1
|
Kwakye-Nuako G, Middleton CE, McCall LI. Small molecule mediators of host-T. cruzi-environment interactions in Chagas disease. PLoS Pathog 2024; 20:e1012012. [PMID: 38457443 PMCID: PMC10923493 DOI: 10.1371/journal.ppat.1012012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024] Open
Abstract
Small molecules (less than 1,500 Da) include major biological signals that mediate host-pathogen-microbiome communication. They also include key intermediates of metabolism and critical cellular building blocks. Pathogens present with unique nutritional needs that restrict pathogen colonization or promote tissue damage. In parallel, parts of host metabolism are responsive to immune signaling and regulated by immune cascades. These interactions can trigger both adaptive and maladaptive metabolic changes in the host, with microbiome-derived signals also contributing to disease progression. In turn, targeting pathogen metabolic needs or maladaptive host metabolic changes is an important strategy to develop new treatments for infectious diseases. Trypanosoma cruzi is a single-celled eukaryotic pathogen and the causative agent of Chagas disease, a neglected tropical disease associated with cardiac and intestinal dysfunction. Here, we discuss the role of small molecules during T. cruzi infection in its vector and in the mammalian host. We integrate these findings to build a theoretical interpretation of how maladaptive metabolic changes drive Chagas disease and extrapolate on how these findings can guide drug development.
Collapse
Affiliation(s)
- Godwin Kwakye-Nuako
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Caitlyn E. Middleton
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, United States of America
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, United States of America
| |
Collapse
|
2
|
Menezes TP, Machado BAA, Toledo DNM, Santos PVD, Ribeiro L, Talvani A. Insights into CX3CL1/Fractalkine during experimental Trypanosoma cruzi infection. Parasitol Int 2021; 87:102530. [PMID: 34929405 DOI: 10.1016/j.parint.2021.102530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 01/05/2023]
Abstract
Trypanosoma cruzi triggers a progressive myocarditis in mammalians through activation and recruitment of leukocytes and release of inflammatory mediators. The chemokine CX3CL1 has been highlighted for its potential role in the parasite controlling in end-pathological status of infected hosts. This study investigated the systemic and cardiac release of CX3CL1 in experimental T. cruzi infection and how this chemokine correlates with endothelin-1 and TNF. Male Fisher rats (n = 20) were infected, or not, by the Y strain of T. cruzi and parasitemia was daily evaluated and immunoassays performed in the cardiac tissue macerated supernatant and in serum to evaluate CX3CL1, endothelin, and TNF production on days 5 and 15 of infection. T. cruzi infection induced a higher serum and cardiac production of these mediators on days 5 and 15 of infection. In both periods of infection, respectively, CX3CL1 showed a positive correlation with TNF (r = 0.833, p < 0.001 and r = 0.723, p < 0.001) and endothelin-1 (r = 0.801, p < 0.05 and r = 0.857, p < 0.001), which reinforce its participation in the T. cruzi-induced myocarditis development.
