1
|
Shayman CS, McCracken MK, Finney HC, Fino PC, Stefanucci JK, Creem-Regehr SH. Integration of auditory and visual cues in spatial navigation under normal and impaired viewing conditions. J Vis 2024; 24:7. [PMID: 39382867 PMCID: PMC11469273 DOI: 10.1167/jov.24.11.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/14/2024] [Indexed: 10/10/2024] Open
Abstract
Auditory landmarks can contribute to spatial updating during navigation with vision. Whereas large inter-individual differences have been identified in how navigators combine auditory and visual landmarks, it is still unclear under what circumstances audition is used. Further, whether or not individuals optimally combine auditory cues with visual cues to decrease the amount of perceptual uncertainty, or variability, has not been well-documented. Here, we test audiovisual integration during spatial updating in a virtual navigation task. In Experiment 1, 24 individuals with normal sensory acuity completed a triangular homing task with either visual landmarks, auditory landmarks, or both. In addition, participants experienced a fourth condition with a covert spatial conflict where auditory landmarks were rotated relative to visual landmarks. Participants generally relied more on visual landmarks than auditory landmarks and were no more accurate with multisensory cues than with vision alone. In Experiment 2, a new group of 24 individuals completed the same task, but with simulated low vision in the form of a blur filter to increase visual uncertainty. Again, participants relied more on visual landmarks than auditory ones and no multisensory benefit occurred. Participants navigating with blur did not rely more on their hearing compared with the group that navigated with normal vision. These results support previous research showing that one sensory modality at a time may be sufficient for spatial updating, even under impaired viewing conditions. Future research could investigate task- and participant-specific factors that lead to different strategies of multisensory cue combination with auditory and visual cues.
Collapse
Affiliation(s)
- Corey S Shayman
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
- Interdisciplinary Program in Neuroscience, University of Utah, Salt Lake City, Utah, USA
- https://orcid.org/0000-0002-5487-0007
| | - Maggie K McCracken
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
- https://orcid.org/0009-0006-5280-0546
| | - Hunter C Finney
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
- https://orcid.org/0009-0008-2324-5007
| | - Peter C Fino
- Department of Health and Kinesiology, University of Utah, Salt Lake City, Utah, USA
- https://orcid.org/0000-0002-8621-3706
| | - Jeanine K Stefanucci
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
- https://orcid.org/0000-0003-4238-2951
| | - Sarah H Creem-Regehr
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
- https://orcid.org/0000-0001-7740-1118
| |
Collapse
|
2
|
Shayman CS, Whitaker MM, Barhorst-Cates E, Hullar TE, Stefanucci JK, Creem-Regehr SH. The addition of a spatial auditory cue improves spatial updating in a virtual reality navigation task. Atten Percept Psychophys 2024; 86:1473-1479. [PMID: 38724729 PMCID: PMC11549249 DOI: 10.3758/s13414-024-02890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 05/16/2024]
Abstract
Auditory cues are integrated with vision and body-based self-motion cues for motion perception, balance, and gait, though limited research has evaluated their effectiveness for navigation. Here, we tested whether an auditory cue co-localized with a visual target could improve spatial updating in a virtual reality homing task. Participants navigated a triangular homing task with and without an easily localizable spatial audio signal co-located with the home location. The main outcome was unsigned angular error, defined as the absolute value of the difference between the participant's turning response and the correct response towards the home location. Angular error was significantly reduced in the presence of spatial sound compared to a head-fixed identical auditory signal. Participants' angular error was 22.79° in the presence of spatial audio and 30.09° in its absence. Those with the worst performance in the absence of spatial sound demonstrated the greatest improvement with the added sound cue. These results suggest that auditory cues may benefit navigation, particularly for those who demonstrated the highest level of spatial updating error in the absence of spatial sound.
Collapse
Affiliation(s)
- Corey S Shayman
- Department of Psychology, University of Utah, 380 S. 1530 E., Room 502, UT 84112, Salt Lake City, UT, USA.
