1
|
Chitkara P, Singh A, Gangwar R, Bhardwaj R, Zahra S, Arora S, Hamid F, Arya A, Sahu N, Chakraborty S, Ramesh M, Kumar S. The landscape of fusion transcripts in plants: a new insight into genome complexity. BMC PLANT BIOLOGY 2024; 24:1162. [PMID: 39627690 PMCID: PMC11616359 DOI: 10.1186/s12870-024-05900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND Fusion transcripts (FTs), generated by the fusion of genes at the DNA level or RNA-level splicing events significantly contribute to transcriptome diversity. FTs are usually considered unique features of neoplasia and serve as biomarkers and therapeutic targets for multiple cancers. The latest findings show the presence of FTs in normal human physiology. Several discrete reports mentioned the presence of fusion transcripts in planta, has important roles in stress responses, morphological alterations, or traits (e.g. seed size, etc.). RESULTS In this study, we identified 169,197 fusion transcripts in 2795 transcriptome datasets of Arabidopsis thaliana, Cicer arietinum, and Oryza sativa by using a combination of tools, and confirmed the translational activity of 150 fusion transcripts through proteomic datasets. Analysis of the FT junction sequences and their association with epigenetic factors, as revealed by ChIP-Seq datasets, demonstrated an organised process of fusion formation at the DNA level. We investigated the possible impact of three-dimensional chromatin conformation on intra-chromosomal fusion events by leveraging the Hi-C datasets with the incidence of fusion transcripts. We further utilised the long-read RNA-Seq datasets to validate the most reoccurring fusion transcripts in each plant species followed by further authentication through RT-PCR and Sanger sequencing. CONCLUSIONS Our findings suggest that a significant portion of fusion events may be attributed to alternative splicing during transcription, accounting for numerous fusion events without a proportional increase in the number of RNA pairs. Even non-nuclear DNA transcripts from mitochondria and chloroplasts can participate in intra- and inter-chromosomal fusion formation. Genes in close spatial proximity are more prone to undergoing fusion formation, especially in intra-chromosomal FTs. Most of the fusion transcripts may not undergo translation and serve as long non-coding RNAs. The low validation rate of FTs in plants indicated that the fusion transcripts are expressed at very low levels, like in the case of humans. FTs often originate from parental genes involved in essential biological processes, suggesting their relevance across diverse tissues and stress conditions. This study presents a comprehensive repository of fusion transcripts, offering valuable insights into their roles in vital physiological processes and stress responses.
Collapse
Affiliation(s)
- Pragya Chitkara
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ajeet Singh
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Baylor College of Medicine, Houston, TX, USA
| | - Rashmi Gangwar
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rohan Bhardwaj
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Technical University of Munich, Freising, Germany
| | - Shafaque Zahra
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Simran Arora
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Fiza Hamid
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ajay Arya
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Namrata Sahu
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Srija Chakraborty
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Madhulika Ramesh
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
2
|
Takei T, Tsukada M, Tamura K, Hara-Nishimura I, Fukao Y, Kurihara Y, Matsui M, Saze H, Tsuzuki M, Watanabe Y, Hamada T. ARGONAUTE1-binding Tudor domain proteins function in small interfering RNA production for RNA-directed DNA methylation. PLANT PHYSIOLOGY 2024; 195:1333-1346. [PMID: 38446745 DOI: 10.1093/plphys/kiae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Transposable elements (TEs) contribute to plant evolution, development, and adaptation to environmental changes, but the regulatory mechanisms are largely unknown. RNA-directed DNA methylation (RdDM) is 1 TE regulatory mechanism in plants. Here, we identified that novel ARGONAUTE 1 (AGO1)-binding Tudor domain proteins Precocious dissociation of sisters C/E (PDS5C/E) are involved in 24-nt siRNA production to establish RdDM on TEs in Arabidopsis thaliana. PDS5 family proteins are subunits of the eukaryote-conserved cohesin complex. However, the double mutant lacking angiosperm-specific subfamily PDS5C and PDS5E (pds5c/e) exhibited different developmental phenotypes and transcriptome compared with those of the double mutant lacking eukaryote-conserved subfamily PDS5A and PDS5B (pds5a/b), suggesting that the angiosperm-specific PDS5C/E subfamily has a unique function in angiosperm plants. Proteome and imaging analyses revealed that PDS5C/E interact with AGO1. The pds5c/e double mutant had defects in 24-nt siRNA accumulation and CHH DNA methylation on TEs. In addition, some lncRNAs that accumulated in the pds5c/e mutant were targeted by AGO1-loading 21-nt miRNAs and 21-nt siRNAs. These results indicate that PDS5C/E and AGO1 participate in 24-nt siRNA production for RdDM in the cytoplasm. These findings indicate that angiosperm plants evolved a new regulator, the PDS5C/E subfamily, to control the increase in TEs during angiosperm evolution.
Collapse
Affiliation(s)
- Takahito Takei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, Okayama 700-0005, Japan
| | - Michio Tsukada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | | | - Yoichiro Fukao
- Graduate School of Life Science, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yukio Kurihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Nanobioscience, Department of Life and Environmental System Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Takahiro Hamada
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, Okayama 700-0005, Japan
| |
Collapse
|
3
|
Čermák V, Kašpar T, Fischer L. SPT6L, a newly discovered ancestral component of the plant RNA-directed DNA methylation pathway. FRONTIERS IN PLANT SCIENCE 2024; 15:1372880. [PMID: 38576781 PMCID: PMC10991848 DOI: 10.3389/fpls.2024.1372880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/20/2024] [Indexed: 04/06/2024]
Abstract
RNA-directed DNA methylation (RdDM) is driven by small RNAs (sRNAs) complementary to the nascent transcript of RNA polymerase V (Pol V). sRNAs associated with ARGONAUTE (AGO) proteins are tethered to Pol V mainly by the AGO-hook domain of its subunit NRPE1. We found, by in silico analyses, that Pol V strongly colocalizes on chromatin with another AGO-hook protein, SPT6-like (SPT6L), which is a known essential transcription elongation factor of Pol II. Our phylogenetic analysis revealed that SPT6L acquired its AGO-binding capacity already in the most basal streptophyte algae, even before the emergence of Pol V, suggesting that SPT6L might be a driving force behind the RdDM evolution. Since its emergence, SPT6L with the AGO-hook represents the only conserved SPT6 homolog in Viridiplantae, implying that the same protein is involved in both Pol II and Pol V complexes. To better understand the role of SPT6L in the Pol V complex, we characterized genomic loci where these two colocalize and uncovered that DNA methylation there is more dynamic, driven by higher levels of sRNAs often from non-canonical RdDM pathways and more dependent on chromatin modifying and remodeling proteins like MORC. Pol V loci with SPT6L are highly depleted in helitrons but enriched in gene promoters for which locally and temporally precise methylation is necessary. In view of these results, we discuss potential roles of multiple AGO-hook domains present in the Pol V complex and speculate that SPT6L mediates de novo methylation of naïve loci by interconnecting Pol II and Pol V activities.
Collapse
Affiliation(s)
- Vojtěch Čermák
- Laboratory of Plant Cell Biology and Biotechnology, Faculty of Science, Department of Experimental Plant Biology, Charles University, Prague, Czechia
| | | | | |
Collapse
|
4
|
Zeng J, Zhao X, Liang Z, Hidalgo I, Gebert M, Fan P, Wenzl C, Gornik SG, Lohmann JU. Nitric oxide controls shoot meristem activity via regulation of DNA methylation. Nat Commun 2023; 14:8001. [PMID: 38049411 PMCID: PMC10696095 DOI: 10.1038/s41467-023-43705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023] Open
Abstract
Despite the importance of Nitric Oxide (NO) as signaling molecule in both plant and animal development, the regulatory mechanisms downstream of NO remain largely unclear. Here, we show that NO is involved in Arabidopsis shoot stem cell control via modifying expression and activity of ARGONAUTE 4 (AGO4), a core component of the RNA-directed DNA Methylation (RdDM) pathway. Mutations in components of the RdDM pathway cause meristematic defects, and reduce responses of the stem cell system to NO signaling. Importantly, we find that the stem cell inducing WUSCHEL transcription factor directly interacts with AGO4 in a NO dependent manner, explaining how these two signaling systems may converge to modify DNA methylation patterns. Taken together, our results reveal that NO signaling plays an important role in controlling plant stem cell homeostasis via the regulation of de novo DNA methylation.
Collapse
Affiliation(s)
- Jian Zeng
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Xin'Ai Zhao
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Zhe Liang
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Inés Hidalgo
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Michael Gebert
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
- CureVac, 72076, Tübingen, Germany
| | - Pengfei Fan
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Christian Wenzl
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Sebastian G Gornik
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Zhang L, Lin T, Zhu G, Wu B, Zhang C, Zhu H. LncRNAs exert indispensable roles in orchestrating the interaction among diverse noncoding RNAs and enrich the regulatory network of plant growth and its adaptive environmental stress response. HORTICULTURE RESEARCH 2023; 10:uhad234. [PMID: 38156284 PMCID: PMC10753412 DOI: 10.1093/hr/uhad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/01/2023] [Indexed: 12/30/2023]
Abstract
With the advent of advanced sequencing technologies, non-coding RNAs (ncRNAs) are increasingly pivotal and play highly regulated roles in the modulation of diverse aspects of plant growth and stress response. This includes a spectrum of ncRNA classes, ranging from small RNAs to long non-coding RNAs (lncRNAs). Notably, among these, lncRNAs emerge as significant and intricate components within the broader ncRNA regulatory networks. Here, we categorize ncRNAs based on their length and structure into small RNAs, medium-sized ncRNAs, lncRNAs, and circle RNAs. Furthermore, the review delves into the detailed biosynthesis and origin of these ncRNAs. Subsequently, we emphasize the diverse regulatory mechanisms employed by lncRNAs that are located at various gene regions of coding genes, embodying promoters, 5'UTRs, introns, exons, and 3'UTR regions. Furthermore, we elucidate these regulatory modes through one or two concrete examples. Besides, lncRNAs have emerged as novel central components that participate in phase separation processes. Moreover, we illustrate the coordinated regulatory mechanisms among lncRNAs, miRNAs, and siRNAs with a particular emphasis on the central role of lncRNAs in serving as sponges, precursors, spliceosome, stabilization, scaffolds, or interaction factors to bridge interactions with other ncRNAs. The review also sheds light on the intriguing possibility that some ncRNAs may encode functional micropeptides. Therefore, the review underscores the emergent roles of ncRNAs as potent regulatory factors that significantly enrich the regulatory network governing plant growth, development, and responses to environmental stimuli. There are yet-to-be-discovered roles of ncRNAs waiting for us to explore.