Collapse
Affiliation(s)
- Tatiana Prata Menezes
- Laboratório de Imunobiologia da InflamaÇão/DECBI/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil; Programa de PÓs-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Bianca Alves Almeida Machado
- Laboratório de Imunobiologia da InflamaÇão/DECBI/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil; Escola de Medicina, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Débora Nonato Miranda Toledo
- Laboratório de Imunobiologia da InflamaÇão/DECBI/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil; Programa de PÓs-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Priscilla Vilela Dos Santos
- Laboratório de Imunobiologia da InflamaÇão/DECBI/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil; Programa de PÓs-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Laís Ribeiro
- Laboratório de Imunobiologia da InflamaÇão/DECBI/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil; Programa de PÓs-Graduação em Ciências da SaÚde: Infectologia e Medicina Tropical, Belo Horizonte, MG, Brazil
| | - Andre Talvani
- Laboratório de Imunobiologia da InflamaÇão/DECBI/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil; Programa de PÓs-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil; Programa de PÓs-Graduação em Ciências da SaÚde: Infectologia e Medicina Tropical, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Borghi SM, Fattori V, Carvalho TT, Tatakihara VLH, Zaninelli TH, Pinho-Ribeiro FA, Ferraz CR, Staurengo-Ferrari L, Casagrande R, Pavanelli WR, Cunha FQ, Cunha TM, Pinge-Filho P, Verri WA. Experimental Trypanosoma cruzi Infection Induces Pain in Mice Dependent on Early Spinal Cord Glial Cells and NFκB Activation and Cytokine Production. Front Immunol 2021; 11:539086. [PMID: 33574810 PMCID: PMC7870690 DOI: 10.3389/fimmu.2020.539086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
The neglected tropical infirmity Chagas disease (CD) presents high mortality. Its etiological agent T. cruzi is transmitted by infected hematophagous insects. Symptoms of the acute phase of the infection include fever, fatigue, body aches, and headache, making diagnosis difficult as they are present in other illnesses as well. Thus, in endemic areas, individuals with undetermined pain may be considered for CD. Although pain is a characteristic symptom of CD, its cellular and molecular mechanisms are unknown except for demonstration of a role for peripheral TNF-α in CD pain. In this study, we evaluate the role of spinal cord glial cells in experimental T. cruzi infection in the context of pain using C57BL/6 mice. Pain, parasitemia, survival, and glial and neuronal function as well as NFκB activation and cytokine/chemokine production were assessed. T. cruzi infection induced chronic mechanical and thermal hyperalgesia. Systemic TNF-α and IL-1β peaked 14 days postinfection (p.i.). Infected mice presented increased spinal gliosis and NFκB activation compared to uninfected mice at 7 days p.i. Glial and NFκB inhibitors limited T. cruzi–induced pain. Nuclear phosphorylated NFκB was detected surrounded by glia markers, and glial inhibitors reduced its detection. T. cruzi–induced spinal cord production of cytokines/chemokines was also diminished by glial inhibitors. Dorsal root ganglia (DRG) neurons presented increased activity in infected mice, and the production of inflammatory mediators was counteracted by glial/NFκB inhibitors. The present study unveils the contribution of DRG and spinal cord cellular and molecular events leading to pain in T. cruzi infection, contributing to a better understanding of CD pathology.
Collapse
Affiliation(s)
- Sergio M Borghi
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil.,Center for Research in Health Science, University of Northern Paraná-Unopar, Londrina, Brazil
| | - Victor Fattori
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Thacyana T Carvalho
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Vera L H Tatakihara
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Tiago H Zaninelli
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Felipe A Pinho-Ribeiro
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Camila R Ferraz
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Larissa Staurengo-Ferrari
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Rubia Casagrande
- Departament of Pharmaceutical Sciences, Health Sciences Center, University Hospital, Londrina State University, Londrina, Brazil
| | - Wander R Pavanelli
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Phileno Pinge-Filho
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| |
Collapse
|
4
|
Teotônio IMSN, Dias N, Hagström-Bex L, Nitz N, Francisco AF, Hecht M. Intestinal microbiota - A modulator of the Trypanosoma cruzi-vector-host triad. Microb Pathog 2019; 137:103711. [PMID: 31491548 DOI: 10.1016/j.micpath.2019.103711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/11/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022]
Abstract
Chagas disease affects millions of people, and it is a major cause of death in Latin America. Prevention and development of an effective treatment for this infection can be favored by a more thorough understanding of T. cruzi interaction with the microbiome of vectors and hosts. Next-generation sequencing technology vastly broadened the knowledge about intestinal bacteria composition, showing that microbiota within each host (triatomines and mammals) is composed by high diversity of species, although few dominant phyla. This fact may represent an ecological balance that was acquired during the evolutionary process of the microbiome-host complex, and that serves to perpetuate this system. In this context, commensal microbiota is also essential to protect hosts, conferring them resistance to pathogens colonization. However, in some situations, the microbiota is not able to prevent infection but only modulate it. Here we will review the role of the microbiota on the parasite-vector-host triad with a focus on the kinetoplastida of medical importance Trypanosoma cruzi. Novel strategies to control Chagas disease based on intestinal microbiome will also be discussed.