- Interdepartmental Program in Neuroscience, University of Utah, UT 84112, Salt Lake City, USA.
| | - Mirinda M Whitaker
- Department of Psychology, University of Utah, 380 S. 1530 E., Room 502, UT 84112, Salt Lake City, UT, USA
| | - Erica Barhorst-Cates
- Monterey Technologies, Inc., 1790 Sun Peak Dr suite a-203, UT 84098, Park City, UT, USA
| | - Timothy E Hullar
- National Center for Rehabilitative Auditory Research (NCRAR), Portland VA Medical Center, 3710 SW US Veterans Hospital Road, P5-NCRAR, 97239, Portland, OR, USA
| | - Jeanine K Stefanucci
- Department of Psychology, University of Utah, 380 S. 1530 E., Room 502, UT 84112, Salt Lake City, UT, USA
| | - Sarah H Creem-Regehr
- Department of Psychology, University of Utah, 380 S. 1530 E., Room 502, UT 84112, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Puthusseryppady V, Cossio D, Yu S, Rezwana F, Hegarty M, Jacobs EG, Chrastil ER. Less spatial exploration is associated with poorer spatial memory in midlife adults. Front Aging Neurosci 2024; 16:1382801. [PMID: 38919601 PMCID: PMC11196421 DOI: 10.3389/fnagi.2024.1382801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Despite its importance for navigation, very little is known about how the normal aging process affects spatial exploration behavior. We aimed to investigate: (1) how spatial exploration behavior may be altered early in the aging process, (2) the relationship between exploration behavior and subsequent spatial memory, and (3) whether exploration behavior can classify participants according to age. Methods Fifty healthy young (aged 18-28) and 87 healthy midlife adults (aged 43-61) freely explored a desktop virtual maze, learning the locations of nine target objects. Various exploration behaviors (object visits, distance traveled, turns made, etc.) were measured. In the test phase, participants navigated from one target object to another without feedback, and their wayfinding success (% correct trials) was measured. Results In the exploration phase, midlife adults exhibited less exploration overall compared to young adults, and prioritized learning target object locations over maze layout. In the test phase, midlife adults exhibited less wayfinding success when compared to the young adults. Furthermore, following principal components analysis (PCA), regression analyses indicated that both exploration quantity and quality components were associated with wayfinding success in the midlife group, but not the young adults. Finally, we could classify participants according to age with similar accuracy using either their exploration behavior or wayfinding success scores. Discussion Our results aid in the understanding of how aging impacts spatial exploration, and encourages future investigations into how pathological aging may affect spatial exploration behavior.
Collapse
Affiliation(s)
- Vaisakh Puthusseryppady
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Daniela Cossio
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Shuying Yu
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Farnaz Rezwana
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Mary Hegarty
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Emily G. Jacobs
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Elizabeth R. Chrastil
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Shayman CS, McCracken MK, Finney HC, Katsanevas AM, Fino PC, Stefanucci JK, Creem-Regehr SH. Effects of older age on visual and self-motion sensory cue integration in navigation. Exp Brain Res 2024; 242:1277-1289. [PMID: 38548892 PMCID: PMC11111325 DOI: 10.1007/s00221-024-06818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/01/2024] [Indexed: 05/16/2024]
Abstract
Older adults demonstrate impairments in navigation that cannot be explained by general cognitive and motor declines. Previous work has shown that older adults may combine sensory cues during navigation differently than younger adults, though this work has largely been done in dark environments where sensory integration may differ from full-cue environments. Here, we test whether aging adults optimally combine cues from two sensory systems critical for navigation: vision (landmarks) and body-based self-motion cues. Participants completed a homing (triangle completion) task using immersive virtual reality to offer the ability to navigate in a well-lit environment including visibility of the ground plane. An optimal model, based on principles of maximum-likelihood estimation, predicts that precision in homing should increase with multisensory information in a manner consistent with each individual sensory cue's perceived reliability (measured by variability). We found that well-aging adults (with normal or corrected-to-normal sensory acuity and active lifestyles) were more variable and less accurate than younger adults during navigation. Both older and younger adults relied more on their visual systems than a maximum likelihood estimation model would suggest. Overall, younger adults' visual weighting matched the model's predictions whereas older adults showed sub-optimal sensory weighting. In addition, high inter-individual differences were seen in both younger and older adults. These results suggest that older adults do not optimally weight each sensory system when combined during navigation, and that older adults may benefit from interventions that help them recalibrate the combination of visual and self-motion cues for navigation.
