1
|
Seeger MG, Correa DC, Barcelos RAD, Werle J, Masuda EK, Bordin AI, Cohen ND, Vogel FSF, Cargnelutti JF. Variation in SeM genotype is associated with virulence of Streptococcus equi subspecies equi in mice. Microb Pathog 2025; 205:107541. [PMID: 40203958 DOI: 10.1016/j.micpath.2025.107541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/07/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Strangles is a common infectious disease caused by Streptococcus equi subspecies equi (S. equi) that primarily affects the upper respiratory system. To date, 271 alleles of the M protein (seM) have been identified that may be related to antigenic differences of isolates. This study evaluated the virulence of S. equi isolates from different alleles of the M protein in an experimental mouse model. Thirty-six Swiss mice were allocated into 12 groups (G1-G12) and each infected group received a different isolate of S. equi recovered from horses with strangles: G1: seM-117; G2: seM-61; G3: seM-123; G4: seM-115; G5: seM-271; G6: seM-124; G7: seM-158, and G8: seM-39, G9: no allele, G10: seM-28, G11: control (no infection - Brazil), G12: control (no infection - Texas). Mice were infected intranasally with 2 × 106 CFU/mL and monitored for clinical signs, weight, and nasal culture over 10 days. Clinical signs varied among mice inoculated with different isolates of S. equi, ranging from lethargy, serous ocular discharge, and rhinitis to tachypnea and neurological alterations. Isolates from alleles seM-158 (G7), seM-39 (G8), and seM-271 (G5) were classified as highly virulent, frequently resulting in death or euthanasia, along with consistent bacterial excretion and enlargement of lymph nodes. Mice in G4 (seM-115), G6 (seM-124), G9 (no allele), and G10 (seM-28) showed moderately severe clinical signs of disease, whereas clinical signs for mice in G1 (seM-117), G2 (seM-61), and G3 (seM-123) were mild or absent. Results demonstrate that isolates of S. equi with different M protein alleles exhibit varying levels of virulence in mice, ranging from asymptomatic infection to severe illness and mortality. Additional investigations should be conducted to assess whether virulence in horses is associated with S. equi M protein variability and whether the association of M protein genotype with virulence is causal.
Collapse
Affiliation(s)
- Marlane Geribone Seeger
- Programa de Pós-Graduação em Medicina Veterinária, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Diego Cristiano Correa
- Programa de Pós-Graduação em Medicina Veterinária, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | | | - Júlia Werle
- Programa de Pós-Graduação em Medicina Veterinária, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Eduardo Kenji Masuda
- Laboratório Axys Análises Diagnóstico Veterinário e Consultoria, Alberto Silva, 332, Porto Alegre, RS, 91370-000, Brazil
| | - Angela Ilha Bordin
- Departmento de Ciências Clínicas de Grandes Animais, Texas A&M School of Veterinary Medicine & Biomedical Sciences, 4475 TAMU, College Station, TX, 77843-4475, USA
| | - Noah D Cohen
- Departmento de Ciências Clínicas de Grandes Animais, Texas A&M School of Veterinary Medicine & Biomedical Sciences, 4475 TAMU, College Station, TX, 77843-4475, USA
| | | | - Juliana Felipetto Cargnelutti
- Departamento de Medicina Veterinária Preventiva (DMVP), Centro de Ciências Rurais (CCR), UFSM, Santa Maria, RS, Brazil.
| |
Collapse
|
2
|
Li S, Xu G, Guo Z, Liu Y, Ouyang Z, Li Y, Huang Y, Sun Q, Giri BR, Fu Q. Deficiency of hasB accelerated the clearance of Streptococcus equi subsp. Zooepidemicus through gasdermin d-dependent neutrophil extracellular traps. Int Immunopharmacol 2024; 140:112829. [PMID: 39083933 DOI: 10.1016/j.intimp.2024.112829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Streptococcus equi subsp. zooepidemicus (S. zooepidemicus, SEZ) is an essential zoonotic bacterial pathogen that can cause various inflammation, such as meningitis, endocarditis, and pneumonia. UDP-glucose dehydrogenase (hasB) is indispensable in synthesizing SEZ virulence factor hyaluronan capsules. Our study investigated the infection of hasB on mice response to SEZ by employing a constructed capsule-deficient mutant strain designated as the ΔhasB strain. This deficiency was associated with a reduced SEZ bacterial load in the mice's blood and peritoneal lavage fluid (PLF) post-infection. Besides, the ΔhasB SEZ strain exhibited a higher propensity for neutrophil infiltration and release of cell-free DNA (cfDNA) in vivo compared to the wild-type (WT) SEZ strain. In vitro experiments further revealed that ΔhasB SEZ more effectively induced the formation of neutrophil extracellular traps (NETs) containing histone 3 (H3), neutrophil elastase (NE), and DNA, than its WT counterpart. Moreover, the release of NETs was determined to be gasdermin D (GSDMD)-dependent during the infection process. Taken together, these findings underscore that the deficiency of the hasB gene in SEZ leads to enhanced GSDMD-dependent NET release from neutrophils, thereby reducing SEZ's capacity to resist NETs-mediated eradication during infection. Our finding paves the way for the development of innovative therapeutic strategies against SEZ.