Collapse
Affiliation(s)
| | - Nayra Dias
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil
| | - Luciana Hagström-Bex
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil
| | - Amanda Fortes Francisco
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| |
Collapse
|
5
|
Silva MC, Azevedo MA, Figueiredo VP, Moura Junior MR, Coelho Junior D, Martinelli PM, Machado RP, Alzamora AC, Talvani A. Renovascular hypertension increases serum TNF and CX3CL1 in experimental Trypanosoma cruzi infection. ACTA ACUST UNITED AC 2018; 51:e6690. [PMID: 29590257 PMCID: PMC5886554 DOI: 10.1590/1414-431x20186690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 01/22/2018] [Indexed: 11/22/2022]
Abstract
Trypanosoma cruzi triggers a progressive inflammatory response affecting cardiovascular functions in humans and experimental models. Angiotensin II, a key effector of the renin-angiotensin system, plays roles in mediating hypertension, heart failure, and inflammatory responses. T. cruzi and AngII can induce inflammatory responses by releasing inflammatory mediators. The aim of this study was to evaluate systemic AngII, tumor necrosis factor (TNF), and CX3CL1 mediators in a two-kidney one-clip (2K1C) renovascular hypertension model using Wistar rats infected with T. cruzi. Our data showed an increase in serum AngII in uninfected and T. cruzi-infected rats 1 week after 2K1C surgery compared to non-2K1C (Sham) animals. The baseline systolic blood pressure was higher in both uninfected and infected 2K1C rats. Despite no difference in circulating parasites in the acute phase of infection, elevated serum TNF and CX3CL1 were observed at 8 weeks post-infection in 2K1C rats in association with higher cardiac inflammatory infiltration. In summary, AngII-induced hypertension associated with T. cruzi infection may act synergistically to increase TNF and CX3CL1 in the 2K1C rat model, thereby intensifying cardiac inflammatory infiltration and worsening the underlying inflammation triggered by this protozoan.
Collapse
Affiliation(s)
- M C Silva
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - M A Azevedo
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - V P Figueiredo
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - M R Moura Junior
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - D Coelho Junior
- Escola de Medicina, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - P M Martinelli
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - R P Machado
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - A C Alzamora
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil.,Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil.,Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - A Talvani
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil.,Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil.,Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil.,Programa de Pós-Graduação em Ecologia e Biomas Tropicais, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| |
Collapse
|
6
|
The administration of surfactant decreased oxidative stress in lungs of mice exposed to cigarette smoke. Int Immunopharmacol 2017; 54:275-279. [PMID: 29174925 DOI: 10.1016/j.intimp.2017.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 01/13/2023]
Abstract
The alveolar surfactant, which composition consists of a unique and complex mixture of lipids and proteins, has immunomodulatory action. This study aimed to evaluate the effects of exogenous surfactant on pulmonary inflammatory response in mice exposed to cigarette smoke (CS). Twenty-four mice C57BL/6 were divided into four groups: control group exposed to ambient air (CG); surfactant treated group (SG); CS exposed group (CSG) and CS exposed group treated with surfactant (CSSG). For five days, CSG and CSSG were exposed to 12 commercial cigarettes/day and SG and CSSG received the surfactant by intranasal instillation. At the end of the experiment, the animals were euthanatized for the collection of bronchoalveolar lavage fluid (BALF) and lungs. The total number of leukocytes in BALF increased in CSG compared to CG, however, there was a decrease in CSSG compared to CSG. There was an increase in lipid peroxidation in SG and CSG compared to CG while there was a decrease in CSSG compared to CSG. Regarding the antioxidant enzymes, the catalase (CAT) activity increased in all groups compared to CG and the superoxide dismutase (SOD) activity decreased in CSG compared to the CG and SG. There was an increase in TNF in SG, CSG and CSSG compared to CG. There was an increase in IL-17 in CSSG compared to CG. There was an increase in CCL5 in SG and CSSG compared to CG. Therefore, our results demonstrated that the administration of exogenous surfactant was able to decrease the oxidative processes in the lungs of mice induced by short-term exposure to CS.