Collapse
Affiliation(s)
- Lingling Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Guoning Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bin Wu
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang 830091, China
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
6
|
Zhao Z, Zang S, Zou W, Pan YB, Yao W, You C, Que Y. Long Non-Coding RNAs: New Players in Plants. Int J Mol Sci 2022; 23:ijms23169301. [PMID: 36012566 PMCID: PMC9409372 DOI: 10.3390/ijms23169301] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
During the process of growth and development, plants are prone to various biotic and abiotic stresses. They have evolved a variety of strategies to resist the adverse effects of these stresses. lncRNAs (long non-coding RNAs) are a type of less conserved RNA molecules of more than 200 nt (nucleotides) in length. lncRNAs do not code for any protein, but interact with DNA, RNA, and protein to affect transcriptional, posttranscriptional, and epigenetic modulation events. As a new regulatory element, lncRNAs play a critical role in coping with environmental pressure during plant growth and development. This article presents a comprehensive review on the types of plant lncRNAs, the role and mechanism of lncRNAs at different molecular levels, the coordination between lncRNA and miRNA (microRNA) in plant immune responses, the latest research progress of lncRNAs in plant growth and development, and their response to biotic and abiotic stresses. We conclude with a discussion on future direction for the elaboration of the function and mechanism of lncRNAs.
Collapse
Affiliation(s)
- Zhennan Zhao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong-Bao Pan
- Sugarcane Research Unit, USDA-ARS, Houma, LA 70360, USA
| | - Wei Yao
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China
| | - Cuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (C.Y.); (Y.Q.); Tel.: +86-591-8385-2547 (C.Y. & Y.Q.)
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (C.Y.); (Y.Q.); Tel.: +86-591-8385-2547 (C.Y. & Y.Q.)
| |
Collapse
|
7
|
The RNA Directed DNA Methylation (RdDM) Pathway Regulates Anthocyanin Biosynthesis in Crabapple (Malus cv. spp.) Leaves by Methylating the McCOP1 Promoter. PLANTS 2021; 10:plants10112466. [PMID: 34834829 PMCID: PMC8618851 DOI: 10.3390/plants10112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022]
Abstract
The synthesis of anthocyanin pigments in plants is known to be regulated by multiple mechanisms, including epigenetic regulation; however, the contribution of the RNA-directed DNA methylation (RdDM) pathway is not well understood. Here, we used bisulfite sequencing and Real Time (RT)-quantitative (q) PCR to analyze the methylation level of the promoter of constitutively photomorphogenic 1 (McCOP1) from Malus cv. spp, a gene involved in regulating anthocyanin biosynthesis. The CHH methylation level of the McCOP1 promoter was negatively correlated with McCOP1 RNA expression, and inhibiting DNA methylation caused decreased methylation of the McCOP1 promoter and asymmetric cytosine CHH methylation. We observed that the McCOP1 promoter was a direct target of the RdDM pathway argonaute RISC component 4 (McAGO4) protein, which bound to a McCOP1 promoter GGTTCGG site. Bimolecular fluorescence complementation (BIFC) analysis showed that RNA-directed DNA methylation (McRDM1) interacted with McAGO4 and another RdDM protein, domains rearranged methyltransferase 2 (McDRM2), to regulate the CHH methylation of the McCOP1 promoter. Detection of CHH methylation and COP1 gene expression in the Arabidopsis thalianaatago4, atdrm2 and atrdm1 mutants showed that RDM1 is the effector of the RdDM pathway. This was confirmed by silencing McRDM1 in crabapple leaves or apple fruit, which resulted in a decrease in McCOP1 CHH methylation and an increase in McCOP1 transcript levels, as well as in anthocyanin accumulation. In conclusion, these results show that the RdDM pathway is involved in regulating anthocyanin accumulation through CHH methylation of the McCOP1 promoter.
Collapse
|
8
|
Sigman MJ, Panda K, Kirchner R, McLain LL, Payne H, Peasari JR, Husbands AY, Slotkin RK, McCue AD. An siRNA-guided ARGONAUTE protein directs RNA polymerase V to initiate DNA methylation. NATURE PLANTS 2021; 7:1461-1474. [PMID: 34750500 PMCID: PMC8592841 DOI: 10.1038/s41477-021-01008-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/09/2021] [Indexed: 05/03/2023]
Abstract
In mammals and plants, cytosine DNA methylation is essential for the epigenetic repression of transposable elements and foreign DNA. In plants, DNA methylation is guided by small interfering RNAs (siRNAs) in a self-reinforcing cycle termed RNA-directed DNA methylation (RdDM). RdDM requires the specialized RNA polymerase V (Pol V), and the key unanswered question is how Pol V is first recruited to new target sites without pre-existing DNA methylation. We find that Pol V follows and is dependent on the recruitment of an AGO4-clade ARGONAUTE protein, and any siRNA can guide the ARGONAUTE protein to the new target locus independent of pre-existing DNA methylation. These findings reject long-standing models of RdDM initiation and instead demonstrate that siRNA-guided ARGONAUTE targeting is necessary, sufficient and first to target Pol V recruitment and trigger the cycle of RdDM at a transcribed target locus, thereby establishing epigenetic silencing.
Collapse
Affiliation(s)
- Meredith J Sigman
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Kaushik Panda
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Rachel Kirchner
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Medical Scientist Training Program, University of Wisconsin, Madison, WI, USA
| | | | - Hayden Payne
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Graduate Program in the School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - John Reddy Peasari
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Bioinformatics and Computational Biology Program, Saint Louis University, St. Louis, MO, USA
| | - Aman Y Husbands
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, MO, USA.
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| | - Andrea D McCue
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| |
Collapse
|
9
|
Rothi MH, Tsuzuki M, Sethuraman S, Wierzbicki AT. Reinforcement of transcriptional silencing by a positive feedback between DNA methylation and non-coding transcription. Nucleic Acids Res 2021; 49:9799-9808. [PMID: 34469565 PMCID: PMC8464056 DOI: 10.1093/nar/gkab746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 11/12/2022] Open
Abstract
Non-coding transcription is an important determinant of heterochromatin formation. In Arabidopsis thaliana a specialized RNA polymerase V (Pol V) transcribes pervasively and produces long non-coding RNAs. These transcripts work with small interfering RNA to facilitate locus-specific establishment of RNA-directed DNA methylation (RdDM). Subsequent maintenance of RdDM is associated with elevated levels of Pol V transcription. However, the impact of DNA methylation on Pol V transcription remained unresolved. We found that DNA methylation strongly enhances Pol V transcription. The level of Pol V transcription is reduced in mutants defective in RdDM components working downstream of Pol V, indicating that RdDM is maintained by a mutual reinforcement of DNA methylation and Pol V transcription. Pol V transcription is affected only on loci that lose DNA methylation in all sequence contexts in a particular mutant, including mutants lacking maintenance DNA methyltransferases, which suggests that RdDM works in a complex crosstalk with other silencing pathways.
Collapse
Affiliation(s)
- M Hafiz Rothi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masayuki Tsuzuki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Shriya Sethuraman
- Bioinformatics Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrzej T Wierzbicki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Zhou JX, Du P, Liu ZW, Feng C, Cai XW, He XJ. FVE promotes RNA-directed DNA methylation by facilitating the association of RNA polymerase V with chromatin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:467-479. [PMID: 33942410 DOI: 10.1111/tpj.15302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Association of RNA polymerase V (Pol V) with chromatin is a critical step for RNA- directed DNA methylation (RdDM) in plants. Although the methylated DNA-binding proteins SUVH2 and SUVH9 and the chromatin remodeler-containing complex DRD1-DMS3-RDM1 are known to be required for the association of Pol V with chromatin, the molecular mechanisms underlying the association of Pol V with different chromatin environments remain largely unknown. Here we found that SUVH9 interacts with FVE, a homolog of the mammalian retinoblastoma-associated protein, which has been previously identified as a shared subunit of the histone deacetylase complex and the polycomb-type histone H3K27 trimethyltransferase complex. We demonstrated that FVE facilitates the association of Pol V with chromatin and thus contributes to DNA methylation at a substantial subset of RdDM target loci. Compared with FVE-independent RdDM target loci, FVE-dependent RdDM target loci are more abundant in gene-rich chromosome arms than in pericentromeric heterochromatin regions. This study contributes to our understanding of how the association of Pol V with chromatin is regulated in different chromatin environments.
Collapse
Affiliation(s)
- Jin-Xing Zhou
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Ping Du
- National Institute of Biological Sciences, Beijing, 102206, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Zhang-Wei Liu
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Chao Feng
- National Institute of Biological Sciences, Beijing, 102206, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Abstract
Plants have an extraordinary diversity of transcription machineries, including five nuclear DNA-dependent RNA polymerases. Four of these enzymes are dedicated to the production of long noncoding RNAs (lncRNAs), which are ribonucleic acids with functions independent of their protein-coding potential. lncRNAs display a broad range of lengths and structures, but they are distinct from the small RNA guides of RNA interference (RNAi) pathways. lncRNAs frequently serve as structural, catalytic, or regulatory molecules for gene expression. They can affect all elements of genes, including promoters, untranslated regions, exons, introns, and terminators, controlling gene expression at various levels, including modifying chromatin accessibility, transcription, splicing, and translation. Certain lncRNAs protect genome integrity, while others respond to environmental cues like temperature, drought, nutrients, and pathogens. In this review, we explain the challenge of defining lncRNAs, introduce the machineries responsible for their production, and organize this knowledge by viewing the functions of lncRNAs throughout the structure of a typical plant gene.