Collapse
Affiliation(s)
- Shun Li
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, Guangdong, China
| | - Guobin Xu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zheng Guo
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Yuxuan Liu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zhiliang Ouyang
- Houjie Town Agricultural Technology Service Center, Dongguan, Guangdong, China
| | - Yajuan Li
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, Guangdong, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, Guangdong, China
| | - Qinqin Sun
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, Guangdong, China
| | - Bikash R Giri
- Department of Zoology, K.K.S. Women's College, Balasore, Odisha, India
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, Guangdong, China.
| |
Collapse
|
3
|
Liu Y, Lu M, Sun Q, Guo Z, Lin Y, Li S, Huang Y, Li Y, Fu Q. Magnolol attenuates macrophage pyroptosis triggered by Streptococcus equi subsp. zooepidemicus. Int Immunopharmacol 2024; 131:111922. [PMID: 38522137 DOI: 10.1016/j.intimp.2024.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/11/2023] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Streptococcus equi subsp. zooepidemicus (SEZ) is a zoonotic bacterial pathogen that causes life-threatening infections and various diseases such as meningitis, endocarditis and pneumonia. With the use of antibiotics being severely restricted in the international community, an alternative to antibiotics is urgently needed against bacterial. In the present study, the herbal extract magnolol protected mice against SEZ infection, reflected by increased survival rate and reduced bacterial burden. A pro-inflammatory form of cell death occurred in SEZ-infected macrophage. Magnolol downregulated the expression of pyroptosis-related proteins and reduced the formation of cell membrane pores in infected macrophages to suppress the development of subsequent inflammation. We further demonstrated that magnolol directly suppressed SEZ-induced macrophage pyroptosis, which partially protected macrophages from SEZ infection. Our study revealed that magnolol suppressed inflammation and protected mice against SEZ infection, providing a possible treatment for SEZ infection.
Collapse
Affiliation(s)
- Yuxuan Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Meijun Lu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qian Sun
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Guo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yongjin Lin
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shun Li
- School of Life Science and Engineering, Foshan University, Foshan, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Foshan, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Yajuan Li
- School of Life Science and Engineering, Foshan University, Foshan, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China.
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Foshan, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China.
| |
Collapse
|
4
|
Frosth S, Morris ERA, Wilson H, Frykberg L, Jacobsson K, Parkhill J, Flock JI, Wood T, Guss B, Aanensen DM, Boyle AG, Riihimäki M, Cohen ND, Waller AS. Conservation of vaccine antigen sequences encoded by sequenced strains of Streptococcus equi subsp. equi. Equine Vet J 2023; 55:92-101. [PMID: 35000217 PMCID: PMC10078666 DOI: 10.1111/evj.13552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Streptococcus equi subspecies equi (S equi) is the cause of Strangles, one of the most prevalent diseases of horses worldwide. Variation within the immunodominant SeM protein has been documented, but a new eight-component fusion protein vaccine, Strangvac, does not contain live S equi or SeM and conservation of the antigens it contains have not been reported. OBJECTIVE To define the diversity of the eight Strangvac antigens across a diverse S equi population. STUDY DESIGN Genomic description. METHODS Antigen sequences from the genomes of 759 S equi isolates from 19 countries, recovered between 1955 and 2018, were analysed. Predicted amino acid sequences in the antigen fragments of SEQ0256(Eq5), SEQ0402(Eq8), SEQ0721(EAG), SEQ0855(SclF), SEQ0935(CNE), SEQ0999(IdeE), SEQ1817(SclI) and SEQ2101(SclC) in Strangvac and SeM were extracted from the 759 assembled genomes and compared. RESULTS The predicted amino acid sequences of SclC, SclI and IdeE were identical across all 759 genomes. CNE was truncated in the genome of five (0.7%) isolates. SclF was absent from one genome and another encoded a single amino acid substitution. EAG was truncated in two genomes. Eq5 was truncated in four genomes and 123 genomes encoded a single amino acid substitution. Eq8 was truncated in three genomes, one genome encoded four amino acid substitutions and 398 genomes encoded a single amino acid substitution at the final amino acid of the Eq8 antigen fragment. Therefore, at least 1579 (99.9%) of 1580 amino acids in Strangvac were identical in 743 (97.9%) genomes, and all genomes encoded identical amino acid sequences for at least six of the eight Strangvac antigens. MAIN LIMITATIONS Three hundred and seven (40.4%) isolates in this study were recovered from horses in the UK. CONCLUSIONS The predicted amino acid sequences of antigens in Strangvac were highly conserved across this collection of S equi.