Collapse
|
7
|
Abstract
The global impact of childhood malnutrition is staggering. The synergism between malnutrition and infection contributes substantially to childhood morbidity and mortality. Anthropometric indicators of malnutrition are associated with the increased risk and severity of infections caused by many pathogens, including viruses, bacteria, protozoa, and helminths. Since childhood malnutrition commonly involves the inadequate intake of protein and calories, with superimposed micronutrient deficiencies, the causal factors involved in impaired host defense are usually not defined. This review focuses on literature related to impaired host defense and the risk of infection in primary childhood malnutrition. Particular attention is given to longitudinal and prospective cohort human studies and studies of experimental animal models that address causal, mechanistic relationships between malnutrition and host defense. Protein and micronutrient deficiencies impact the hematopoietic and lymphoid organs and compromise both innate and adaptive immune functions. Malnutrition-related changes in intestinal microbiota contribute to growth faltering and dysregulated inflammation and immune function. Although substantial progress has been made in understanding the malnutrition-infection synergism, critical gaps in our understanding remain. We highlight the need for mechanistic studies that can lead to targeted interventions to improve host defense and reduce the morbidity and mortality of infectious diseases in this vulnerable population.
Collapse
|
8
|
Campos KKD, Araújo GR, Martins TL, Bandeira ACB, Costa GDP, Talvani A, Garcia CCM, Oliveira LAM, Costa DC, Bezerra FS. The antioxidant and anti-inflammatory properties of lycopene in mice lungs exposed to cigarette smoke. J Nutr Biochem 2017. [DOI: 10.1016/j.jnutbio.2017.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Shrestha D, Bajracharya B, Paula-Costa G, Salles BC, Leite ALJ, Menezes APJ, Souza DM, Oliveira LA, Talvani A. Expression and production of cardiac angiogenic mediators depend on the Trypanosoma cruzi-genetic population in experimental C57BL/6 mice infection. Microvasc Res 2016; 110:56-63. [PMID: 27956355 DOI: 10.1016/j.mvr.2016.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022]
Abstract
Mammalian cardiac cells are important targets to the protozoan Trypanosoma cruzi. The inflammatory reaction in the host aims at eliminating this parasite, can lead to cell destruction, fibrosis and hypoxia. Local hypoxia is well-defined stimulus to the production of angiogenesis mediators. Assuming that different genetic T. cruzi populations induce distinct inflammation and disease patterns, the current study aims to investigate whether the production of inflammatory and angiogenic mediators is a parasite strain-dependent condition. C57BL/6 mice were infected with the Y and Colombian strains of T. cruzi and euthanized at the 12th and 32nd days, respectively. The blood and heart tissue were processed in immune assays and/or qPCR (TNF, IL-17, IL-10, CCL2, CCL3, CCL5, CCR2, CCR5 and angiogenic factors VEGF, Ang-1, Ang-2) and in histological assays. The T. cruzi increased the inflammatory and angiogenic mediators in the infected mice when they were compared to non-infected animals. However, the Colombian strain has led to higher (i) leukocyte infiltration, (ii) cardiac TNF and CCL5 production/expression, (iii) cardiac tissue parasitism, and to higher (iv) ratio between heart/body weights. On the other hand, the Colombian strain has caused lower production and expression VEGF, Ang-1 and Ang-2, when it was compared to the Y strain of the parasite. The present study highlights that the T. cruzi-genetic population defines the pattern of angiogenic/inflammatory mediators in the heart tissue, and that it may contribute to the magnitude of the cardiac pathogenesis. Besides, such assumption opens windows to the understanding of the angiogenic mediator's role in association with the experimental T. cruzi infection.
