1
|
Silva BBI, Urzo MLR, Montecillo AD, Encabo JR, Chuang JP, Chuang KP. Retrospective detection and whole genome sequencing identify the first local case of Pigeon Rotavirus A infection in Taiwan from 2018. Sci Rep 2025; 15:6316. [PMID: 39984528 PMCID: PMC11845667 DOI: 10.1038/s41598-025-87271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/17/2025] [Indexed: 02/23/2025] Open
Abstract
In 2018, pigeon Rotavirus A G18P[17] was identified in Australia as the causative agent of a disease outbreak presenting as vomiting and diarrhea, reminiscent of the young pigeon disease syndrome. This virus has subsequently been detected in several other countries, including Belgium, Denmark, Germany, Great Britain, Poland, and the United States. This study was conducted to determine the presence of pigeon Rotavirus A among archived samples collected in Taiwan, and to subsequently characterize the whole genome of a local isolate. Two hundred twenty-five pigeon liver samples collected from 2018 to 2023 were tested for the presence of pigeon rotavirus A RNA using PCR. A sample from 2018 tested positive, and the successful rescue of infective virions was achieved. The first coding-complete genome of this virus from Taiwan was successfully sequenced, revealing that isolate NPUST-001 belongs to genotype G18P[17]-I4-R4-C4-M4-A4-T4-N4-E19-H4. To date, this is the earliest known rotavirus A isolate with this exact genotype constellation recovered from a domestic pigeon sample in the Asian region. Phylogenetic analysis of the VP6 segment showed that isolate NPUST-001 belongs to a distinct lineage of pigeon Rotavirus A which comprises of several other strains reported from mainland China and the USA. Although no recent cases were detected, active surveillance for rotaviral infection among suspected cases is recommended to gather more information on the epidemiology of this virus locally.
Collapse
Affiliation(s)
- Benji Brayan Ilagan Silva
- International Degree Program in Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Laguna, 4031, Philippines
| | - Michael Louie R Urzo
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Laguna, 4031, Philippines
| | - Andrew D Montecillo
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Laguna, 4031, Philippines
| | - Jaymee R Encabo
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Laguna, 4031, Philippines
| | - Jen-Pin Chuang
- Chiayi Hospital, Ministry of Health and Welfare, Pingtung, 90054, Taiwan.
- Department of Surgery, Faculty of Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Department of Surgery, National Cheng Kung University Hospital, Tainan, 70101, Taiwan.
| | - Kuo-Pin Chuang
- International Degree Program in Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
- Companion Animal Research Center, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
2
|
Adamczyk K, Ledwoń A, Czopowicz M, Szeleszczuk P. The course of Rotavirus A (RVA) infection in young racing pigeons during the racing season. BMC Vet Res 2024; 20:305. [PMID: 38982473 PMCID: PMC11232317 DOI: 10.1186/s12917-024-04144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Pigeon Rotavirus A (RVA) infection has been confirmed in pigeons in the last decade as a cause of Young Pigeon Disease (YPD). Although YPD has been known for many years to date, no studies have been conducted to track the spread of RVA infection in pigeons during the racing season. The presented research aims to determine the course of RVA infection during the flights of young racing pigeons in the summer season, in one of the districts in the Mazovian Voivodeship in Poland. RESULTS Faecal samples of pigeons collected from transport baskets in vehicles transporting pigeons to the starting point were tested. The quantitative RT-PCR (qRT-PCR) was used to detect the genetic material of RVA. Samples taken during 6 flights were analysed. The study showed a percentage increase in infections up to the fourth flight of pigeons, and then their decrease. With Cq values below 20, breeders did not participate in the next flight and/or reported disease in the flock. With positive Cq values of 20 to 30, clinical signs of disease were not reported. Of the 76 breeders participating in the races, at least one positive result was found in 46 (60.5%). Including the occurrence of the disease during the racing season was reported by 11 breeders (14.4%). The main clinical signs in sick pigeons were vomiting, diarrhea and stowed crop. The tested pigeons were not vaccinated against RVA. CONCLUSIONS During training and racing of pigeons, it is not possible to avoid exposing them to pathogens, including RVA, regardless of whether pigeons from different breeders are placed in the same baskets or are in separate baskets. However, after four flights the number of new cases of the disease decreases which indicates the development of immunity. The qRT-PCR test is useful in the diagnosis and differentiation of clinical (Cq below 20) and subclinical RVA infections in racing pigeons.
