1
|
Talim J, Martins I, Messias C, Sabino H, Oliveira L, Pinto T, Albuquerque J, Cerqueira A, Dolores Í, Moreira B, Silveira R, Neves F, Rabello R. Multidrug-Resistant Staphylococcus aureus Colonizing Pigs and Farm Workers in Rio de Janeiro State, Brazil: Potential Interspecies Transmission of Livestock-Associated MRSA (LA-MRSA) ST398. Antibiotics (Basel) 2024; 13:767. [PMID: 39200067 PMCID: PMC11350785 DOI: 10.3390/antibiotics13080767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/01/2024] Open
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus has been increasingly isolated from pigs and people in close contact with them, especially livestock-associated methicillin-resistant S. aureus (LA-MRSA). In this cross-sectional study, we investigated S. aureus colonization in pigs and farm workers, their resistance profile, and genetic background to estimate interspecies transmission potential within farms from Rio de Janeiro state, Brazil, between 2014 and 2019. We collected nasal swabs from 230 pigs and 27 workers from 16 and 10 farms, respectively. Five MDR strains were subjected to whole genome sequencing. Fourteen (6.1%) pigs and seven (25.9%) humans were colonized with S. aureus, mostly (64-71%) MDR strains. Resistance to clindamycin, erythromycin, penicillin, and tetracycline was the most common among the pig and human strains investigated. MDR strains shared several resistance genes [blaZ, dfrG, fexA, lsa(E), and tet(M)]. Pig and human strains recovered from the same farm shared the same genetic background and antimicrobial resistance profile. LA-MRSA ST398-SCCmecV-t011 was isolated from pigs in two farms and from a farm worker in one of them, suggesting interspecies transmission. The association between pig management practices and MDR S. aureus colonization might be investigated in additional studies.
Collapse
Affiliation(s)
- Joana Talim
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-150, RJ, Brazil; (J.T.); (H.S.); (J.A.); (A.C.); (F.N.)
| | - Ianick Martins
- Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033-900, RJ, Brazil;
| | - Cassio Messias
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco 69915-900, AC, Brazil;
| | - Hellen Sabino
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-150, RJ, Brazil; (J.T.); (H.S.); (J.A.); (A.C.); (F.N.)
| | - Laura Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (L.O.); (T.P.); (B.M.)
| | - Tatiana Pinto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (L.O.); (T.P.); (B.M.)
| | - Julia Albuquerque
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-150, RJ, Brazil; (J.T.); (H.S.); (J.A.); (A.C.); (F.N.)
| | - Aloysio Cerqueira
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-150, RJ, Brazil; (J.T.); (H.S.); (J.A.); (A.C.); (F.N.)
| | - Ítalo Dolores
- Departament of Clinical Medicine, Faculty of Medicine, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil;
| | - Beatriz Moreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (L.O.); (T.P.); (B.M.)
| | - Renato Silveira
- Department of Morphology, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil;
| | - Felipe Neves
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-150, RJ, Brazil; (J.T.); (H.S.); (J.A.); (A.C.); (F.N.)
| | - Renata Rabello
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-150, RJ, Brazil; (J.T.); (H.S.); (J.A.); (A.C.); (F.N.)