Collapse
Affiliation(s)
- Deena Shrestha
- Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Brazil
| | | | | | | | | | | | - Débora Ms Souza
- Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Brazil
| | - Laser Am Oliveira
- Departamento de Ciências Biológicas, Brazil; Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Brazil
| | - André Talvani
- Departamento de Ciências Biológicas, Brazil; Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Brazil; Programa de Pós-Graduação em Saúde e Nutrição, Brazil; Programa de Pós-Graduação em Biomas Tropicais, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil.
| |
Collapse
|
10
|
Murta GL, Campos KKD, Bandeira ACB, Diniz MF, Costa GDP, Costa DC, Talvani A, Lima WG, Bezerra FS. Oxidative effects on lung inflammatory response in rats exposed to different concentrations of formaldehyde. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 211:206-213. [PMID: 26774767 DOI: 10.1016/j.envpol.2015.12.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
The formaldehyde (FA) is a crosslinking agent that reacts with cellular macromolecules such as proteins, nucleic acids and molecules with low molecular weight such as amino acids, and it has been linked to inflammatory processes and oxidative stress. This study aimed to analyze the oxidative effects on pulmonary inflammatory response in Fischer rats exposed to different concentrations of FA. Twenty-eight Fischer rats were divided into 4 groups (N = 7). The control group (CG) was exposed to ambient air and three groups were exposed to different concentrations of FA: 1% (FA1%), 5% (FA5%) and 10% (FA10%). In the Bronchoalveolar Lavage Fluid (BALF), the exposure to a concentration of 10% promoted the increase of inflammatory cells compared to CG. There was also an increase of macrophages and lymphocytes in FA10% and lymphocytes in FA5% compared to CG. The activity of NADPH oxidase in the blood had been higher in FA5% and FA10% compared to CG. The activity of superoxide dismutase enzyme (SOD) had an increase in FA5% and the activity of the catalase enzyme (CAT) showed an increase in FA1% compared to CG. As for the glutathione system, there was an increase in total glutathione (tGSH), reduced glutathione (GSH) and oxidized glutathione (GSSG) in FA5% compared to CG. The reduced/oxidized glutathione ratio (GSH/GSSG) had a decrease in FA5% compared to CG. There was an increase in lipid peroxidation compared to all groups and the protein carbonyl formation in FA10% compared to CG. We also observed an increase in CCL2 and CCL5 chemokines in the treatment groups compared to CG and in serum there was an increase in CCL2, CCL3 and CCL5 compared to CG. Our results point out to the potential of formaldehyde in promoting airway injury by increasing the inflammatory process as well as by the redox imbalance.
Collapse
Affiliation(s)
- Giselle Luciane Murta
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of OuroPreto (UFOP), Ouro Preto, MG, Brazil
| | - Keila Karine Duarte Campos
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of OuroPreto (UFOP), Ouro Preto, MG, Brazil
| | - Ana Carla Balthar Bandeira
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of OuroPreto (UFOP), Ouro Preto, MG, Brazil
| | - Mirla Fiuza Diniz
- Laboratory of Morphopathology (LMP), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of OuroPreto (UFOP), Ouro Preto, MG, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of OuroPreto (UFOP), Ouro Preto, MG, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of OuroPreto (UFOP), Ouro Preto, MG, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of OuroPreto (UFOP), Ouro Preto, MG, Brazil
| | - Wanderson Geraldo Lima
- Laboratory of Morphopathology (LMP), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of OuroPreto (UFOP), Ouro Preto, MG, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of OuroPreto (UFOP), Ouro Preto, MG, Brazil.
| |
Collapse
|
11
|
Silva JF, Capettini LSA, da Silva JFP, Sales-Junior P, Cruz JS, Cortes SF, Lemos VS. Mechanisms of vascular dysfunction in acute phase of Trypanosoma cruzi infection in mice. Vascul Pharmacol 2016; 82:73-81. [PMID: 26988253 DOI: 10.1016/j.vph.2016.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/27/2015] [Accepted: 03/08/2016] [Indexed: 12/12/2022]
Abstract
Vascular disorders have a direct link to mortality in the acute phase of Trypanosoma cruzi infection. However, the underlying mechanisms of vascular dysfunction in this phase are largely unknown. We hypothesize that T. cruzi invades endothelial cells causing dysfunction in contractility and relaxation of the mouse aorta. Immunodetection of T. cruzi antigen TcRBP28 was observed in endothelial cells. There was a decreased endothelial nitric oxide synthase (eNOS)-derived NO-dependent vascular relaxation, and increased vascular contractility accompanied by augmented superoxide anions production. Endothelial removal, inhibition of cyclooxygenase 2 (COX-2), blockade of thromboxane A2 (TXA2) TP receptors, and scavenger of superoxide normalized the contractile response. COX-2, thromboxane synthase, inducible nitric oxide synthase (iNOS), p65 NFκB subunit and p22(phox) of NAD(P)H oxidase (NOX) subunit expressions were increased in vessels of chagasic animals. Serum TNF-α was augmented. Basal NO production, and nitrotyrosine residue expression were increased. It is concluded that T. cruzi invades mice aorta endothelial cells and increases TXA2/TP receptor/NOX-derived superoxide formation. Alongside, T. cruzi promotes systemic TNF-α increase, which stimulates iNOS expression in vessels and nitrosative stress. In light of the heart failure that develops in the chronic phase of the disease, to understand the mechanism involved in the increased contractility of the aorta is crucial.