Collapse
Affiliation(s)
- Corey S Shayman
- Department of Psychology, University of Utah, 380 S. 1500 E. Room 502, Salt Lake City, UT, 84112, USA.
- Interdisciplinary Program in Neuroscience, University of Utah, Salt Lake City, USA.
| | - Maggie K McCracken
- Department of Psychology, University of Utah, 380 S. 1500 E. Room 502, Salt Lake City, UT, 84112, USA
| | - Hunter C Finney
- Department of Psychology, University of Utah, 380 S. 1500 E. Room 502, Salt Lake City, UT, 84112, USA
| | - Andoni M Katsanevas
- Department of Psychology, University of Utah, 380 S. 1500 E. Room 502, Salt Lake City, UT, 84112, USA
| | - Peter C Fino
- Department of Health and Kinesiology, University of Utah, Salt Lake City, USA
| | - Jeanine K Stefanucci
- Department of Psychology, University of Utah, 380 S. 1500 E. Room 502, Salt Lake City, UT, 84112, USA
| | - Sarah H Creem-Regehr
- Department of Psychology, University of Utah, 380 S. 1500 E. Room 502, Salt Lake City, UT, 84112, USA
| |
Collapse
|
5
|
Kapaj A, Hilton C, Lanini-Maggi S, Fabrikant SI. The influence of landmark visualization style on task performance, visual attention, and spatial learning in a real-world navigation task. SPATIAL COGNITION AND COMPUTATION 2024; 24:227-267. [PMID: 39507088 PMCID: PMC11537298 DOI: 10.1080/13875868.2024.2328099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Depicting landmarks on mobile maps is an increasingly popular countermeasure to the negative effect that navigation aids have on spatial learning - landmarks guide visual attention and facilitate map-to-environment information matching. However, the most effective method to visualize landmarks on mobile map aids remains an open question. We conducted a real-world navigation study outdoors to evaluate the influence of realistic vs. abstract 3D landmark visualization styles on wayfinders' navigation performance, visual attention, and spatial learning. While navigating with realistic landmarks, low-spatial-ability wayfinders focused more on the landmarks in the environment and demonstrated improved knowledge of directions between landmarks. Our findings emphasize the importance of visual realism when enriching navigation aids with landmarks to guide attention and enhance spatial learning for low-spatial-ability wayfinders.
Collapse
Affiliation(s)
- Armand Kapaj
- Department of Geography, University of Zurich, Zurich, Switzerland
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
| | - Christopher Hilton
- Department of Geography, University of Zurich, Zurich, Switzerland
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
| | - Sara Lanini-Maggi
- Department of Geography, University of Zurich, Zurich, Switzerland
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
| | - Sara I. Fabrikant
- Department of Geography, University of Zurich, Zurich, Switzerland
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Yavuz E, Gahnstrom CJ, Goodroe S, Coutrot A, Hornberger M, Lazar AS, Spiers HJ. Shorter self-reported sleep duration is associated with worse virtual spatial navigation performance in men. Sci Rep 2024; 14:4093. [PMID: 38374314 PMCID: PMC10876962 DOI: 10.1038/s41598-024-52662-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Sleep has been shown to impact navigation ability. However, it remains unclear how different sleep-related variables may be independently associated with spatial navigation performance, and as to whether gender may play a role in these associations. We used a mobile video game app, Sea Hero Quest (SHQ), to measure wayfinding ability in US-based participants. Wayfinding performance on SHQ has been shown to correlate with real-world wayfinding. Participants were asked to report their sleep duration, quality, daytime sleepiness and nap frequency and duration on a typical night (n = 766, 335 men, 431 women, mean age = 26.5 years, range = 18-59 years). A multiple linear regression was used to identify which self-reported sleep variables were independently associated with wayfinding performance. Shorter self-reported sleep durations were significantly associated with worse wayfinding performance in men only. Other self-reported sleep variables showed non-significant trends of association with wayfinding performance. When removing non-typical sleepers (< 6 or > 9 h of sleep on a typical night), the significant association between sleep duration and spatial navigation performance in men was no longer present. These findings from U.S.-based participants suggest that a longer self-reported sleep duration may be an important contributor to successful navigation ability in men.