Collapse
Affiliation(s)
- Andrzej T Wierzbicki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Todd Blevins
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, F-67084 Strasbourg, France;
| | - Szymon Swiezewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
12
|
Zhang P, Gao J, Li X, Feng Y, Shi M, Shi Y, Zhang W. Interplay of DNA and RNA N 6 -methyladenine with R-loops in regulating gene transcription in Arabidopsis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1163-1171. [PMID: 34177142 PMCID: PMC8212284 DOI: 10.1007/s12298-021-01010-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 06/01/2023]
Abstract
UNLABELLED R-loops and covalent modifications of N 6 -methyladenine on DNA (D-6 mA) or RNA (R-m6A) have been documented to function in various cellular processes in eukaryotes. However, the relationships between R-loops and both covalent modifications are still elusive in plants. Here, we integrated existing ssDRIP-seq with D-6 mA and R-m6A data from Arabidopsis thaliana. We found that the presence of either of both modifications facilitates R-loop formation and transcription of overlapping genes. Interestingly, our study suggests that the presence of R-m6A is key to affect R-loop intensity and positively regulate gene transcription. Moreover, the presence of D-6 mA plays an additive role to facilitate the effect of R-m6A on R-loop intensity, however, D-6 mA may negatively regulate gene transcription when coexisted with R-m6A. Our analyses indicate that D-6 mA, R-m6A, or histone marks may act individually and cooperatively with R-loops in regulating gene transcription. Our study is the first to link R-loops with D-6 mA and R-m6A in plants, thereby providing new insights into interactions between R-loops with D-6 mA, R-m6A, and histone marks for regulating gene transcription. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01010-5.
Collapse
Affiliation(s)
- Pengyue Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Jingjing Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Xinxu Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Yilong Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Manli Shi
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Yining Shi
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Wenli Zhang
- College of agronomy,
Nanjing Agricultural University
, Nanjing, 210095 People’s Republic of China
| |
Collapse
|
13
|
In Response to Abiotic Stress, DNA Methylation Confers EpiGenetic Changes in Plants. PLANTS 2021; 10:plants10061096. [PMID: 34070712 PMCID: PMC8227271 DOI: 10.3390/plants10061096] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Epigenetics involves the heritable changes in patterns of gene expression determined by developmental and abiotic stresses, i.e., drought, cold, salinity, trace metals, and heat. Gene expression is driven by changes in DNA bases, histone proteins, the biogenesis of ncRNA, and changes in the nucleotide sequence. To cope with abiotic stresses, plants adopt certain changes driven by a sophisticated biological system. DNA methylation is a primary mechanism for epigenetic variation, which can induce phenotypic alterations in plants under stress. Some of the stress-driven changes in plants are temporary, while some modifications may be stable and inheritable to the next generations to allow them to cope with such extreme stress challenges in the future. In this review, we discuss the pivotal role of epigenetically developed phenotypic characteristics in plants as an evolutionary process participating in adaptation and tolerance responses to abiotic and biotic stresses that alter their growth and development. We emphasize the molecular process underlying changes in DNA methylation, differential variation for different species, the roles of non-coding RNAs in epigenetic modification, techniques for studying DNA methylation, and its role in crop improvement in tolerance to abiotic stress (drought, salinity, and heat). We summarize DNA methylation as a significant future research priority for tailoring crops according to various challenging environmental issues.
Collapse
|
14
|
Flavell RB. Perspective: 50 years of plant chromosome biology. PLANT PHYSIOLOGY 2021; 185:731-753. [PMID: 33604616 PMCID: PMC8133586 DOI: 10.1093/plphys/kiaa108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
The past 50 years has been the greatest era of plant science discovery, and most of the discoveries have emerged from or been facilitated by our knowledge of plant chromosomes. At last we have descriptive and mechanistic outlines of the information in chromosomes that programs plant life. We had almost no such information 50 years ago when few had isolated DNA from any plant species. The important features of genes have been revealed through whole genome comparative genomics and testing of variants using transgenesis. Progress has been enabled by the development of technologies that had to be invented and then become widely available. Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) have played extraordinary roles as model species. Unexpected evolutionary dramas were uncovered when learning that chromosomes have to manage constantly the vast numbers of potentially mutagenic families of transposons and other repeated sequences. The chromatin-based transcriptional and epigenetic mechanisms that co-evolved to manage the evolutionary drama as well as gene expression and 3-D nuclear architecture have been elucidated these past 20 years. This perspective traces some of the major developments with which I have become particularly familiar while seeking ways to improve crop plants. I draw some conclusions from this look-back over 50 years during which the scientific community has (i) exposed how chromosomes guard, readout, control, recombine, and transmit information that programs plant species, large and small, weed and crop, and (ii) modified the information in chromosomes for the purposes of genetic, physiological, and developmental analyses and plant improvement.
Collapse
Affiliation(s)
- Richard B Flavell
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| |
Collapse
|
15
|
Palomar VM, Garciarrubio A, Garay-Arroyo A, Martínez-Martínez C, Rosas-Bringas O, Reyes JL, Covarrubias AA. The canonical RdDM pathway mediates the control of seed germination timing under salinity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:691-707. [PMID: 33131171 DOI: 10.1111/tpj.15064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/11/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Plants respond to adverse environmental cues by adjusting a wide variety of processes through highly regulated mechanisms to maintain plant homeostasis for survival. As a result of the sessile nature of plants, their response, adjustment and adaptation to the changing environment is intimately coordinated with their developmental programs through the crosstalk of regulatory networks. Germination is a critical process in the plant life cycle, and thus plants have evolved various strategies to control the timing of germination according to their local environment. The mechanisms involved in these adjustment responses are largely unknown, however. Here, we report that mutations in core elements of canonical RNA-directed DNA methylation (RdDM) affect the germination and post-germination growth of Arabidopsis seeds grown under salinity stress. Transcriptomic and whole-genome bisulfite sequencing (WGBS) analyses support the involvement of this pathway in the control of germination timing and post-germination growth under salinity stress by preventing the transcriptional activation of genes implicated in these processes. Subsequent transcriptional effects on genes that function in relation to these developmental events support this conclusion.
Collapse
Affiliation(s)
- Víctor Miguel Palomar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - Alejandro Garciarrubio
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N anexo Jardín Botánico Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04500, México
| | - Coral Martínez-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - Omar Rosas-Bringas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - José L Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| |
Collapse
|
16
|
Jiang S, Wang N, Chen M, Zhang R, Sun Q, Xu H, Zhang Z, Wang Y, Sui X, Wang S, Fang H, Zuo W, Su M, Zhang J, Fei Z, Chen X. Methylation of MdMYB1 locus mediated by RdDM pathway regulates anthocyanin biosynthesis in apple. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1736-1748. [PMID: 31930634 PMCID: PMC7336386 DOI: 10.1111/pbi.13337] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/05/2020] [Indexed: 05/07/2023]
Abstract
Methylation at the MdMYB1 promoter in apple sports has been reported as a regulator of the anthocyanin pathway, but little is known about how the locus is recognized by the methylation machinery to regulate anthocyanin accumulation. In this study, we analysed three differently coloured 'Fuji' apples and found that differences in the transcript levels of MdMYB1, which encodes a key regulator of anthocyanin biosynthesis, control the anthocyanin content (and therefore colour) in fruit skin. The CHH methylation levels in the MR3 region (-1246 to -780) of the MdMYB1 promoter were found to be negatively correlated with MdMYB1 expression. Thus, they were ideal materials to study DNA methylation in apple sports. The protein of RNA-directed DNA methylation (RdDM) pathway responsible for CHH methylation, MdAGO4, was found to interact with the MdMYB1 promoter. MdAGO4s can interact with MdRDM1 and MdDRM2s to form an effector complex, fulfilling CHH methylation. When MdAGO4s and MdDRM2s were overexpressed in apple calli and Arabidopsis mutants, those proteins increase the CHH methylation of AGO4-binding sites. In electrophoretic mobility shift assays, MdAGO4s were found to specifically bind to sequence containing ATATCAGA. Knockdown of MdNRPE1 did not affect the binding of MdAGO4s to the c3 region of the MdMYB1 promoter in 35S::AGO4 calli. Taken together, our data show that the MdMYB1 locus is methylated through binding of MdAGO4s to the MdMYB1 promoter to regulate anthocyanin biosynthesis by the RdDM pathway.
Collapse
Affiliation(s)
- Shenghui Jiang
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Nan Wang
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Min Chen
- Chinese Academy of SciencesYantai Institute of Coastal Zone ResearchYantaiChina
| | | | - Qingguo Sun
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Haifeng Xu
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Zongying Zhang
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Yicheng Wang
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Xiuqi Sui
- Yantai Modern Fruit Industry Development CompanyYantai Modern Fruit Industry Research InstituteYantaiChina
| | | | - Hongcheng Fang
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Weifang Zuo
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Mengyu Su
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Jing Zhang
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Zhangjun Fei
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Xuesen Chen
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| |
Collapse
|
17
|
Lucero L, Fonouni-Farde C, Crespi M, Ariel F. Long noncoding RNAs shape transcription in plants. Transcription 2020; 11:160-171. [PMID: 32406332 DOI: 10.1080/21541264.2020.1764312] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The advent of novel high-throughput sequencing techniques has revealed that eukaryotic genomes are massively transcribed although only a small fraction of RNAs exhibits protein-coding capacity. In the last years, long noncoding RNAs (lncRNAs) have emerged as regulators of eukaryotic gene expression in a wide range of molecular mechanisms. Plant lncRNAs can be transcribed by alternative RNA polymerases, acting directly as long transcripts or can be processed into active small RNAs. Several lncRNAs have been recently shown to interact with chromatin, DNA or nuclear proteins to condition the epigenetic environment of target genes or modulate the activity of transcriptional complexes. In this review, we will summarize the recent discoveries about the actions of plant lncRNAs in the regulation of gene expression at the transcriptional level.