| |
Collapse
|
2
|
Titouche Y, Akkou M, Djaoui Y, Mechoub D, Fatihi A, Campaña-Burguet A, Bouchez P, Bouhier L, Houali K, Torres C, Nia Y, Hennekinne JA. Nasal carriage of Staphylococcus aureus in healthy dairy cows in Algeria: antibiotic resistance, enterotoxin genes and biofilm formation. BMC Vet Res 2024; 20:247. [PMID: 38849892 PMCID: PMC11157847 DOI: 10.1186/s12917-024-04103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Staphylococcus aureus can colonize and infect a variety of animal species. In dairy herds, it is one of the leading causes of mastitis cases. The objective of this study was to characterize the S. aureus isolates recovered from nasal swabs of 249 healthy cows and 21 breeders of 21 dairy farms located in two provinces of Algeria (Tizi Ouzou and Bouira). METHODS The detection of enterotoxin genes was investigated by multiplex PCRs. Resistance of recovered isolates to 8 antimicrobial agents was determined by disc-diffusion method. The slime production and biofilm formation of S. aureus isolates were assessed using congo-red agar (CRA) and microtiter-plate assay. Molecular characterization of selected isolates was carried out by spa-typing and Multi-Locus-Sequence-Typing (MLST). RESULTS S. aureus was detected in 30/249 (12%) and 6/13 (28.6%) of nasal swabs in cows and breeders, respectively, and a total of 72 isolates were recovered from positive samples (59 isolates from cows and 13 from breeders). Twenty-six of these isolates (36.1%) harbored genes encoding for staphylococcal enterotoxins, including 17/59 (28.8%) isolates from cows and 9/13 (69.2%) from breeders. Moreover, 49.1% and 92.3% of isolates from cows and breeders, respectively, showed penicillin resistance. All isolates were considered as methicillin-susceptible (MSSA). Forty-five (76.3%) of the isolates from cows were slime producers and 52 (88.1%) of them had the ability to form biofilm in microtiter plates. Evidence of a possible zoonotic transmission was observed in two farms, since S. aureus isolates recovered in these farms from cows and breeders belonged to the same clonal lineage (CC15-ST15-t084 or CC30-ST34-t2228). CONCLUSIONS Although healthy cows in this study did not harbor methicillin-resistant S. aureus isolates, the nares of healthy cows could be a reservoir of enterotoxigenic and biofilm producing isolates which could have implications in human and animal health.
Collapse
Affiliation(s)
- Yacine Titouche
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria.
| | - Madjid Akkou
- Laboratory of Biotechnologies Related to Animal Reproduction, Institute of Veterinary Sciences, University of Saad Dahlab, Blida 1.Blida, Tizi Ouzou, Algeria
| | - Yasmina Djaoui
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Donia Mechoub
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Abdelhak Fatihi
- Laboratory For Food Safety, University Paris Est, Maisons-Alfort, Paris, France, Anses, F-94700, France
| | - Allelen Campaña-Burguet
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Pascal Bouchez
- Laboratory For Food Safety, University Paris Est, Maisons-Alfort, Paris, France, Anses, F-94700, France
| | - Laurence Bouhier
- Laboratory For Food Safety, University Paris Est, Maisons-Alfort, Paris, France, Anses, F-94700, France
| | - Karim Houali
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Yacine Nia
- Laboratory For Food Safety, University Paris Est, Maisons-Alfort, Paris, France, Anses, F-94700, France
| | | |
Collapse
|
3
|
Song M, Tang Q, Ding Y, Tan P, Zhang Y, Wang T, Zhou C, Xu S, Lyu M, Bai Y, Ma X. Staphylococcus aureus and biofilms: transmission, threats, and promising strategies in animal husbandry. J Anim Sci Biotechnol 2024; 15:44. [PMID: 38475886 PMCID: PMC10936095 DOI: 10.1186/s40104-024-01007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/03/2024] [Indexed: 03/14/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and exacerbates S. aureus infection by allowing the bacteria to adhere to pathological areas and livestock product surfaces, thus triggering animal health crises and safety issues with livestock products. To solve this problem, in this review, we provide a brief overview of the harm caused by S. aureus and its biofilms on livestock and animal byproducts (meat and dairy products). We also describe the ways in which S. aureus spreads in animals and the threats it poses to the livestock industry. The processes and molecular mechanisms involved in biofilm formation are then explained. Finally, we discuss strategies for the removal and eradication of S. aureus and biofilms in animal husbandry, including the use of antimicrobial peptides, plant extracts, nanoparticles, phages, and antibodies. These strategies to reduce the spread of S. aureus in animal husbandry help maintain livestock health and improve productivity to ensure the ecologically sustainable development of animal husbandry and the safety of livestock products.