Collapse
Affiliation(s)
- Emre Yavuz
- Division of Psychology and Language Sciences, Department of Experimental Psychology, Institute of Behavioural Neuroscience, University College London, London, UK.
| | | | - Sarah Goodroe
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Alpar S Lazar
- Norwich Medical School, University of East Anglia, Norwich, UK.
| | - Hugo J Spiers
- Division of Psychology and Language Sciences, Department of Experimental Psychology, Institute of Behavioural Neuroscience, University College London, London, UK.
| |
Collapse
|
7
|
Hernandez AR, Barrett ME, Lubke KN, Maurer AP, Burke SN. A long-term ketogenic diet in young and aged rats has dissociable effects on prelimbic cortex and CA3 ensemble activity. Front Aging Neurosci 2023; 15:1274624. [PMID: 38155737 PMCID: PMC10753023 DOI: 10.3389/fnagi.2023.1274624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Age-related cognitive decline has been linked to distinct patterns of cellular dysfunction in the prelimbic cortex (PL) and the CA3 subregion of the hippocampus. Because higher cognitive functions require both structures, selectively targeting a neurobiological change in one region, at the expense of the other, is not likely to restore normal behavior in older animals. One change with age that both the PL and CA3 share, however, is a reduced ability to utilize glucose, which can produce aberrant neural activity patterns. Methods The current study used a ketogenic diet (KD) intervention, which reduces the brain's reliance on glucose, and has been shown to improve cognition, as a metabolic treatment for restoring neural ensemble dynamics in aged rats. Expression of the immediate-early genes Arc and Homer1a were used to quantify the neural ensembles that were active in the home cage prior to behavior, during a working memory/biconditional association task, and a continuous spatial alternation task. Results Aged rats on the control diet had increased activity in CA3 and less ensemble overlap in PL between different task conditions than did the young animals. In the PL, the KD was associated with increased activation of neurons in the superficial cortical layers, establishing a clear link between dietary macronutrient content and frontal cortical activity. The KD did not lead to any significant changes in CA3 activity. Discussion These observations suggest that the availability of ketone bodies may permit the engagement of compensatory mechanisms in the frontal cortices that produce better cognitive outcomes.
Collapse
Affiliation(s)
- Abbi R. Hernandez
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Maya E. Barrett
- Department of Psychology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Katelyn N. Lubke
- Department of Neuroscience, McKnight Brain Institute, and Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, United States
| | - Andrew P. Maurer
- Department of Neuroscience, McKnight Brain Institute, and Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, United States
| | - Sara N. Burke
- Department of Neuroscience, McKnight Brain Institute, and Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Fernandez-Velasco P, Coutrot A, Oloye H, Wiener JM, Dalton RC, Holscher C, Manley E, Hornberger M, Spiers HJ. No link between handedness and spatial navigation: evidence from over 400 000 participants in 41 countries. Proc Biol Sci 2023; 290:20231514. [PMID: 37817602 PMCID: PMC10565369 DOI: 10.1098/rspb.2023.1514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
There is an active debate concerning the association of handedness and spatial ability. Past studies used small sample sizes. Determining the effect of handedness on spatial ability requires a large, cross-cultural sample of participants and a navigation task with real-world validity. Here, we overcome these challenges via the mobile app Sea Hero Quest. We analysed the navigation performance from 422 772 participants from 41 countries and found no reliable evidence for any difference in spatial ability between left- and right-handers across all countries. A small but growing gap in performance appears for participants over 64 years old, with left-handers outperforming right-handers. Further analysis, however, suggests that this gap is most likely due to selection bias. Overall, our study clarifies the factors associated with spatial ability and shows that left-handedness is not associated with either a benefit or a deficit in spatial ability.