Collapse
Affiliation(s)
- Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe , Santa Fe, Argentina
| | - Camille Fonouni-Farde
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe , Santa Fe, Argentina
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay and University of Paris Batiment 630 , Gif Sur Yvette, France
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe , Santa Fe, Argentina
| |
Collapse
|
18
|
Lunardon A, Johnson NR, Hagerott E, Phifer T, Polydore S, Coruh C, Axtell MJ. Integrated annotations and analyses of small RNA-producing loci from 47 diverse plants. Genome Res 2020; 30:497-513. [PMID: 32179590 PMCID: PMC7111516 DOI: 10.1101/gr.256750.119] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/27/2020] [Indexed: 01/25/2023]
Abstract
Plant endogenous small RNAs (sRNAs) are important regulators of gene expression. There are two broad categories of plant sRNAs: microRNAs (miRNAs) and endogenous short interfering RNAs (siRNAs). MicroRNA loci are relatively well-annotated but compose only a small minority of the total sRNA pool; siRNA locus annotations have lagged far behind. Here, we used a large data set of published and newly generated sRNA sequencing data (1333 sRNA-seq libraries containing more than 20 billion reads) and a uniform bioinformatic pipeline to produce comprehensive sRNA locus annotations of 47 diverse plants, yielding more than 2.7 million sRNA loci. The two most numerous classes of siRNA loci produced mainly 24- and 21-nucleotide (nt) siRNAs, respectively. Most often, 24-nt-dominated siRNA loci occurred in intergenic regions, especially at the 5′-flanking regions of protein-coding genes. In contrast, 21-nt-dominated siRNA loci were most often derived from double-stranded RNA precursors copied from spliced mRNAs. Genic 21-nt-dominated loci were especially common from disease resistance genes, including from a large number of monocots. Individual siRNA sequences of all types showed very little conservation across species, whereas mature miRNAs were more likely to be conserved. We developed a web server where our data and several search and analysis tools are freely accessible.
Collapse
Affiliation(s)
- Alice Lunardon
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nathan R Johnson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Emily Hagerott
- Department of Biology, Knox College, Galesburg, Illinois 61401, USA
| | - Tamia Phifer
- Department of Biology, Knox College, Galesburg, Illinois 61401, USA
| | - Seth Polydore
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ceyda Coruh
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael J Axtell
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
19
|
Wang B, Liu J, Chu L, Jing X, Wang H, Guo J, Yi B. Exogenous Promoter Triggers APETALA3 Silencing through RNA-Directed DNA Methylation Pathway in Arabidopsis. Int J Mol Sci 2019; 20:ijms20184478. [PMID: 31514282 PMCID: PMC6770043 DOI: 10.3390/ijms20184478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/16/2022] Open
Abstract
The development of floral organs plays a vital role in plant reproduction. In our research, the APETALA3 (AP3) promoter-transgenic lines showed abnormal developmental phenotypes in stamens and petals. The aim of this study is to understand the molecular mechanisms of the morphological defects in transgenic plants. By performing transgenic analysis, it was found that the AP3-promoted genes and the vector had no relation to the morphological defects. Then, we performed the expression analysis of the class A, B, and C genes. A dramatic reduction of transcript levels of class B genes (AP3 and PISTILLATA) was observed. Additionally, we also analyzed the methylation of the promoters of class B genes and found that the promoter of AP3 was hypermethylated. Furthermore, combining mutations in rdr2-2, drm1/2, and nrpd1b-11 with the AP3-silencing lines rescued the abnormal development of stamens and petals. The expression of AP3 was reactivated and the methylation level of AP3 promoter was also reduced in RdDM-defective AP3-silencing lines. Our results showed that the RdDM pathway contributed to the transcriptional silencing in the transgenic AP3-silencing lines. Moreover, the results revealed that fact that the exogenous fragment of a promoter could trigger the methylation of homologous endogenous sequences, which may be ubiquitous in transgenic plants.
Collapse
Affiliation(s)
- Benqi Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Chu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xue Jing
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Huadong Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Guo
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
20
|
Weng X, Lovell JT, Schwartz SL, Cheng C, Haque T, Zhang L, Razzaque S, Juenger TE. Complex interactions between day length and diurnal patterns of gene expression drive photoperiodic responses in a perennial C 4 grass. PLANT, CELL & ENVIRONMENT 2019; 42:2165-2182. [PMID: 30847928 DOI: 10.1111/pce.13546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Photoperiod is a key environmental cue affecting flowering and biomass traits in plants. Key components of the photoperiodic flowering pathway have been identified in many species, but surprisingly few studies have globally examined the diurnal rhythm of gene expression with changes in day length. Using a cost-effective 3'-Tag RNA sequencing strategy, we characterize 9,010 photoperiod responsive genes with strict statistical testing across a diurnal time series in the C4 perennial grass, Panicum hallii. We show that the vast majority of photoperiod responses are driven by complex interactions between day length and sampling periods. A fine-scale contrast analysis at each sampling time revealed a detailed picture of the temporal reprogramming of cis-regulatory elements and biological processes under short- and long-day conditions. Phase shift analysis reveals quantitative variation among genes with photoperiod-dependent diurnal patterns. In addition, we identify three photoperiod enriched transcription factor families with key genes involved in photoperiod flowering regulatory networks. Finally, coexpression networks analysis of GIGANTEA homolog predicted 1,668 potential coincidence partners, including five well-known GI-interacting proteins. Our results not only provide a resource for understanding the mechanisms of photoperiod regulation in perennial grasses but also lay a foundation to increase biomass yield in biofuel crops.
Collapse
Affiliation(s)
- Xiaoyu Weng
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712
| | - John T Lovell
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806
| | - Scott L Schwartz
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712
| | - Changde Cheng
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712
| | - Taslima Haque
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712
| | - Li Zhang
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712
| | - Samsad Razzaque
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712
| |
Collapse
|
21
|
Cambiagno DA, Nota F, Zavallo D, Rius S, Casati P, Asurmendi S, Alvarez ME. Immune receptor genes and pericentromeric transposons as targets of common epigenetic regulatory elements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1178-1190. [PMID: 30238536 DOI: 10.1111/tpj.14098] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/24/2018] [Accepted: 09/03/2018] [Indexed: 05/04/2023]
Abstract
Pattern recognition receptors (PRR) and nucleotide-binding leucine-rich repeat proteins (NLR) are major components of the plant immune system responsible for pathogen detection. To date, the transcriptional regulation of PRR/NLR genes is poorly understood. Some PRR/NLR genes are affected by epigenetic changes of neighboring transposable elements (TEs) (cis regulation). We analyzed whether these genes can also respond to changes in the epigenetic marks of distal pericentromeric TEs (trans regulation). We found that Arabidopsis tissues infected with Pseudomonas syringae pv. tomato (Pst) initially induced the expression of pericentromeric TEs, and then repressed it by RNA-directed DNA methylation (RdDM). The latter response was accompanied by the accumulation of small RNAs (sRNAs) mapping to the TEs. Curiously these sRNAs also mapped to distal PRR/NLR genes, which were controlled by RdDM but remained induced in the infected tissues. Then, we used non-infected mom1 (Morpheus' molecule 1) mutants that expressed pericentromeric TEs to test if they lose repression of PRR/NLR genes. mom1 plants activated several PRR/NLR genes that were unlinked to MOM1-targeted TEs, and showed enhanced resistance to Pst. Remarkably, the increased defenses of mom1 were abolished when MOM1/RdDM-mediated pericentromeric TEs silencing was re-established. Therefore, common sRNAs could control PRR/NLR genes and distal pericentromeric TEs and preferentially silence TEs when they are activated.
Collapse
Affiliation(s)
- Damián A Cambiagno
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Florencia Nota
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Diego Zavallo
- Instituto de Biotecnología, CICVyA, INTA, Hurlingham, Argentina
| | - Sebastián Rius
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sebastián Asurmendi
- Instituto de Biotecnología, CICVyA, INTA, Hurlingham, Argentina
- CONICET, Buenos Aires, Argentina
| | - María E Alvarez
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| |
Collapse
|
22
|
Yu D, Ma X, Zuo Z, Wang H, Meng Y. Classification of Transcription Boundary-Associated RNAs (TBARs) in Animals and Plants. Front Genet 2018; 9:168. [PMID: 29868116 PMCID: PMC5960741 DOI: 10.3389/fgene.2018.00168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/26/2018] [Indexed: 11/13/2022] Open
Abstract
There is increasing evidence suggesting the contribution of non-coding RNAs (ncRNAs) to the phenotypic and physiological complexity of organisms. A novel ncRNA species has been identified near the transcription boundaries of protein-coding genes in eukaryotes, bacteria, and archaea. This review provides a detailed description of these transcription boundary-associated RNAs (TBARs), including their classification. Based on their genomic distribution, TBARs are divided into two major groups: promoter-associated RNAs (PARs) and terminus-associated RNAs (TARs). Depending on the sequence length, each group is further classified into long RNA species (>200 nt) and small RNA species (<200 nt). According to these rules of TBAR classification, divergent ncRNAs with confusing nomenclatures, such as promoter upstream transcripts (PROMPTs), upstream antisense RNAs (uaRNAs), stable unannotated transcripts (SUTs), cryptic unstable transcripts (CUTs), upstream non-coding transcripts (UNTs), transcription start site-associated RNAs (TSSaRNAs), transcription initiation RNAs (tiRNAs), and transcription termination site-associated RNAs (TTSaRNAs), were assigned to specific classes. Although the biogenesis pathways of PARs and TARs have not yet been clearly elucidated, previous studies indicate that some of the PARs have originated either through divergent transcription or via RNA polymerase pausing. Intriguing findings regarding the functional implications of the TBARs such as the long-range “gene looping” model, which explains their role in the transcriptional regulation of protein-coding genes, are also discussed. Altogether, this review provides a comprehensive overview of the current research status of TBARs, which will promote further investigations in this research area.