Collapse
Affiliation(s)
- Mengda Song
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qi Tang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yakun Ding
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yucheng Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tao Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chenlong Zhou
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shenrui Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mengwei Lyu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yueyu Bai
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xi Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Abdullahi IN, Lozano C, Zarazaga M, Simón C, Höfle U, Sieber RN, Latorre-Fernández J, Stegger M, Torres C. Comparative genomics of Staphylococcus aureus strains from wild birds and pig farms elucidates levels of mobilomes, antibiotic pressure and host adaptation. J Glob Antimicrob Resist 2024; 36:142-150. [PMID: 38128728 DOI: 10.1016/j.jgar.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVES This study characterized the resistome, mobilome and phylogenomic relatedness of Staphylococcus aureus strains previously obtained from healthy nestling storks (HNS), pigs (HP) and pig farmers (HPF) to analyse possible transmission pathways of S. aureus with implications for the spread of antimicrobial resistance. METHODS The genomic contents of 52 S. aureus strains obtained from the nasal cavity of HNS, HP and HPF in Spain were sequenced using the Illumina NextSeq platform to characterize their resistome, virulome and mobile genetic elements. The relatedness of strains was assessed by core-genome single nucleotide polymorphisms (SNPs). RESULTS The frequencies of multidrug-resistance phenotype and transposons were significantly lower in strains from HNS than in those from HP and HPF (P < 0.005). However, the presence of human immune evasion cluster genes in S. aureus strains from HNS was significantly higher than in those from HP and HPF (P < 0.005). Interestingly, the frequencies of plasmids and phages were not significantly associated with the host (P > 0.05). The phylogenetic analysis identified a cluster of all the MSSA-CC398 strains carrying φSa3 and ermT on rep13 separately from the two MRSA-CC398 strains (carrying ermT on repUS18). Highly related MRSA-CC398 strains were detected in some pigs and related farmers (<10 SNPs). CONCLUSION This study confirms high-level antibiotic selection in S. aureus in HP and HPF in comparison to HNS. Furthermore, our findings highlight the continuous transmission of MRSA-CC398 in the pig-to-human interface and MSSA-CC398 with human adaptation markers in HNS. Molecular surveillance of S. aureus using the One Health model is required to establish appropriate control strategies.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Simón
- Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - Ursula Höfle
- Spanish Wildlife Research Institute IREC (CSIC‑UCLM‑JCCM), SaBio (Health and Biotechnology) Research Group, Ciudad Real, Spain
| | - Raphael N Sieber
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Javier Latorre-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark; Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain.
| |
Collapse
|
5
|
Wang Y, Zhang P, Wu J, Chen S, Jin Y, Long J, Duan G, Yang H. Transmission of livestock-associated methicillin-resistant Staphylococcus aureus between animals, environment, and humans in the farm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86521-86539. [PMID: 37418185 DOI: 10.1007/s11356-023-28532-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Staphylococcus aureus (S. aureus) is a fearsome bacterial pathogen that can colonize and infect humans and animals. Depending on the different sources, MRSA is classified as hospital-associated methicillin-resistant S. aureus (HA-MRSA), community-associated MRSA (CA-MRSA), and livestock-associated MRSA (LA-MRSA). LA-MRSA is initially associated with livestock, and clonal complexes (CCs) were almost always 398. However, the continued development of animal husbandry, globalization, and the widespread use of antibiotics have increased the spread of LA-MRSA among humans, livestock, and the environment, and other clonal complexes such as CC9, CC5, and CC8 have gradually emerged in various countries. This may be due to frequent host switching between humans and animals, as well as between animals. Host-switching is typically followed by subsequent adaptation through acquisition and/or loss of mobile genetic elements (MGEs) such as phages, pathogenicity islands, and plasmids as well as further host-specific mutations allowing it to expand into new host populations. This review aimed to provide an overview of the transmission characteristics of S. aureus in humans, animals, and farm environments, and also to describe the main prevalent clones of LA-MRSA and the changes in MGEs during host switching.