Collapse
Affiliation(s)
- Sara Frosth
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ellen Ruth A Morris
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, Texas, USA
| | | | - Lars Frykberg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karin Jacobsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Jan-Ingmar Flock
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Intervacc AB, Stockholm, Sweden
| | | | - Bengt Guss
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - David M Aanensen
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ashley G Boyle
- Department of Clinical Studies New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Miia Riihimäki
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Noah D Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, Texas, USA
| | - Andrew S Waller
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Intervacc AB, Stockholm, Sweden
| |
Collapse
|
5
|
Xu G, Guo Z, Liu Y, Yang Y, Lin Y, Li C, Huang Y, Fu Q. Gasdermin D protects against Streptococcus equi subsp. zooepidemicus infection through macrophage pyroptosis. Front Immunol 2022; 13:1005925. [PMID: 36311722 PMCID: PMC9614658 DOI: 10.3389/fimmu.2022.1005925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus equi subsp. zooepidemicus (S. zooepidemicus, SEZ) is an essential zoonotic bacterial pathogen that can cause various inflammation, such as meningitis, endocarditis, and pneumonia. Gasdermin D (GSDMD) is involved in cytokine release and cell death, indicating an important role in controlling the microbial infection. This study investigated the protective role of GSDMD in mice infected with SEZ and examined the role of GSDMD in peritoneal macrophages in the infection. GSDMD-deficient mice were more susceptible to intraperitoneal infection with SEZ, and the white pulp structure of the spleen was seriously damaged in GSDMD-deficient mice. Although the increased proportion of macrophages did not depend on GSDMD in both spleen and peritoneal lavage fluid (PLF), deficiency of GSDMD caused the minor release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) during the infection in vivo. In vitro, SEZ infection induced more release of IL-1β, IL-18, and lactate dehydrogenase (LDH) in wild-type macrophages than in GSDMD-deficient macrophages. Finally, we demonstrated that pore formation and pyroptosis of macrophages depended on GSDMD. Our findings highlight the host defense mechanisms of GSDMD against SEZ infection, providing a potential therapeutic target in SEZ infection.
Collapse
Affiliation(s)
- Guobin Xu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Guo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuxuan Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yalin Yang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yongjin Lin
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chunliu Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
- Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Foshan, China
- Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China
- *Correspondence: Qiang Fu,
| |
Collapse
|
6
|
Tartor YH, El-Neshwy WM, Merwad AMA, Abo El-Maati MF, Mohamed RE, Dahshan HM, Mahmoud HI. Ringworm in calves: risk factors, improved molecular diagnosis, and therapeutic efficacy of an Aloe vera gel extract. BMC Vet Res 2020; 16:421. [PMID: 33148275 PMCID: PMC7640396 DOI: 10.1186/s12917-020-02616-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/09/2020] [Indexed: 11/17/2022] Open
Abstract
Background Dermatophytosis in calves is a major public and veterinary health concern worldwide because of its zoonotic potential and associated economic losses in cattle farms. However, this condition has lacked adequate attention; thus, to develop effective control measures, we determined ringworm prevalence, risk factors, and the direct-sample nested PCR diagnostic indices compared with the conventional methods of dermatophytes identification. Moreover, the phenolic composition of an Aloe vera gel extract (AGE) and its in vitro and in vivo antidermatophytic activity were evaluated and compared with those of antifungal drugs. Results Of the 760 calves examined, 55.79% (424/760) showed ringworm lesions; 84.91% (360/424) were positive for fungal elements in direct-microscopy, and 79.72% (338/424) were positive in culture. Trichophyton verrucosum was the most frequently identified dermatophyte (90.24%). The risk of dermatophytosis was higher in 4–6-month-old vs. 1-month-old calves (60% vs. 41%), and in summer and winter compared with spring and autumn seasons (66 and 54% vs. 48%). Poor hygienic conditions, intensive breeding systems, animal raising for meat production, parasitic infestation, crossbreeding, and newly purchased animals were statistically significant risk factors for dermatophytosis. One-step PCR targeting the conserved regions of the 18S and 28S genes achieved unequivocal identification of T. verrucosum and T. mentagrophytes in hair samples. Nested-PCR exhibited an excellent performance in all tested diagnostic indices and increased the species-specific detection of dermatophytes by 20% compared with culture. Terbinafine and miconazole were the most active antifungal agents for dermatophytes. Gallic acid, caffeic acid, chlorogenic acid, cinnamic acid, aloe-Emodin, quercetin, and rutin were the major phenolic compounds of AGE, as assessed using high-performance liquid chromatography (HPLC). These compounds increased and synergized the antidermatophytic activity of AGE. The treated groups showed significantly lower clinical scores vs. the control group (P < 0.05). The calves were successfully treated with topical AGE (500 ppm), resulting in clinical and mycological cure within 14–28 days of the experiment; however, the recovery was achieved earlier in the topical miconazole 2% and AGE plus oral terbinafine groups. Conclusions The nested PCR assay provided a rapid diagnostic tool for dermatophytosis and complemented the conventional methods for initiating targeted treatments for ringworm in calves. The recognized antidermatophytic potential of AGE is an advantageous addition to the therapeutic outcomes of commercial drugs.
Collapse
Affiliation(s)
- Yasmine H Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Wafaa M El-Neshwy
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Abdallah M A Merwad
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed F Abo El-Maati
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Rehab E Mohamed
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Hesham M Dahshan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Hala I Mahmoud
- Department of Animal Wealth, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|