Collapse
Affiliation(s)
- Krzysztof Adamczyk
- Department of Pathology and Veterinary Diagnostics Warsaw, University of Life Sciences, Nowoursynowska 159C, Warsaw, 02-776, Poland.
| | - Aleksandra Ledwoń
- Department of Pathology and Veterinary Diagnostics Warsaw, University of Life Sciences, Nowoursynowska 159C, Warsaw, 02-776, Poland
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159C, Warsaw, 02-776, Poland
| | - Piotr Szeleszczuk
- Department of Pathology and Veterinary Diagnostics Warsaw, University of Life Sciences, Nowoursynowska 159C, Warsaw, 02-776, Poland
| |
Collapse
|
3
|
Adamczyk K, Rubbenstroth D, Ledwoń A, Sapierzyński R, Szeleszczuk P. The first confirmed cases of pigeon rotavirus A (RVA) infection in domestic pigeons (Columba livia) in Poland. J Vet Res 2024; 68:55-61. [PMID: 38525231 PMCID: PMC10960255 DOI: 10.2478/jvetres-2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/26/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Although the presence of rotaviruses in pigeon samples has been reported since the 1980s, its importance as an aetiological agent of the "classical" young pigeon disease (YPD) was not proven until 2020, when the Henle-Koch postulates were confirmed for pigeon-type rotavirus A (RVA) genotype G18P(17). Material and Methods From 2011 to 2020, archived liver samples from 117 pigeons submitted by 74 individual lofts were tested for the presence of pigeon-type RVA using a VP6-specific RT-qPCR test. For four positive racing pigeons, a more detailed necropsy and histopathological analysis was performed. Results Indicators of an acute RVA infection were found in 24 out of 117 (20.5%) samples tested, the earliest in 2014. Necropsies of the four selected RVA-positive pigeons showed changes mainly in the liver, spleen and kidneys similar to those described by other researchers. The histopathological examination revealed mainly hyperaemia and necrosis in the liver, as well as mononuclear cell infiltrates in these organs. Conclusion Pigeon-type RVA is also a cause of YPD in Poland and is a serious challenge for racing pigeon breeders and veterinarians, especially during the training and flights of young pigeons.
Collapse
Affiliation(s)
- Krzysztof Adamczyk
- Department of Pathology and Veterinary Diagnostics, Warsaw University of Life Sciences, 02-776Warszawa, Poland
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493Greifswald - Insel Riems, Germany
| | - Aleksandra Ledwoń
- Department of Pathology and Veterinary Diagnostics, Warsaw University of Life Sciences, 02-776Warszawa, Poland
| | - Rafał Sapierzyński
- Department of Pathology and Veterinary Diagnostics, Warsaw University of Life Sciences, 02-776Warszawa, Poland
| | - Piotr Szeleszczuk
- Department of Pathology and Veterinary Diagnostics, Warsaw University of Life Sciences, 02-776Warszawa, Poland
| |
Collapse
|
4
|
El-Sayed MA, Ibrahim NS, Assi HAEM, El-Gawad MA, Mohammed WS, Ibrahim MA, Mesalam NM, Abdel-Moneim AE. Utilization of Biotechnology, Neurotransmitter and Cytogenetic Indices in Selecting Pigeon Breeds. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2023. [DOI: 10.1590/1806-9061-2021-1586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - HAEM Assi
- Animal Production Research Institute, Egypt
| | | | | | | | | | | |
Collapse
|
5
|
Fujii Y, Masatani T, Nishiyama S, Okajima M, Izumi F, Okazaki K, Sakoda Y, Takada A, Ozawa M, Sugiyama M, Ito N. Molecular characterisation of a novel avian rotavirus A strain detected from a gull species ( Larus sp.). J Gen Virol 2022; 103. [PMID: 36223171 DOI: 10.1099/jgv.0.001792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A recent study demonstrated the possibility that migratory birds are responsible for the global spread of avian rotavirus A (RVA). However, little is known about what types of RVAs are retained in migratory birds. In this study, to obtain information on RVA strains in migratory birds, we characterised an RVA strain, Ho374, that was detected in a faecal sample from a gull species (Larus sp.). Genetic analysis revealed that all 11 genes of this strain were classified as new genotypes (G28-P[39]-I21-R14-C14-M13-A24-N14-T16-E21-H16). This clearly indicates that the genetic diversity of avian RVAs is greater than previously recognised. Our findings highlight the need for investigations of RVA strains retained in migratory birds, including gulls.