Collapse
Affiliation(s)
- Dongliang Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaoxia Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ziwei Zuo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
23
|
Axtell MJ, Meyers BC. Revisiting Criteria for Plant MicroRNA Annotation in the Era of Big Data. THE PLANT CELL 2018; 30:272-284. [PMID: 29343505 PMCID: PMC5868703 DOI: 10.1105/tpc.17.00851] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are ∼21-nucleotide-long regulatory RNAs that arise from endonucleolytic processing of hairpin precursors. Many function as essential posttranscriptional regulators of target mRNAs and long noncoding RNAs. Alongside miRNAs, plants also produce large numbers of short interfering RNAs (siRNAs), which are distinguished from miRNAs primarily by their biogenesis (typically processed from long double-stranded RNA instead of single-stranded hairpins) and functions (typically via roles in transcriptional regulation instead of posttranscriptional regulation). Next-generation DNA sequencing methods have yielded extensive data sets of plant small RNAs, resulting in many miRNA annotations. However, it has become clear that many miRNA annotations are questionable. The sheer number of endogenous siRNAs compared with miRNAs has been a major factor in the erroneous annotation of siRNAs as miRNAs. Here, we provide updated criteria for the confident annotation of plant miRNAs, suitable for the era of "big data" from DNA sequencing. The updated criteria emphasize replication and the minimization of false positives, and they require next-generation sequencing of small RNAs. We argue that improved annotation systems are needed for miRNAs and all other classes of plant small RNAs. Finally, to illustrate the complexities of miRNA and siRNA annotation, we review the evolution and functions of miRNAs and siRNAs in plants.
Collapse
Affiliation(s)
- Michael J Axtell
- The Pennsylvania State University, Department of Biology and Huck Institutes of the Life Sciences, University Park, Pennsylvania 16802
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- University of Missouri-Columbia, Division of Plant Sciences, Columbia, Missouri 65211
| |
Collapse
|
24
|
Kumar V, Khare T, Shriram V, Wani SH. Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance. PLANT CELL REPORTS 2018; 37:61-75. [PMID: 28951953 DOI: 10.1007/s00299-017-2210-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/12/2017] [Indexed: 05/07/2023]
Abstract
Saline environment cues distort the plant growth, development and crop yield. Epigenetics has emerged as one of the prime themes in plant functional genomics for molecular-stress-physiology research, as copious studies have provided new visions into the epigenetic control of stress adaptations. The epigenetic control is associated with the regulation of the expression of stress-related genes which also comprises many steady alterations inherited in next cellular generation as stress memory. These epigenetic amendments also implicate induction of small RNA (sRNA)-mediated fine-tuning of transcriptional and post-transcriptional regulations of gene expression. These tiny (19-24 nt) RNA species, particularly microRNAs (miRNAs) besides endogenous small interfering RNA (siRNA) have emerged as important responsive entities for epigenetic modulation of salt-stress effects on plants. There is a recent upsurge in development of tools and databases useful for prediction, identification and validation of small RNAs (sRNAs) and their target messenger RNAs (mRNAs). Therefore, these small but key regulatory molecules have received a wide attention in post-genomic era as potential targets for engineering stress tolerance in major glycophytic crops, though it is yet to be explored optimally. This review aims to provide critical updates on plant sRNAs as key epigenetic regulators of plant salt-stress responses, their target prediction and validation, computational tools and databases available for plant small RNAs, besides discussing their roles in salt-stress regulatory networks and adaptive mechanisms in plants, with special emphasis on their exploration for engineering salinity tolerance in plants.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016, India.
- Department of Environmental Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College (Savitribai Phule Pune University), Akurdi, Pune, 411044, India
| | - Shabir H Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Anantnag, Jammu and Kashmir, 192101, India.
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
25
|
McKinlay A, Podicheti R, Wendte JM, Cocklin R, Rusch DB. RNA polymerases IV and V influence the 3' boundaries of Polymerase II transcription units in Arabidopsis. RNA Biol 2017; 15:269-279. [PMID: 29199514 DOI: 10.1080/15476286.2017.1409930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nuclear multisubunit RNA polymerases IV and V (Pol IV and Pol V) evolved in plants as specialized forms of Pol II. Their functions are best understood in the context of RNA-directed DNA methylation (RdDM), a process in which Pol IV-dependent 24 nt siRNAs direct the de novo cytosine methylation of regions transcribed by Pol V. Pol V has additional functions, independent of Pol IV and 24 nt siRNA biogenesis, in maintaining the repression of transposons and genomic repeats whose silencing depends on maintenance cytosine methylation. Here we report that Pol IV and Pol V play unexpected roles in defining the 3' boundaries of Pol II transcription units. Nuclear run-on assays reveal that in the absence of Pol IV or Pol V, Pol II occupancy downstream of poly A sites increases for approximately 12% of protein-coding genes. This effect is most pronounced for convergently transcribed gene pairs. Although Pols IV and V are detected near transcript ends of the affected Pol II - transcribed genes, their role in limiting Pol II read-through is independent of siRNA biogenesis or cytosine methylation for the majority of these genes. Interestingly, we observed that splicing was less efficient in pol IV or pol V mutant plants, compared to wild-type plants, suggesting that Pol IV or Pol V might affect pre-mRNA processing. We speculate that Pols IV and V (and/or their associated factors) play roles in Pol II transcription termination and pre-mRNA splicing by influencing polymerase elongation rates and/or release at collision sites for convergent genes.
Collapse
Affiliation(s)
- Anastasia McKinlay
- a Department of Biology , Indiana University , Bloomington , Indiana , USA
| | - Ram Podicheti
- b Center for Genomics and Bioinformatics, Indiana University , Bloomington , Indiana , USA.,c School of Informatics and Computing, Indiana University , Bloomington , IN , USA
| | - Jered M Wendte
- a Department of Biology , Indiana University , Bloomington , Indiana , USA
| | - Ross Cocklin
- a Department of Biology , Indiana University , Bloomington , Indiana , USA.,d Howard Hughes Medical Institute, Indiana University , Bloomington , Indiana
| | - Douglas B Rusch
- b Center for Genomics and Bioinformatics, Indiana University , Bloomington , Indiana , USA
| |
Collapse
|
26
|
Williams BP, Gehring M. Stable transgenerational epigenetic inheritance requires a DNA methylation-sensing circuit. Nat Commun 2017; 8:2124. [PMID: 29242626 PMCID: PMC5730562 DOI: 10.1038/s41467-017-02219-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/14/2017] [Indexed: 02/02/2023] Open
Abstract
Epigenetic states are stably propagated in eukaryotes. In plants, DNA methylation patterns are faithfully inherited over many generations but it is unknown how the dynamic activities of cytosine DNA methyltransferases and 5-methylcytosine DNA glycosylases interact to maintain epigenetic homeostasis. Here we show that a methylation-sensing gene regulatory circuit centered on a 5-methylcytosine DNA glycosylase gene is required for long-term epigenetic fidelity in Arabidopsis. Disrupting this circuit causes widespread methylation losses and abnormal phenotypes that progressively worsen over generations. In heterochromatin, these losses are counteracted such that methylation returns to a normal level over four generations. However, thousands of loci in euchromatin progressively lose DNA methylation between generations and remain unmethylated. We conclude that an actively maintained equilibrium between methylation and demethylation activities is required to ensure long-term stable inheritance of epigenetic information. DNA methylation patterns are inherited over many generations in plants. Here, Williams and Gehring show that the 5-methylcytosine DNA glycosylase ROS1 functions as part of a methylation-sensitive circuit that ensures long-term epigenetic fidelity in Arabidopsis.
Collapse
Affiliation(s)
- Ben P Williams
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
27
|
Paul A, Dasgupta P, Roy D, Chaudhuri S. Comparative analysis of Histone modifications and DNA methylation at OsBZ8 locus under salinity stress in IR64 and Nonabokra rice varieties. PLANT MOLECULAR BIOLOGY 2017; 95:63-88. [PMID: 28741224 DOI: 10.1007/s11103-017-0636-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Rice being an important cereal crop is highly sensitive to salinity stress causing growth retardation and loss in productivity. However, certain rice genotypes like Nonabokra and Pokkali show a high level of tolerance towards salinity stress compared to IR64 variety. This differential response of tolerant varieties towards salinity stress may be a cumulative effect of genetic and epigenetic factors. In this study, we have compared the salinity-induced changes in chromatin modifications at the OsBZ8 locus in salt-tolerant Nonabokra and salt-sensitive IR64 rice varieties. Expression analysis indicates that the OsBZ8 gene is highly induced in Nonabokra plants even in the absence of salt stress, whereas in IR64, the expression significantly increases only during salt stress. Sequence analysis and nucleosomal arrangement within the region -2000 to +1000 of OsBZ8 gene show no difference between the two rice varieties. However, there was a considerable difference in histone modifications and DNA methylation at the locus between these varieties. In Nonabokra, the upstream region was hyperacetylated at H3K9 and H3K27, and this acetylation did not change during salt stress. However, in IR64, histone acetylation was observed only during salt stress. Moreover, the upstream region of OsBZ8 gene has highly dynamic nucleosome arrangement in Nonabokra, compared to IR64. Furthermore, loss of DNA methylation was observed at OsBZ8 locus in Nonabokra control plants along with low H3K27me3 and high H3K4me3. Control IR64 plants show high DNA methylation and enriched H3K27me3. Collectively these results indicate a significant difference in chromatin modifications between the rice varieties that regulates differential expression of OsBZ8 gene during salt stress.