Collapse
Affiliation(s)
- P. Fernandez-Velasco
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
- Department of Philosophy, Trinity College Dublin, Dublin, Ireland
- Department of Philosophy, University of York, York, UK
| | - A. Coutrot
- LIRIS, CNRS, University of Lyon, Lyon, France
| | - H. Oloye
- Institute of Cognitive Neuroscience, Division of Psychology and Language Sciences, University College London, London, UK
- Centre of Medical Imaging Computing, Department of Computer Science, Faculty of Engineering Sciences, University College London, London, UK
| | - J. M. Wiener
- Department of Psychology, Ageing and Dementia Research Centre, Bournemouth University, Poole, UK
| | - R. C. Dalton
- Department of Architecture and Built Environment, Northumbria University, Newcastle upon Tyne, UK
| | - C. Holscher
- ETH Zurich, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - E. Manley
- Centre for Advanced Spatial Analysis, University College London, London, UK
- School of Geography, University of Leeds, Leeds, UK
| | - M. Hornberger
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - H. J. Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| |
Collapse
|
9
|
He C, Boone AP, Hegarty M. Measuring configural spatial knowledge: Individual differences in correlations between pointing and shortcutting. Psychon Bull Rev 2023; 30:1802-1813. [PMID: 36932307 PMCID: PMC10716069 DOI: 10.3758/s13423-023-02266-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 03/19/2023]
Abstract
People use environmental knowledge to maintain a sense of direction in daily life. This knowledge is typically measured by having people point to unseen locations (judgments of relative direction) or navigate efficiently in the environment (shortcutting). Some people can estimate directions precisely, while others point randomly. Similarly, some people take shortcuts not experienced during learning, while others mainly follow learned paths. Notably, few studies have directly tested the correlation between pointing and shortcutting performance. We compared pointing and shortcutting in two experiments, one using desktop virtual reality (VR) (N = 57) and one using immersive VR (N = 48). Participants learned a new environment by following a fixed route and were then asked to point to unseen locations and navigate to targets by the shortest path. Participants' performance was clustered into two groups using K-means clustering. One (lower ability) group pointed randomly and showed low internal consistency across trials in pointing, but were able to find efficient routes, and their pointing and efficiency scores were not correlated. The others (higher ability) pointed precisely, navigated by efficient routes, and their pointing and efficiency scores were correlated. These results suggest that with the same egocentric learning experience, the correlation between pointing and shortcutting depends on participants' learning ability, and internal consistency and discriminating power of the measures. Inconsistency and limited discriminating power can lead to low correlations and mask factors driving human variation. Psychometric properties, largely under-reported in spatial cognition, can advance our understanding of individual differences and cognitive processes for complex spatial tasks.
Collapse
Affiliation(s)
| | | | - Mary Hegarty
- University of California, Santa Barbara, CA, USA
| |
Collapse
|
10
|
Frick A, Pichelmann S. Measuring Spatial Abilities in Children: A Comparison of Mental-Rotation and Perspective-Taking Tasks. J Intell 2023; 11:165. [PMID: 37623548 PMCID: PMC10455310 DOI: 10.3390/jintelligence11080165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Mental rotation (MR) and perspective taking (PT) are important spatial abilities and predictive of performance in other cognitive domains. Yet, age-appropriate measures to assess these spatial abilities in children are still rare. This study examined psychometric properties of four MR tasks in 6- to 9-year-olds (N = 96). Two were developed specifically for children and two were based on established assessments for adults; one of each was a computerized and one was a paper-pencil task. Furthermore, spatial perspective taking (PT)-a different but closely related ability-was assessed to determine discriminant validity. Factor analyses showed that all MR tasks loaded on one single factor, with PT only loading weakly on the same factor, suggesting high construct validity. The computerized task for adults showed moderate factor loadings, constituted its own (but correlated) factor when a two-factor solution was forced, and showed the lowest reliabilities, suggesting that it was very difficult for children. On average, the new MR tasks had good to excellent reliabilities, differentiated well between age groups, and proved to be well-suited to assess MR in this age range. The PT task also showed good reliability and a steep developmental progression. Relations to verbal skills, gaming experience, and TV consumption are discussed.