Collapse
Affiliation(s)
- Yuji Fujii
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Tatsunori Masatani
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Shoko Nishiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Misuzu Okajima
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Fumiki Izumi
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Katsunori Okazaki
- Laboratory of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Makoto Ozawa
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Makoto Sugiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Naoto Ito
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| |
Collapse
|
6
|
Meßmer C, Rubbenstroth D, Mohr L, Peus E, Schreiber T, Rautenschlein S. Pigeon Rotavirus A as the cause of systemic infection in juvenile pigeons (young pigeon disease). TIERARZTLICHE PRAXIS. AUSGABE K, KLEINTIERE/HEIMTIERE 2022; 50:293-301. [PMID: 36067771 DOI: 10.1055/a-1909-2235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent investigations suggested pigeon associated Rotavirus Typ A genotype G18P[17] (RVA) as a causative agent of the classical 'young pigeon disease' (YPD). YPD was first described in the late 1980 s as an acute, mainly seasonally recurring disorder of mostly juvenile domestic pigeons (Columba livia) with clinical signs such as anorexia, dairrhea, vomiting, congested crops, weight loss and occasionally mortality. Various studies in the past indicated a multifactorial nature of YPD. Several pathogens, such as pigeon circovirus 1, avian adenoviruses and Escherichia coli were also suggested, but none of these could reproduce the disease experimentally. However, the impact of other pathogens on the clinical development of YPD cannot be excluded and requires further investigation. This present review summarizes available information on RVA-induced disease in pigeons, its association with YPD, the transmission, and diagnosis of the infection, and on prophylactic strategies to prevent RVA outbreaks.
Collapse
Affiliation(s)
- Christian Meßmer
- Clinic for Poultry, University of Veterinary Medicine in Hannover
| | | | - Lydia Mohr
- Clinic for Poultry, University of Veterinary Medicine in Hannover
| | - Elisabeth Peus
- Clinic for Pigeons of the German Pigeon Breeders Association
| | - Tim Schreiber
- Clinic for Pigeons of the German Pigeon Breeders Association
| | | |
Collapse
|
7
|
Kanda M, Fukuda S, Hamada N, Nishiyama S, Masatani T, Fujii Y, Izumi F, Okajima M, Taniguchi K, Sugiyama M, Komoto S, Ito N. Establishment of a reverse genetics system for avian rotavirus A strain PO-13. J Gen Virol 2022; 103. [PMID: 35749287 DOI: 10.1099/jgv.0.001760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian rotavirus A (RVA) is one of major enteric pathogens that cause diarrhoea in young avian individuals. Importantly, some of the avian RVA strains of G18P[17] genotype are naturally transmitted to and cause clinical diseases in mammalian species, indicating their potential risks to animal health. Although molecular information on the pathogenesis by avian RVA strains will be useful for estimating their risks, the absence of a reverse genetics (RG) system for these strains has hindered the elucidation of their pathogenic mechanisms. In this study, we aimed to establish an RG system for the avian G18P[17] prototype strain PO-13, which was isolated from a pigeon in Japan in 1983 and was experimentally shown to be pathogenic in suckling mice. Transfection with plasmids expressing 11 genomic RNA segments of the strain resulted in rescue of the infectious virus with an artificially introduced genetic marker on its genome, indicating that an RG system for the PO-13 strain was successfully established. The rescued recombinant strain rPO-13 had biological properties almost identical to those of its wild-type strain (wtPO-13). Notably, both rPO-13 and wtPO-13 induced diarrhoea in suckling mice with similar efficiencies. It was thus demonstrated that the RG system will be useful for elucidating the pathogenic mechanisms of the PO-13 strain at the molecular level. This is the first report of the establishment of an RG system for an avian RVA strain.
