1
|
Hu Z, Zhang Y, Hu J, Hu S, Liu X. Characterization of antibody response to an epitope spanning the haemagglutinin cleavage site of H7N9 subtype avian influenza virus for differentiation of infected and vaccinated chickens. Avian Pathol 2022; 51:330-338. [PMID: 35297704 DOI: 10.1080/03079457.2022.2054308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractH7N9 subtype avian influenza virus (AIV) is endemic in poultry in China and vaccination is used as the primary strategy for disease control. However, monitoring H7N9 virus infection in vaccinated poultry by current serological tests is difficult because vaccine-induced antibodies are not readily distinguishable from those induced by field viruses. Therefore, a test that differentiates infected and vaccinated animals (DIVA) is critical for H7N9 virus monitoring. However, no DIVA test is available for H7N9 subtype AIV. In this study, the potential of an epitope (the peptide 11) spanning the haemagglutinin (HA) cleavage site as a DIVA antigen for H7N9 virus was investigated. The results showed that the H7N9 virus infection sera and post-challenge sera obtained from H7N9 vaccinated chickens reacted with the peptide 11, whereas the sera elicited by inactivated and viral-vectored H7N9 vaccines had no reactivity with this peptide. The peptide 11 was further split in two peptides at the HA cleavage site, and the truncated peptides failed to discriminate H7N9 infected and vaccinated chickens. The peptide 11 locates in a prominent surface loop in the HA protein and contains highly conserved residues in the HA cleavage site among the H7N9 subtype and different subtypes of group 1 and 2, suggesting the potential of this peptide as a broad DIVA antigen for influenza viruses. Our study highlighted that the peptide 11 is a promising DIVA antigen and serological tests based on this peptide may serve as useful tools for monitoring H7N9 virus infection in vaccinated poultry in the field.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yanyan Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Hu Z, Zhao J, Shi L, Hu J, Hu S, Liu X. Identification of the dominant non-neutralizing epitope in the haemagglutinin of H7N9 avian influenza virus. Virus Res 2021; 298:198409. [PMID: 33819520 DOI: 10.1016/j.virusres.2021.198409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/31/2022]
Abstract
H7N9 avian influenza vaccines induce high levels of non-neutralizing (nonNeu) antibodies against the haemagglutinin (HA). However, the antigenic epitopes underlying this particular antibody response are still undefined. In this study, a panel of 13 monoclonal antibodies (mAbs) against the HA protein of H7N9 virus was generated and 12 of them had no hemagglutination inhibition and virus neutralizing activities. One linear epitope in the stalk (373-TAA-375) recognized by three mAbs and one conformational epitope in the head (220Q-225S-227G) targeted by one mAb were identified using peptide-based enzyme-linked immunosorbent assay (ELISA) and biopanning of phage display random peptide library. In addition, competition ELISA revealed that the mAb targeting the head epitope strongly inhibited HA-binding of chicken nonNeu anti-H7N9 sera, whereas lower inhibition was observed for chicken neutralizing antisera, indicating the immunodominance of this epitope in the elicitation of nonNeu antibodies. Moreover, the stalk epitope is conserved among the H1-H17 subtypes and the mAb recognizing this epitope exhibited cross-reactivity with different subtypes. In conclusion, two novel nonNeu epitopes in H7N9 HA were identified, and an epitope in the head was identified as an immunodominant epitope underlying the induction of nonNeu H7N9 antibodies. Our results add new knowledge to the molecular basis for antibody immunity against H7N9 vaccines and provide useful implications for vaccine design and modification.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China; Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiangyan Zhao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Lei Shi
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China; Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|