Collapse
Affiliation(s)
- Andrea Frick
- Department of Psychology, University of Fribourg, 1700 Fribourg, Switzerland;
| | | |
Collapse
|
11
|
Schmidt V, König SU, Dilawar R, Sánchez Pacheco T, König P. Improved Spatial Knowledge Acquisition through Sensory Augmentation. Brain Sci 2023; 13:brainsci13050720. [PMID: 37239192 DOI: 10.3390/brainsci13050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Sensory augmentation provides novel opportunities to broaden our knowledge of human perception through external sensors that record and transmit information beyond natural perception. To assess whether such augmented senses affect the acquisition of spatial knowledge during navigation, we trained a group of 27 participants for six weeks with an augmented sense for cardinal directions called the feelSpace belt. Then, we recruited a control group that did not receive the augmented sense and the corresponding training. All 53 participants first explored the Westbrook virtual reality environment for two and a half hours spread over five sessions before assessing their spatial knowledge in four immersive virtual reality tasks measuring cardinal, route, and survey knowledge. We found that the belt group acquired significantly more accurate cardinal and survey knowledge, which was measured in pointing accuracy, distance, and rotation estimates. Interestingly, the augmented sense also positively affected route knowledge, although to a lesser degree. Finally, the belt group reported a significant increase in the use of spatial strategies after training, while the groups' ratings were comparable at baseline. The results suggest that six weeks of training with the feelSpace belt led to improved survey and route knowledge acquisition. Moreover, the findings of our study could inform the development of assistive technologies for individuals with visual or navigational impairments, which may lead to enhanced navigation skills and quality of life.
Collapse
Affiliation(s)
- Vincent Schmidt
- Neurobiopsychology Group, Institute of Cognitive Science, University of Osnabrück, Wachsbleiche 27, 49090 Osnabrück, Germany
| | - Sabine U König
- Neurobiopsychology Group, Institute of Cognitive Science, University of Osnabrück, Wachsbleiche 27, 49090 Osnabrück, Germany
| | - Rabia Dilawar
- Neurobiopsychology Group, Institute of Cognitive Science, University of Osnabrück, Wachsbleiche 27, 49090 Osnabrück, Germany
| | - Tracy Sánchez Pacheco
- Neurobiopsychology Group, Institute of Cognitive Science, University of Osnabrück, Wachsbleiche 27, 49090 Osnabrück, Germany
| | - Peter König
- Neurobiopsychology Group, Institute of Cognitive Science, University of Osnabrück, Wachsbleiche 27, 49090 Osnabrück, Germany
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
12
|
Tsigeman ES, Likhanov MV, Budakova AV, Akmalov A, Sabitov I, Alenina E, Bartseva K, Kovas Y. Persistent gender differences in spatial ability, even in STEM experts. Heliyon 2023; 9:e15247. [PMID: 37101649 PMCID: PMC10123158 DOI: 10.1016/j.heliyon.2023.e15247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Background Spatial ability (SA) shows wide variability. One proposed explanation for the observed individual difference in SA is variability in interest and engagement in activities that promote spatial ability. Research also robustly shown that males on average outperform females in most aspects of SA. Previous studies have identified a number of activities that can potentially contribute to both individual and gender differences in SA, including tinkering with electronics, particular sports activities, and designing. However, the findings regarding these links are inconsistent. One way to investigate these links is to compare the groups that are intensively engaged with these activities. Aim The present study aims to evaluate the robustness of these links by comparing SA in adolescents with expertise in STEM, arts, and sports, with their unselected peers. We also aimed to assess whether gender differences in SA are still present in expert groups. Methods The data on ten small-scale SA tests was collected in an unselected sample of adolescents (N = 864, Mean age = 15.4, SD = 1.1); as well as in 3 samples of adolescents with expertise in STEM (N = 667, Mean age = 15, SD = 1.2); in Arts (N = 280, Mean age = 15, SD = 1.2) and in Sports (N = 444, Mean age = 14.3, SD = 0.7). Results Out of the three expert groups, only STEM experts on average outperformed the unselected group on all SA tasks. The STEM experts also outperformed Arts and Sports experts. Gender differences persisted in all expert groups, with moderate effect sizes. Discussion Findings support previously established links between spatial ability and STEM-related expertise. In contrast, such links were not found for expertise in arts and sports. Consistent with previous research, we found gender differences in SA for all samples, which persisted in STEM experts.
Collapse
Affiliation(s)
| | - Maxim V. Likhanov
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | | | - Aydar Akmalov
- Kazan Open University of Talents 2.0, Kazan, Republic of Tatarstan, Russia
| | | | | | - Ksenia Bartseva
- Laboratory for Social and Cognitive Informatics, Higher School of Economics, Saint Petersburg, Russia
| | - Yulia Kovas
- Department of Psychology, Goldsmiths, University of London, London, UK
- Corresponding author.
| |
Collapse
|