Collapse
Affiliation(s)
- Ying Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Peihua Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Jian Wu
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Albert E, Sipos R, Perreten V, Tóth Á, Ungvári E, Papp M, Dán Á, Biksi I. High Prevalence of Livestock-Associated Methicillin-Resistant Staphylococcus aureus in Hungarian Pig Farms and Genomic Evidence for the Spillover of the Pathogen to Humans. Transbound Emerg Dis 2023; 2023:5540019. [PMID: 40303703 PMCID: PMC12017024 DOI: 10.1155/2023/5540019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 05/02/2025]
Abstract
Livestock-Associated Methicillin-ResistantStaphylococcus aureus (LA-MRSA) strains of clonal complex (CC) 398 are widely disseminated in pigs and are considered emerging pathogens in human medicine. To investigate the prevalence, genetic characteristics, and zoonotic potential of the pathogen in pig production settings, dust samples were collected from 40 pig operations in Hungary, along with nasal swabs of attending veterinarians and other swine professionals (n = 27) in 2019. MRSA isolates were further characterized by performing whole-genome sequencing and susceptibility testing. The whole-genome sequences of 14 human-derived LA-MRSA clinical isolates from the same year were also included in the study. The proportion of positive farms was 83% (33/40), and 70% (19/27) of the swine professionals carried the pathogen. All but one MRSA strain belonged to CC398, including the human clinical isolates. The core genome multilocus sequence typing (cgMLST) analysis revealed clusters of closely-related isolates of both environmental and human origin with a pairwise allelic distance of ≤24, and both cgMLST and single nucleotide polymorphism (SNP) analyses suggest recent transmission events between the farm environment and humans. Four human clinical isolates harboured the immune-evasion gene cluster, of which one was considered to be closely related to farm isolates. Half of the swine-related strains showed decreased susceptibility to eight or more antimicrobials, and along with human isolates, they carried eight different types of multidrug-resistance genes, including cfr. The results showed a dramatic increase in the occurrence of LA-MRSA in the swine industry in Hungary, compared with the 2% prevalence reported by the European Food Safety Authority baseline study in 2008. The wide range of antimicrobial resistance of the strains, accompanied by the emergence of the pathogen in humans - both asymptomatic carriers and diseased - call for revision of the risk posed by LA-MRSA to the public health.
Collapse
Affiliation(s)
- Ervin Albert
- Department of Pathology, University of Veterinary Medicine Budapest, Budapest, Hungary
- SCG Diagnostics Ltd., Délegyháza, Hungary
| | | | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ákos Tóth
- Department of Bacteriology Mycology and Parasitology, National Public Health Centre, Budapest, Hungary
| | - Erika Ungvári
- Department of Bacteriology Mycology and Parasitology, National Public Health Centre, Budapest, Hungary
| | - Márton Papp
- Centre for Bioinformatics, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Ádám Dán
- SCG Diagnostics Ltd., Délegyháza, Hungary
| | - Imre Biksi
- Department of Pathology, University of Veterinary Medicine Budapest, Budapest, Hungary
- SCG Diagnostics Ltd., Délegyháza, Hungary
| |
Collapse
|
7
|
Salgueiro V, Manageiro V, Bandarra NM, Ferreira E, Clemente L, Caniça M. First comparative genomic characterization of the MSSA ST398 lineage detected in aquaculture and other reservoirs. Front Microbiol 2023; 14:1035547. [PMID: 36970692 PMCID: PMC10030524 DOI: 10.3389/fmicb.2023.1035547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Staphylococcus aureus ST398 can cause diseases in several different animals. In this study we analyzed ten S. aureus ST398 previously collected in three different reservoirs in Portugal (humans, gilthead seabream from aquaculture and dolphin from a zoo). Strains tested against sixteen antibiotics, by disk diffusion or minimum inhibitory concentration, showed decreased susceptibility to