 80:104171. [PMID: 31904555 DOI: 10.1016/j.meegid.2020.104171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/28/2019] [Accepted: 01/01/2020] [Indexed: 01/14/2023]
Abstract
Bovine leukemia virus (BLV) is one of the five agents considered most significant for cattle. It is important to determine the prevalence and molecular epidemiology of BLV throughout the country in order to gain a more thorough understanding of the current situation of BLV and to reveal the possibility of masked genotypes that the primers used by OIE are unable to identify. Blood samples were collected at random from 289 cows distributed in 75 farms across the country. PCR amplification of env, gag and tax gene segments was performed. The obtained amplicons were sequenced and then subjected to phylogenetic analyses. A total of 62% of the cows present at 92% of the farms were BLV-positive for gag fragment. Genotype 1 was exclusively detected by env gene segment when analyzed using previously reported primers. However, tax gene analysis revealed circulation of genotype 6 variants, which were also detected based on env gene analysis with newly designed primers. These results indicate that current genotyping approaches based on partial env sequencing may bias BLV genetic variability approaches and underestimate the diversity of the detected BLV genotypes. This report is one of the first molecular and epidemiological studies of BLV conducted in Colombia, which contributes to the global epidemiology of the virus; it also highlights the substantial impact of BLV on the country's livestock and thus is a useful resource for farmers and government entities.
Collapse
Affiliation(s)
- Adriana Patricia Corredor-Figueroa
- Universidad ECCI, Cra. 19 No. 49-20, Bogotá 111311, Colombia; Grupo de Enfermedades Infecciosas, Laboratorio de Virología, Departamento de Microbiología, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62, Bogotá́ 11001000, Colombia.
| | - Sandra Salas
- Grupo de Enfermedades Infecciosas, Laboratorio de Virología, Departamento de Microbiología, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62, Bogotá́ 11001000, Colombia.
| | - Nury Nathalia Olaya-Galán
- Grupo de Enfermedades Infecciosas, Laboratorio de Virología, Departamento de Microbiología, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62, Bogotá́ 11001000, Colombia; PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24 N° 63C-69, Bogotá́ 112111, Colombia
| | - Juan Sebastián Quintero
- Grupo de Enfermedades Infecciosas, Laboratorio de Virología, Departamento de Microbiología, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62, Bogotá́ 11001000, Colombia.
| | - Álvaro Fajardo
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República de Uruguay, Mataojo 2055, Montevideo 11400, Uruguay.
| | - Martín Soñora
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República de Uruguay, Mataojo 2055, Montevideo 11400, Uruguay.
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República de Uruguay, Mataojo 2055, Montevideo 11400, Uruguay.
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República de Uruguay, Mataojo 2055, Montevideo 11400, Uruguay
| | - Alfredo Sánchez
- Empresa Colombiana de Productos Veterinarios - VECOL, Av.Eldorado 82-93, Bogotá 110931, Colombia
| | - Julio Tobón
- Empresa Colombiana de Productos Veterinarios - VECOL, Av.Eldorado 82-93, Bogotá 110931, Colombia.
| | - Diego Ortiz
- Agrosavia, Km 14 Vía Mosquera-Bogotá, Mosquera 250047, Colombia
| | - María Fernanda Gutiérrez
- Grupo de Enfermedades Infecciosas, Laboratorio de Virología, Departamento de Microbiología, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62, Bogotá́ 11001000, Colombia.
| |
Collapse
|
15
|
Molecular characterization of Italian bovine leukemia virus isolates reveals the presence of distinct phylogenetic clusters. Arch Virol 2019; 164:1697-1703. [DOI: 10.1007/s00705-019-04255-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 11/26/2022]
|