Collapse
Affiliation(s)
- Amit Paul
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Pratiti Dasgupta
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Dipan Roy
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Shubho Chaudhuri
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
28
|
Au PCK, Dennis ES, Wang MB. Analysis of Argonaute 4-Associated Long Non-Coding RNA in Arabidopsis thaliana Sheds Novel Insights into Gene Regulation through RNA-Directed DNA Methylation. Genes (Basel) 2017; 8:E198. [PMID: 28783101 PMCID: PMC5575662 DOI: 10.3390/genes8080198] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
RNA-directed DNA methylation (RdDM) is a plant-specific de novo DNA methylation mechanism that requires long noncoding RNA (lncRNA) as scaffold to define target genomic loci. While the role of RdDM in maintaining genome stability is well established, how it regulates protein-coding genes remains poorly understood and few RdDM target genes have been identified. In this study, we obtained sequences of RdDM-associated lncRNAs using nuclear RNA immunoprecipitation against ARGONAUTE 4 (AGO4), a key component of RdDM that binds specifically with the lncRNA. Comparison of these lncRNAs with gene expression data of RdDM mutants identified novel RdDM target genes. Surprisingly, a large proportion of these target genes were repressed in RdDM mutants suggesting that they are normally activated by RdDM. These RdDM-activated genes are more enriched for gene body lncRNA than the RdDM-repressed genes. Histone modification and RNA analyses of several RdDM-activated stress response genes detected increased levels of active histone mark and short RNA transcript in the lncRNA-overlapping gene body regions in the ago4 mutant despite the repressed expression of these genes. These results suggest that RdDM, or AGO4, may play a role in maintaining or activating stress response gene expression by directing gene body chromatin modification preventing cryptic transcription.
Collapse
Affiliation(s)
- Phil Chi Khang Au
- Commonwealth Scientific and Industrial Research Organisation Agriculture, Canberra, Australian Capital Territory 2601, Australia.
| | - Elizabeth S Dennis
- Commonwealth Scientific and Industrial Research Organisation Agriculture, Canberra, Australian Capital Territory 2601, Australia.
| | - Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organisation Agriculture, Canberra, Australian Capital Territory 2601, Australia.
| |
Collapse
|
29
|
Long-range control of gene expression via RNA-directed DNA methylation. PLoS Genet 2017; 13:e1006749. [PMID: 28475589 PMCID: PMC5438180 DOI: 10.1371/journal.pgen.1006749] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 05/19/2017] [Accepted: 04/07/2017] [Indexed: 01/14/2023] Open
Abstract
RNA-mediated transcriptional silencing, in plants known as RNA-directed DNA methylation (RdDM), is a conserved process where small interfering RNA (siRNA) and long non-coding RNA (lncRNA) help establish repressive chromatin modifications. This process represses transposons and affects the expression of protein-coding genes. We found that in Arabidopsis thaliana AGO4 binding sites are often located distant from genes differentially expressed in ago4. Using Hi-C to compare interactions between genotypes, we show that RdDM-targeted loci have the potential to engage in chromosomal interactions, but these interactions are inhibited in wild-type conditions. In mutants defective in RdDM, the frequency of chromosomal interactions at RdDM targets is increased. This includes increased frequency of interactions between Pol V methylated sites and distal genes that are repressed by RdDM. We propose a model, where RdDM prevents the formation of chromosomal interactions between genes and their distant regulatory elements.
Collapse
|
30
|
AtMBD6, a methyl CpG binding domain protein, maintains gene silencing in Arabidopsis by interacting with RNA binding proteins. J Biosci 2017; 42:57-68. [PMID: 28229965 DOI: 10.1007/s12038-016-9658-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
DNA methylation, mediated by double-stranded RNA, is a conserved epigenetic phenomenon that protects a genome from transposons, silences unwanted genes and has a paramount function in plant or animal development. Methyl CpG binding domain proteins are members of a class of proteins that bind to methylated DNA. The Arabidopsis thaliana genome encodes 13 methyl CpG binding domain (MBD) proteins, but the molecular/biological functions of most of these proteins are still not clear. In the present study, we identified four proteins that interact with AtMBD6. Interestingly, three of them contain RNA binding domains and are co-localized with AtMBD6 in the nucleus. The interacting partners includes AtRPS2C (a 40S ribosomal protein), AtNTF2 (nuclear transport factor 2) and AtAGO4 (Argonoute 4). The fourth protein that physically interacts with AtMBD6 is a histone-modifying enzyme, histone deacetylase 6 (AtHDA6), which is a known component of the RNA-mediated gene silencing system. Analysis of genomic DNA methylation in the atmbd6, atrps2c and atntf2 mutants, using methylation-sensitive PCR detected decreased DNA methylation at miRNA/siRNA producing loci, pseudogenes and other targets of RNA-directed DNA methylation. Our results indicate that AtMBD6 is involved in RNA-mediated gene silencing and it binds to RNA binding proteins like AtRPS2C, AtAGO4 and AtNTF2. AtMBD6 also interacts with histone deacetylase AtHDA6 that might have a role in chromatin condensation at the targets of RdDM.
Collapse
|
31
|
Abstract
The eukaryotic genomes are pervasively transcribed. In addition to protein-coding RNAs, thousands of long noncoding RNAs (lncRNAs) modulate key molecular and biological processes. Most lncRNAs are found in the nucleus and associate with chromatin, but lncRNAs can function in both nuclear and cytoplasmic compartments. Emerging work has found that many lncRNAs regulate gene expression and can affect genome stability and nuclear domain organization both in plant and in the animal kingdom. Here, we describe the major plant lncRNAs and how they act, with a focus on research in Arabidopsis thaliana and our emerging understanding of lncRNA functions in serving as molecular sponges and decoys, functioning in regulation of transcription and silencing, particularly in RNA-directed DNA methylation, and in epigenetic regulation of flowering time.
Collapse
Affiliation(s)
- Hsiao-Lin V Wang
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Julia A Chekanova
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, 64110, USA.
| |
Collapse
|
32
|
Böhmdorfer G, Sethuraman S, Rowley MJ, Krzyszton M, Rothi MH, Bouzit L, Wierzbicki AT. Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin. eLife 2016; 5. [PMID: 27779094 PMCID: PMC5079748 DOI: 10.7554/elife.19092] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/06/2016] [Indexed: 01/10/2023] Open
Abstract
RNA-mediated transcriptional gene silencing is a conserved process where small RNAs target transposons and other sequences for repression by establishing chromatin modifications. A central element of this process are long non-coding RNAs (lncRNA), which in Arabidopsis thaliana are produced by a specialized RNA polymerase known as Pol V. Here we show that non-coding transcription by Pol V is controlled by preexisting chromatin modifications located within the transcribed regions. Most Pol V transcripts are associated with AGO4 but are not sliced by AGO4. Pol V-dependent DNA methylation is established on both strands of DNA and is tightly restricted to Pol V-transcribed regions. This indicates that chromatin modifications are established in close proximity to Pol V. Finally, Pol V transcription is preferentially enriched on edges of silenced transposable elements, where Pol V transcribes into TEs. We propose that Pol V may play an important role in the determination of heterochromatin boundaries. DOI:http://dx.doi.org/10.7554/eLife.19092.001
Collapse
Affiliation(s)
- Gudrun Böhmdorfer
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Shriya Sethuraman
- Bioinformatics Graduate Program, University of Michigan, Ann Arbor, United States
| | - M Jordan Rowley
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Michal Krzyszton
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - M Hafiz Rothi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Lilia Bouzit
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Andrzej T Wierzbicki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
33
|
A Multigenic Network of ARGONAUTE4 Clade Members Controls Early Megaspore Formation in Arabidopsis. Genetics 2016; 204:1045-1056. [PMID: 27591749 PMCID: PMC5105840 DOI: 10.1534/genetics.116.188151] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023] Open
Abstract
The development of gametophytes relies on the establishment of a haploid gametophytic generation that initiates with the specification of gametophytic precursors. The majority of flowering plants differentiate a single gametophytic precursor in the ovule: the megaspore mother cell. Here we show that, in addition to argonaute9 (ago9), mutations in other ARGONAUTE (AGO) genes such as ago4, ago6, and ago8, also show abnormal configurations containing supernumerary gametophytic precursors in Arabidopsis thaliana. Double homozygous ago4 ago9 individuals showed a suppressive effect on the frequency of ovules with multiple gametophytic precursors across three consecutive generations, indicating that genetic interactions result in compensatory mechanisms. Whereas overexpression of AGO6 in ago9 and ago4 ago9 confirms strong regulatory interactions among genes involved in RNA-directed DNA methylation, AGO8 is overexpressed in premeiotic ovules of ago4 ago9 individuals, suggesting that the regulation of this previously presumed pseudogene responds to the compensatory mechanism. The frequency of abnormal meiotic configurations found in ago4 ago9 individuals is dependent on their parental genotype, revealing a transgenerational effect. Our results indicate that members of the AGO4 clade cooperatively participate in preventing the abnormal specification of multiple premeiotic gametophytic precursors during early ovule development in A. thaliana.
Collapse
|
34
|
Wendte JM, Pikaard CS. The RNAs of RNA-directed DNA methylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:140-148. [PMID: 27521981 DOI: 10.1016/j.bbagrm.2016.08.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022]
Abstract
RNA-directed chromatin modification that includes cytosine methylation silences transposable elements in both plants and mammals, contributing to genome defense and stability. In Arabidopsis thaliana, most RNA-directed DNA methylation (RdDM) is guided by small RNAs derived from double-stranded precursors synthesized at cytosine-methylated loci by nuclear multisubunit RNA Polymerase IV (Pol IV), in close partnership with the RNA-dependent RNA polymerase, RDR2. These small RNAs help keep transposons transcriptionally inactive. However, if transposons escape silencing, and are transcribed by multisubunit RNA polymerase II (Pol II), their mRNAs can be recognized and degraded, generating small RNAs that can also guide initial DNA methylation, thereby enabling subsequent Pol IV-RDR2 recruitment. In both pathways, the small RNAs find their target sites by interacting with longer noncoding RNAs synthesized by multisubunit RNA Polymerase V (Pol V). Despite a decade of progress, numerous questions remain concerning the initiation, synthesis, processing, size and features of the RNAs that drive RdDM. Here, we review recent insights, questions and controversies concerning RNAs produced by Pols IV and V, and their functions in RdDM. We also provide new data concerning Pol V transcript 5' and 3' ends. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Jered M Wendte
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, 915 E. Third Street, Bloomington, IN 47405, USA
| | - Craig S Pikaard
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, 915 E. Third Street, Bloomington, IN 47405, USA; Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
35
|
Böhmdorfer G, Wierzbicki AT. Control of Chromatin Structure by Long Noncoding RNA. Trends Cell Biol 2016; 25:623-632. [PMID: 26410408 DOI: 10.1016/j.tcb.2015.07.002] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/22/2015] [Accepted: 07/17/2015] [Indexed: 12/11/2022]
Abstract
Long noncoding RNA (lncRNA) is a pivotal factor regulating various aspects of genome activity. Genome regulation via DNA methylation and post-translational histone modifications is a well-documented function of lncRNA in plants, fungi, and animals. Here, we summarize evidence showing that lncRNA also controls chromatin structure, including nucleosome positioning and chromosome looping. We focus on data from plant experimental systems, discussed in the context of other eukaryotes. We explain the mechanisms of lncRNA-controlled chromatin remodeling and the implications of the functional interplay between noncoding transcription and several different chromatin remodelers. We propose that the unique properties of RNA make it suitable for controlling chromatin modifications and structure.