Collapse
Affiliation(s)
- Marika Kanda
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Nanami Hamada
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Shoko Nishiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Tatsunori Masatani
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Japan
| | - Yuji Fujii
- Joint Graduate School of Veterinary Sciences, Gifu University, Japan
| | - Fumiki Izumi
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Misuzu Okajima
- Joint Graduate School of Veterinary Sciences, Gifu University, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Makoto Sugiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Japan
| |
Collapse
|
8
|
Genome Sequence of Rotavirus A from a Florida Racing Pigeon ( Columba livia domestica). Microbiol Resour Announc 2022; 11:e0114921. [PMID: 35286160 PMCID: PMC9022510 DOI: 10.1128/mra.01149-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete coding sequence of a rotavirus A strain was determined from a dead racing pigeon in Florida. It was found to be most closely related to a rotavirus A strain isolated from a dead racing pigeon in California.
Collapse
|
9
|
Fujii Y, Hirayama M, Nishiyama S, Takahashi T, Okajima M, Izumi F, Takehara K, Masatani T, Sugiyama M, Ito N. Characterization of an avian rotavirus A strain isolated from a velvet scoter ( Melanitta fusca): implication for the role of migratory birds in global spread of avian rotaviruses. J Gen Virol 2022; 103. [PMID: 35175915 DOI: 10.1099/jgv.0.001722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian G18P[17] rotaviruses with similar complete genome constellation, including strains that showed pathogenicity in mammals, have been detected worldwide. However, it remains unclear how these strains spread geographically. In this study, to investigate the role of migratory birds in the dispersion of avian rotaviruses, we analysed whole genetic characters of the rotavirus strain RK1 that was isolated from a migratory species of birds [velvet scoter (Melanitta fusca)] in Japan in 1989. Genetic analyses revealed that the genotype constellation of the RK1 strain, G18-P[17]-I4-R4-C4-M4-A21-N4-T4-E4-H4, was highly consistent with those of other G18P[17] strains detected in various parts of the world, supporting the possibility that the G18P[17] strains spread via migratory birds that move over a wide area. Furthermore, the RK1 strain induced diarrhoea in suckling mice after oral gastric inoculation, indicating that at least some of the rotaviruses that originated from migratory birds are infectious to and pathogenic in mammals. In conclusion, it was demonstrated that migratory birds may contribute to the global spread of avian rotaviruses that are pathogenic in mammalian species.
Collapse
Affiliation(s)
- Yuji Fujii
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Mihoko Hirayama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Shoko Nishiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Tatsuki Takahashi
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Misuzu Okajima
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Fumiki Izumi
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Kazuaki Takehara
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Tatsunori Masatani
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Makoto Sugiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Naoto Ito
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Gifu Center for Highly Advanced Integration of Nanosciences and Life Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| |
Collapse
|
10
|
Agnihotri K, Smith C, Oakey J, Storie G. Pigeon adenovirus and pigeon torque teno virus associated with acute multifocal hepatic necrosis in pigeons in Queensland, Australia. Arch Virol 2021; 166:1469-1475. [PMID: 33721100 DOI: 10.1007/s00705-021-05033-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/23/2021] [Indexed: 01/04/2023]
Abstract
In 2018, an outbreak resulting in deaths of 28 breeding pigeons was reported north of Brisbane, Australia. The affected birds had runny nasal discharge and poor body condition. Two birds were submitted to Biosecurity Sciences Laboratory, Brisbane, for investigation. A range of diagnostic tests excluded a number of known pathogens, and no virus was isolated in cell culture. Histopathological examination revealed severe acute multifocal necrosis in the liver with eosinophilic intranuclear inclusions in hepatocytes and Kupffer cells. High-throughput sequencing (HTS) revealed full-length sequences for pigeon adenovirus 1 (PiAd-A) and pigeon torque teno virus (PTTV). This report indicates concomitant PiAd-1and PTTV infections in Australian pigeons.
Collapse
Affiliation(s)
- Kalpana Agnihotri
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Health and Food Sciences Precinct, 39, Coopers Plains, QLD, 4108, Australia.