Collapse
Affiliation(s)
- Josiane F Silva
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Luciano S A Capettini
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - José F P da Silva
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | | | - Jader Santos Cruz
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Steyner F Cortes
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Virginia S Lemos
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
12
|
Parasite-derived neurotrophic factor/trans-sialidase of Trypanosoma cruzi links neurotrophic signaling to cardiac innate immune response. Infect Immun 2014; 82:3687-96. [PMID: 24935974 DOI: 10.1128/iai.02098-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Chagas' disease parasite Trypanosoma cruzi elicits a potent inflammatory response in acutely infected hearts that keeps parasitism in check and triggers cardiac abnormalities. A most-studied mechanism underlying innate immunity in T. cruzi infection is Toll-like receptor (TLR) activation by lipids and other parasite molecules. However, yet-to-be-identified pathways should exist. Here, we show that T. cruzi strongly upregulates monocyte chemoattractant protein 1 (MCP-1)/CCL2 and fractalkine (FKN)/CX3CL1 in cellular and mouse models of heart infection. Mechanistically, upregulation of MCP-1 and FKN stems from the interaction of parasite-derived neurotrophic factor (PDNF)/trans-sialidase with neurotrophic receptors TrkA and TrkC, as assessed by pharmacological inhibition, neutralizing antibodies, and gene silencing studies. Administration of a single dose of intravenous PDNF to naive mice results in a dose-dependent increase in MCP-1 and FKN in the heart and liver with pulse-like kinetics that peak at 3 h postinjection. Intravenous PDNF also augments MCP-1 and FKN in TLR signaling-deficient MyD88-knockout mice, underscoring the MyD88-independent action of PDNF. Although single PDNF injections do not increase MCP-1 and FKN receptors, multiple PDNF injections at short intervals up the levels of receptor transcripts in the heart and liver, suggesting that sustained PDNF triggers cell recruitment at infection sites. Thus, given that MCP-1 and FKN are chemokines essential to the recruitment of immune cells to combat inflammation triggers and to enhance tissue repair, our findings uncover a new mechanism in innate immunity against T. cruzi infection mediated by Trk signaling akin to an endogenous inflammatory and fibrotic pathway resulting from cardiomyocyte-TrkA recognition by matricellular connective tissue growth factor (CTGF/CCN2).
Collapse
|
13
|
McGovern KE, Wilson EH. Role of Chemokines and Trafficking of Immune Cells in Parasitic Infections. ACTA ACUST UNITED AC 2014; 9:157-168. [PMID: 25383073 DOI: 10.2174/1573395509666131217000000] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Parasites are diverse eukaryotic pathogens that can have complex life cycles. Their clearance, or control within a mammalian host requires the coordinated effort of the immune system. The cell types recruited to areas of infection can combat the disease, promote parasite replication and survival, or contribute to disease pathology. Location and timing of cell recruitment can be crucial. In this review, we explore the role chemokines play in orchestrating and balancing the immune response to achieve optimal control of parasite replication without promoting pathology.
Collapse
Affiliation(s)
- Kathryn E McGovern
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA, 92521-0129, USA
| | - Emma H Wilson
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA, 92521-0129, USA
| |
Collapse
|