Collapse
Affiliation(s)
- Gudrun Böhmdorfer
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI 48109, USA
| | - Andrzej T Wierzbicki
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI 48109, USA.
| |
Collapse
|
36
|
RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome. Proc Natl Acad Sci U S A 2015; 112:14728-33. [PMID: 26553984 DOI: 10.1073/pnas.1514680112] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The maize genome is relatively large (∼ 2.3 Gb) and has a complex organization of interspersed genes and transposable elements, which necessitates frequent boundaries between different types of chromatin. The examination of maize genes and conserved noncoding sequences revealed that many of these are flanked by regions of elevated asymmetric CHH (where H is A, C, or T) methylation (termed mCHH islands). These mCHH islands are quite short (∼ 100 bp), are enriched near active genes, and often occur at the edge of the transposon that is located nearest to genes. The analysis of DNA methylation in other sequence contexts and several chromatin modifications revealed that mCHH islands mark the transition from heterochromatin-associated modifications to euchromatin-associated modifications. The presence of an mCHH island is fairly consistent in several distinct tissues that were surveyed but shows some variation among different haplotypes. The presence of insertion/deletions in promoters often influences the presence and position of an mCHH island. The mCHH islands are dependent upon RNA-directed DNA methylation activities and are lost in mop1 and mop3 mutants, but the nearby genes rarely exhibit altered expression levels. Instead, loss of an mCHH island is often accompanied by additional loss of DNA methylation in CG and CHG contexts associated with heterochromatin in nearby transposons. This suggests that mCHH islands and RNA-directed DNA methylation near maize genes may act to preserve the silencing of transposons from activity of nearby genes.
Collapse
|
37
|
Zhou M, Law JA. RNA Pol IV and V in gene silencing: Rebel polymerases evolving away from Pol II's rules. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:154-64. [PMID: 26344361 PMCID: PMC4618083 DOI: 10.1016/j.pbi.2015.07.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/15/2015] [Accepted: 07/19/2015] [Indexed: 05/19/2023]
Abstract
Noncoding RNAs regulate gene expression at both the transcriptional and post-transcriptional levels, and play critical roles in development, imprinting and the maintenance of genome integrity in eukaryotic organisms [1,2,3]. Therefore, it is important to understand how the production of such RNAs are controlled. In addition to the three canonical DNA dependent RNA polymerases (Pol) Pol I, II and III, two non-redundant plant-specific RNA polymerases, Pol IV and Pol V, have been identified and shown to generate noncoding RNAs that are required for transcriptional gene silencing via the RNA-directed DNA methylation (RdDM) pathway. Thus, somewhat paradoxically, transcription is required for gene silencing. This paradox extends beyond plants, as silencing pathways in yeast, fungi, flies, worms, and mammals also require transcriptional machinery [4,5]. As plants have evolved specialized RNA polymerases to carry out gene silencing in a manner that is separate from the essential roles of Pol II, their characterization offers unique insights into how RNA polymerases facilitate gene silencing. In this review, we focus on the mechanisms of Pol IV and Pol V function, including their compositions, their transcripts, and their modes of recruitment to chromatin.
Collapse
Affiliation(s)
- Ming Zhou
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Julie A Law
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
38
|
Wang F, Polydore S, Axtell MJ. More than meets the eye? Factors that affect target selection by plant miRNAs and heterochromatic siRNAs. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:118-24. [PMID: 26246393 PMCID: PMC4732885 DOI: 10.1016/j.pbi.2015.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/12/2015] [Accepted: 06/19/2015] [Indexed: 05/19/2023]
Abstract
MicroRNAs, which target mRNAs for post-transcriptional regulation, and heterochromatic siRNAs, which target chromatin causing DNA methylation, make up the majority of the endogenous regulatory small RNA pool in most plant specimens. They both function to guide Argonaute proteins to targeted nucleic acids on the basis of complementarity. Recent work on plant miRNA-target interactions has clarified the general ''rules' of complementarity, while also providing several intriguing exceptions to these rules. In addition, emerging evidence suggests that several factors besides miRNA-target complementarity affect plant miRNA function. For heterochromatic siRNAs, recent work has made progress towards comprehensively identifying potential target regions, but numerous fundamental questions remain to be answered.
Collapse
Affiliation(s)
- Feng Wang
- Plant Biology Ph.D. Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Seth Polydore
- Genetics Ph.D. Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Michael J Axtell
- Plant Biology Ph.D. Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Genetics Ph.D. Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Department of Biology, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
39
|
Deng S, Chua NH. Inverted-Repeat RNAs Targeting FT Intronic Regions Promote FT Expression in Arabidopsis. PLANT & CELL PHYSIOLOGY 2015; 56:1667-78. [PMID: 26076969 DOI: 10.1093/pcp/pcv091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/11/2015] [Indexed: 05/04/2023]
Abstract
Transcriptional gene silencing (TGS) is often associated with promoter methylation in both animals and plants. However, the function of DNA methylation in the intragenic region remains unclear. Here, we confirmed that promoter methylation of FLOWERING LOCUS T (FT) led to gene silencing; in contrast, we found that intragenic methylation triggered by RNA-directed DNA methylation (RdDM) promoted FT expression. DNA methylation of the FT gene body blocked FLC repressor binding to the CArG boxes. However, when the boxes were not directly targeted by inverted-repeat RNAs (IRs), FLC binding blocked spreading of DNA methylation to theses sequences. Notwithstanding the FLC binding, FT was still activated under this condition. The DNA methylation was accompanied by elevated H3K9 methylation levels on the FT gene body. More importantly, the FT diurnal and organ-specific expression pattern was preserved in the activated plants. Our data demonstrate that the same type of epigenetic modification can lead to an opposite genetic outcome depending on the location of the modification on the gene locus. Moreover, we highlight a novel strategy to activate gene expression without changing its spatio-temporal regulatory patterns.
Collapse
Affiliation(s)
- Shulin Deng
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230, York Avenue, New York, NY 10065, USA
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230, York Avenue, New York, NY 10065, USA
| |
Collapse
|
40
|
Ariel F, Romero-Barrios N, Jégu T, Benhamed M, Crespi M. Battles and hijacks: noncoding transcription in plants. TRENDS IN PLANT SCIENCE 2015; 20:362-71. [PMID: 25850611 DOI: 10.1016/j.tplants.2015.03.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/28/2015] [Accepted: 03/04/2015] [Indexed: 05/08/2023]
Abstract
Noncoding RNAs have emerged as major components of the eukaryotic transcriptome. Genome-wide analyses revealed the existence of thousands of long noncoding RNAs (lncRNAs) in several plant species. Plant lncRNAs are transcribed by the plant-specific RNA polymerases Pol IV and Pol V, leading to transcriptional gene silencing, as well as by Pol II. They are involved in a wide range of regulatory mechanisms impacting on gene expression, including chromatin remodeling, modulation of alternative splicing, fine-tuning of miRNA activity, and the control of mRNA translation or accumulation. Recently, dual noncoding transcription by alternative RNA polymerases was implicated in epigenetic and chromatin conformation dynamics. This review integrates the current knowledge on the regulatory mechanisms acting through plant noncoding transcription.
Collapse
Affiliation(s)
- Federico Ariel
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Natali Romero-Barrios
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Teddy Jégu
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Moussa Benhamed
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France; Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Martin Crespi
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France.
| |
Collapse
|
41
|
Williams BP, Pignatta D, Henikoff S, Gehring M. Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat. PLoS Genet 2015; 11:e1005142. [PMID: 25826366 PMCID: PMC4380477 DOI: 10.1371/journal.pgen.1005142] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Abstract
Genomes must balance active suppression of transposable elements (TEs) with the need to maintain gene expression. In Arabidopsis, euchromatic TEs are targeted by RNA-directed DNA methylation (RdDM). Conversely, active DNA demethylation prevents accumulation of methylation at genes proximal to these TEs. It is unknown how a cellular balance between methylation and demethylation activities is achieved. Here we show that both RdDM and DNA demethylation are highly active at a TE proximal to the major DNA demethylase gene ROS1. Unexpectedly, and in contrast to most other genomic targets, expression of ROS1 is promoted by DNA methylation and antagonized by DNA demethylation. We demonstrate that inducing methylation in the ROS1 proximal region is sufficient to restore ROS1 expression in an RdDM mutant. Additionally, methylation-sensitive expression of ROS1 is conserved in other species, suggesting it is adaptive. We propose that the ROS1 locus functions as an epigenetic rheostat, tuning the level of demethylase activity in response to methylation alterations, thus ensuring epigenomic stability. Organisms must adapt to dynamic and variable internal and external environments. Maintaining homeostasis in core biological processes is crucial to minimizing the deleterious consequences of environmental fluctuations. Genomes are also dynamic and variable, and must be robust against stresses, including the invasion of genomic parasites, such as transposable elements (TEs). In this work we present the discovery of an epigenetic rheostat in plants that maintains homeostasis in levels of DNA methylation. DNA methylation typically silences transcription of TEs. Because there is positive feedback between existing and de novo DNA methylation, it is critical that methylation is not allowed to spread and potentially silence transcription of genes. To maintain homeostasis, methylation promotes the production of a demethylase enzyme that removes methylation from gene-proximal regions. The demethylation of genes is therefore always maintained in concert with the levels of methylation suppressing TEs. In addition, this DNA demethylating enzyme also represses its own production in a negative feedback loop. Together, these feedback mechanisms shed new light on how the conflict between gene expression and genome defense is maintained in homeostasis. The presence of this rheostat in multiple species suggests it is an evolutionary conserved adaptation.