| | - Craig Smith
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Health and Food Sciences Precinct, 39, Coopers Plains, QLD, 4108, Australia
| | - Jane Oakey
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Health and Food Sciences Precinct, 39, Coopers Plains, QLD, 4108, Australia
| | - Greg Storie
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Health and Food Sciences Precinct, 39, Coopers Plains, QLD, 4108, Australia
| |
Collapse
|
11
|
Schmidt V, Kümpel M, Cramer K, Sieg M, Harzer M, Rückner A, Heenemann K. Pigeon rotavirus A genotype G18P[17]-associated disease outbreaks after fancy pigeon shows in Germany - a case series. TIERAERZTLICHE PRAXIS AUSGABE KLEINTIERE HEIMTIERE 2021; 49:22-27. [PMID: 33588462 DOI: 10.1055/a-1339-0366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Pigeon rotavirus A (RVA) isolates of genotype G18P[17] are causing disease outbreaks and fatalities in pigeon lofts in Australia, Germany, Belgium, Denmark and USA since 2016. Most disease outbreaks have been reported from juvenile pigeons (Columba livia forma domestica). However, reports on RVA-associated disease outbreaks in fancy pigeons in connection with fancy pigeon shows in Germany are rare. MATERIAL AND METHODS Overall 18 pigeons (16 fancy pigeons and one racing pigeon from 9 pigeon fanciers, as well as one feral pigeon from a rescue center) were sent in for routine diagnostic necropsy including histopathologic, parasitologic and microbiologic examinations. Molecular biologic examinations for detection of RVA, circovirus, Usutu virus, West Nile virus and Chlamydia psittaci were also carried out on all pigeons. An accompanying questionnaire filled in by the senders was used to generate basic information on the affected pigeon lofts. RESULTS Disease outbreaks in juvenile and adult pigeons were reported 7-14 days after fancy pigeon shows. One fancier who had previously vaccinated his pigeons with an autogenous pigeon RVA vaccine, noted no morbidity and mortality among his pigeons and thus sent in a healthy pigeon for diagnostic purposes. Reported clinical signs in the other pigeons were regurgitation, green slimy diarrhea, anorexia, apathy and death after 24 hours. Hepatic necrosis and detection of pigeon RVA isolates of genotype G18P[17] confirmed disease outbreaks caused by pigeon RVA in all pigeons, except for the vaccinated pigeon. Besides pigeon circovirus, which was detected in 15 of 18 pigeons, all other pathogens were singular findings. CONCLUSION AND CLINICAL RELEVANCE In disease outbreaks following fancy pigeon shows in juvenile and adult pigeons diagnostics should include pigeon RVA of genotype G18P[17].
Collapse
Affiliation(s)
- Volker Schmidt
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, Leipzig University
| | - Michael Kümpel
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, Leipzig University
| | - Kerstin Cramer
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, Leipzig University
| | - Michael Sieg
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University
| | - Maxi Harzer
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University
| | - Antje Rückner
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University
| | - Kristin Heenemann
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University
| |
Collapse
|
12
|
Sánchez-González R, Ramis A, Nofrarías M, Wali N, Valle R, Pérez M, Perlas A, Majó N. Infectivity and pathobiology of H7N1 and H5N8 high pathogenicity avian influenza viruses for pigeons ( Columba livia var. domestica). Avian Pathol 2020; 50:98-106. [PMID: 33034513 DOI: 10.1080/03079457.2020.1832197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Avian influenza (AI) is one of the most important viral diseases in poultry, wildlife and humans. Available data indicate that pigeons play a minimum role in the epidemiology of AI. However, a degree of variation exists in the susceptibility of pigeons to highly pathogenic AI viruses (HPAIVs), especially since the emergence of the goose/Guangdong H5 lineage. Here, the pathogenesis of H5N8 HPAIV in comparison with a H7N1 HPAIV and the role of pigeons in the epidemiology of these viruses were evaluated. Local and urban pigeons (Columba livia var. domestica) were intranasally inoculated with 105 ELD50 of A/goose/Spain/IA17CR02699/2017 (H5N8) or A/Chicken/Italy/5093/1999 (H7N1) and monitored during 14 days. Several pigeons inoculated with H5N8 or H7N1 seroconverted. However, clinical signs, mortality, microscopic lesions and viral antigen were only detected in a local pigeon inoculated with H5N8 HPAIV. This pigeon presented prostration and neurological signs that correlated with the presence of large areas of necrosis and widespread AIV antigen in the central nervous system, indicating that the fatal outcome was associated with neurological dysfunction. Viral RNA in swabs was detected in some pigeons inoculated with H7N1 and H5N8, but it was inconsistent, short-term and at low titres. The present study demonstrates that the majority of pigeons were resistant to H5N8 and H7N1 HPAIVs, despite several pigeons developing asymptomatic infections. The limited viral shedding indicates a minimum role of pigeons as amplifiers of HPAIVs, regardless of the viral lineage, and suggests that this species may represent a low risk for environmental contamination. RESEARCH HIGHLIGHTS H7N1 and H5N8 HPAIVs can produce subclinical infections in pigeons. The mortality caused by H5N8 HPAIV in one pigeon was associated with neurological dysfunction. Pigeons represent a low risk for environmental contamination by HPAIVs.