benzylpenicillin (all strains from gilthead seabream and dolphin) and to erythromycin with an iMLSB phenotype (nine strains), and susceptibility to cefoxitin (methicillin-susceptible S. aureus, MSSA). All strains from aquaculture belonged to the same spa type, t2383, whereas strains from the dolphin and humans belonged to spa type t571. A more detailed analysis using single nucleotide polymorphisms (SNPs)-based tree and a heat map, showed that all strains from aquaculture origin were highly related with each other and the strains from dolphin and humans were more distinct, although they were very similar in ARG, VF and MGE content. Mutations F3I and A100V in glpT gene and D278E and E291D in murA gene were identified in nine fosfomycin susceptible strains. The blaZ gene was also detected in six of the seven animal strains. The study of the genetic environment of erm(T)-type (found in nine S. aureus strains) allowed the identification of MGE (rep13-type plasmids and IS431R-type), presumably involved in the mobilization of this gene. All strains showed genes encoding efflux pumps from major facilitator superfamily (e.g., arlR, lmrS-type and norA/B-type), ATP-binding cassettes (ABC; mgrA) and multidrug and toxic compound extrusion (MATE; mepA/R-type) families, all associated to decreased susceptibility to antibiotics/disinfectants. Moreover, genes related with tolerance to heavy metals (cadD), and several VF (e.g., scn, aur, hlgA/B/C and hlb) were also identified. Insertion sequences, prophages, and plasmids made up the mobilome, some of them associated with ARG, VF and genes related with tolerance to heavy metals. This study highlights that S. aureus ST398 can be a reservoir of several ARG, heavy metals resistance genes and VF, which are essential in the adaption and survival of the bacterium in the different environments and an active agent in its dissemination. It makes an important contribution to understanding the extent of the spread of antimicrobial resistance, as well as the virulome, mobilome and resistome of this dangerous lineage.
Collapse
Affiliation(s)
- Vanessa Salgueiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute for the Sea and Atmosphere, IPMA, Lisbon, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Lurdes Clemente
- INIAV–Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- *Correspondence: Manuela Caniça,
| |
Collapse
|
8
|
Golob M, Pate M, Kušar D, Zajc U, Papić B, Ocepek M, Zdovc I, Avberšek J. Antimicrobial Resistance and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus from Two Pig Farms: Longitudinal Study of LA-MRSA. Antibiotics (Basel) 2022; 11:1532. [PMID: 36358187 PMCID: PMC9687068 DOI: 10.3390/antibiotics11111532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 10/29/2023] Open
Abstract
Pigs were identified as the most important reservoir of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA), mostly belonging to the emergent zoonotic clonal complex (CC) 398. Here, we investigated the presence of MRSA in sows and piglets over a period of several months in two pig farms (intensive farm A and family-run farm B). Isolates underwent antimicrobial susceptibility testing, PCR characterization and spa typing. We collected 280 samples, namely 206 nasal swabs from pigs and 74 environmental samples from pig housings at 12 consecutive time points. A total of 120/161 (74.5%) and 75/119 (63.0%) samples were MRSA-positive in farms A and B, respectively. All isolates harbored mecA but lacked mecC and PVL-encoding genes. The identified spa types (t571, t034, t1250 and t898 in farm A, t1451 and t011 in farm B) were indicative of CC398. Antimicrobial resistance patterns (all multidrug resistant in farm A, 57.2% in farm B) depended on the farm, suggesting the impact of farm size and management practices on the prevalence and characteristics of MRSA. Due to the intermittent colonization of pigs and the high contamination of their immediate environment, MRSA status should be determined at the farm level when considering preventive measures or animal trade between farms.
Collapse
Affiliation(s)
- Majda Golob
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|