Collapse
Affiliation(s)
- R Sánchez-González
- IRTA, Centre de Recerca en Sanitat Animal (IRTA-CReSA), Bellaterra, España
| | - A Ramis
- IRTA, Centre de Recerca en Sanitat Animal (IRTA-CReSA), Bellaterra, España.,Departament de Sanitat i Anatomia Birds, Universitat Autònoma de Barcelona, Bellaterra, España
| | - M Nofrarías
- IRTA, Centre de Recerca en Sanitat Animal (IRTA-CReSA), Bellaterra, España
| | - N Wali
- IRTA, Centre de Recerca en Sanitat Animal (IRTA-CReSA), Bellaterra, España
| | - R Valle
- IRTA, Centre de Recerca en Sanitat Animal (IRTA-CReSA), Bellaterra, España
| | - M Pérez
- IRTA, Centre de Recerca en Sanitat Animal (IRTA-CReSA), Bellaterra, España
| | - A Perlas
- IRTA, Centre de Recerca en Sanitat Animal (IRTA-CReSA), Bellaterra, España
| | - N Majó
- IRTA, Centre de Recerca en Sanitat Animal (IRTA-CReSA), Bellaterra, España.,Departament de Sanitat i Anatomia Birds, Universitat Autònoma de Barcelona, Bellaterra, España
| |
Collapse
|
13
|
Rubbenstroth D, Ulrich R, Wylezich C, Rautenschlein S, Beer M, Mohr L. First experimental proof of Rotavirus A (RVA) genotype G18P[17] inducing the clinical presentation of 'young pigeon disease syndrome' (YPDS) in domestic pigeons (Columba livia). Transbound Emerg Dis 2020; 67:1507-1516. [PMID: 31967734 DOI: 10.1111/tbed.13485] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/03/2019] [Accepted: 01/15/2020] [Indexed: 11/27/2022]
Abstract
Young pigeon disease syndrome (YPDS) is characterized as a seasonally occurring, acute and primarily enteric medical condition of mainly juvenile domestic pigeons (Columba livia) with highly variable mortality reaching more than 50%. Although the syndrome has been known in Europe for almost three decades, its aetiology remains largely obscure. Recently, a previously unknown pigeon-associated clade of Rotavirus A (RVA) genotype G18P[17] was detected in Europe and Australia in association with fatal diseases resembling YPDS. Here we show for the first time, that peroral inoculation of healthy juvenile homing pigeons with two genetically different cell culture isolates of RVA G18P[17] (106.3 foci-forming units per bird) induces an acute and self-limiting YPDS-like disease in all infected birds. Clinical signs included regurgitation, diarrhoea, congested crops, anorexia and weight loss, as described for naturally RVA-infected pigeons. In agreement with the original outbreaks, RVA isolate DR-7 induced more pronounced clinical signs as compared to isolate DR-5, indicating strain-dependent virulence factors to contribute to variable disease outcomes observed in the field. All inoculated birds developed rotavirus-reactive antibodies starting at seven days after inoculation. High levels of viral RNA and infectious virus were detectable in cloacal swabs and faecal samples already three days after inoculation. While shedding of infectious virus subsided within few days, moderate viral RNA levels were still detectable in cloacal swabs, faeces, and tissue samples at the end of the experiment three weeks after inoculation. Histopathological analysis at this time point revealed inflammatory lesions in spleens and livers of pigeons from both infected groups. In summary, we fulfilled Henle-Koch's postulates and confirmed RVA G18P[17] as a primary cause of YPDS-like diseases in domestic pigeons. By establishing an infection model, we provide a crucial tool for future research, such as identification of transmission routes and establishing vaccination regimes.
Collapse
Affiliation(s)
- Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Reiner Ulrich
- Institute of Veterinary-Pathology, Leipzig University, Leipzig, Germany.,Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Lydia Mohr
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|