Collapse
Affiliation(s)
- Ben P. Williams
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Daniela Pignatta
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
42
|
Chen YCA, Aravin AA. Non-Coding RNAs in Transcriptional Regulation: The review for Current Molecular Biology Reports. ACTA ACUST UNITED AC 2015; 1:10-18. [PMID: 26120554 DOI: 10.1007/s40610-015-0002-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcriptional gene silencing guided by small RNAs is a process conserved from protozoa to mammals. Small RNAs loaded into Argonaute family proteins direct repressive histone modifications or DNA cytosine methylation to homologous regions of the genome. Small RNA-mediated transcriptional silencing is required for many biological processes, including repression of transposable elements, maintaining the genome stability/integrity, and epigenetic inheritance of gene expression. Here we will summarize the current knowledge about small RNA biogenesis and mechanisms of transcriptional regulation in plants, Drosophila, C. elegans and mice. Furthermore, a rapidly growing number long non-coding RNAs (lncRNAs) have been implicated as important players in transcription regulation. We will discuss current models for long non-coding RNA-mediated gene regulation.
Collapse
Affiliation(s)
- Yung-Chia Ariel Chen
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Alexei A Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 E. California Blvd., Pasadena, CA 91125, USA
| |
Collapse
|
43
|
Gent JI, Madzima TF, Bader R, Kent MR, Zhang X, Stam M, McGinnis KM, Dawe RK. Accessible DNA and relative depletion of H3K9me2 at maize loci undergoing RNA-directed DNA methylation. THE PLANT CELL 2014; 26:4903-17. [PMID: 25465407 PMCID: PMC4311197 DOI: 10.1105/tpc.114.130427] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/03/2014] [Accepted: 11/18/2014] [Indexed: 05/18/2023]
Abstract
RNA-directed DNA methylation (RdDM) in plants is a well-characterized example of RNA interference-related transcriptional gene silencing. To determine the relationships between RdDM and heterochromatin in the repeat-rich maize (Zea mays) genome, we performed whole-genome analyses of several heterochromatic features: dimethylation of lysine 9 and lysine 27 (H3K9me2 and H3K27me2), chromatin accessibility, DNA methylation, and small RNAs; we also analyzed two mutants that affect these processes, mediator of paramutation1 and zea methyltransferase2. The data revealed that the majority of the genome exists in a heterochromatic state defined by inaccessible chromatin that is marked by H3K9me2 and H3K27me2 but that lacks RdDM. The minority of the genome marked by RdDM was predominantly near genes, and its overall chromatin structure appeared more similar to euchromatin than to heterochromatin. These and other data indicate that the densely staining chromatin defined as heterochromatin differs fundamentally from RdDM-targeted chromatin. We propose that small interfering RNAs perform a specialized role in repressing transposons in accessible chromatin environments and that the bulk of heterochromatin is incompatible with small RNA production.
Collapse
Affiliation(s)
- Jonathan I. Gent
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Thelma F. Madzima
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Rechien Bader
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Matthew R. Kent
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Xiaoyu Zhang
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Karen M. McGinnis
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - R. Kelly Dawe
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
- Department of Genetics, University of Georgia, Athens, Georgia 30602
- Address correspondence to
| |
Collapse
|
44
|
Böhmdorfer G, Rowley MJ, Kuciński J, Zhu Y, Amies I, Wierzbicki AT. RNA-directed DNA methylation requires stepwise binding of silencing factors to long non-coding RNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:181-91. [PMID: 24862207 PMCID: PMC4321213 DOI: 10.1111/tpj.12563] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/27/2014] [Accepted: 05/13/2014] [Indexed: 05/21/2023]
Abstract
Ribonucleic acid-mediated transcriptional gene silencing (known as RNA-directed DNA methylation, or RdDM, in Arabidopsis thaliana) is important for influencing gene expression and the inhibition of transposons by the deposition of repressive chromatin marks such as histone modifications and DNA methylation. A key event in de novo methylation of DNA by RdDM is the production of long non-coding RNA (lncRNA) by RNA polymerase V (Pol V). Little is known about the events that connect Pol V transcription to the establishment of repressive chromatin modifications. Using RNA immunoprecipitation, we elucidated the order of events downstream of lncRNA production and discovered interdependency between lncRNA-associated proteins. We found that the effector protein ARGONAUTE4 (AGO4) binds lncRNA independent of the RNA-binding protein INVOLVED IN DE NOVO2 (IDN2). In contrast, IDN2 binds lncRNA in an AGO4-dependent manner. We further found that the de novo DNA methyltransferase DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) also associates with lncRNA produced by Pol V and that this event depends on AGO4 and IDN2. We propose a model where the silencing proteins AGO4, IDN2 and DRM2 bind to lncRNA in a stepwise manner, resulting in DNA methylation of RdDM target loci.
Collapse
Affiliation(s)
- Gudrun Böhmdorfer
- Department of Molecular, Cellular and Developmental Biology, University of MichiganAnn Arbor, MI, 48109, USA
| | - M Jordan Rowley
- Department of Molecular, Cellular and Developmental Biology, University of MichiganAnn Arbor, MI, 48109, USA
| | - Jan Kuciński
- Department of Molecular, Cellular and Developmental Biology, University of MichiganAnn Arbor, MI, 48109, USA
| | - Yongyou Zhu
- Department of Molecular, Cellular and Developmental Biology, University of MichiganAnn Arbor, MI, 48109, USA
| | - Ivan Amies
- Department of Molecular, Cellular and Developmental Biology, University of MichiganAnn Arbor, MI, 48109, USA
| | - Andrzej T Wierzbicki
- Department of Molecular, Cellular and Developmental Biology, University of MichiganAnn Arbor, MI, 48109, USA
| |
Collapse
|
45
|
Bai Y, Dai X, Harrison AP, Chen M. RNA regulatory networks in animals and plants: a long noncoding RNA perspective. Brief Funct Genomics 2014; 14:91-101. [PMID: 24914100 DOI: 10.1093/bfgp/elu017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A recent highlight of genomics research has been the discovery of many families of transcripts which have function but do not code for proteins. An important group is long noncoding RNAs (lncRNAs), which are typically longer than 200 nt, and whose members originate from thousands of loci across genomes. We review progress in understanding the biogenesis and regulatory mechanisms of lncRNAs. We describe diverse computational and high throughput technologies for identifying and studying lncRNAs. We discuss the current knowledge of functional elements embedded in lncRNAs as well as insights into the lncRNA-based regulatory network in animals. We also describe genome-wide studies of large amount of lncRNAs in plants, as well as knowledge of selected plant lncRNAs with a focus on biotic/abiotic stress-responsive lncRNAs.
Collapse
|
46
|
Abstract
RNA-directed DNA methylation (RdDM) is the major small RNA-mediated epigenetic pathway in plants. RdDM requires a specialized transcriptional machinery that comprises two plant-specific RNA polymerases - Pol IV and Pol V - and a growing number of accessory proteins, the functions of which in the RdDM mechanism are only partially understood. Recent work has revealed variations in the canonical RdDM pathway and identified factors that recruit Pol IV and Pol V to specific target sequences. RdDM, which transcriptionally represses a subset of transposons and genes, is implicated in pathogen defence, stress responses and reproduction, as well as in interallelic and intercellular communication.
Collapse
|
47
|
Kondo K, Nakamura K. [Scientific review on novel genome editing techniques]. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2014; 55:231-46. [PMID: 25743586 DOI: 10.3358/shokueishi.55.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M. Epigenetic mechanisms of plant stress responses and adaptation. PLANT CELL REPORTS 2013; 32:1151-9. [PMID: 23719757 DOI: 10.1007/s00299-013-1462-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/20/2013] [Accepted: 05/20/2013] [Indexed: 05/20/2023]
Abstract
Epigenetics has become one of the hottest topics of research in plant functional genomics since it appears promising in deciphering and imparting stress-adaptive potential in crops and other plant species. Recently, numerous studies have provided new insights into the epigenetic control of stress adaptation. Epigenetic control of stress-induced phenotypic response of plants involves gene regulation. Growing evidence suggest that methylation of DNA in response to stress leads to the variation in phenotype. Transposon mobility, siRNA-mediated methylation and host methyltransferase activation have been implicated in this process. This review presents the current status of epigenetics of plant stress responses with a view to use this knowledge towards engineering plants for stress tolerance.
Collapse
Affiliation(s)
- Pranav Pankaj Sahu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | | | | | | | | | | |
Collapse
|
49
|
Marí-Ordóñez A, Marchais A, Etcheverry M, Martin A, Colot V, Voinnet O. Reconstructing de novo silencing of an active plant retrotransposon. Nat Genet 2013; 45:1029-39. [PMID: 23852169 DOI: 10.1038/ng.2703] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/20/2013] [Indexed: 11/09/2022]
Abstract
Transposable elements (TEs) contribute to genome size, organization and evolution. In plants, their activity is primarily controlled by transcriptional gene silencing (TGS), usually investigated at steady states, reflecting how long-established silent conditions are maintained, faithfully reiterated or temporarily modified. How active, invasive TEs are detected and silenced de novo in plants remains largely unknown. Using inbred lineages of hybrid Arabidopsis thaliana epigenomes combining wild-type and mutant chromosomes, we have deciphered the sequence of physiological and molecular events underlying the de novo invasion, proliferation and eventual demise of the single-copy endogenous retrotransposon Evadé (EVD). We show how this reconstructed TE burst causes widespread genome diversification and de novo epiallelism that could serve as sources for selectable and potentially adaptive traits.
Collapse
Affiliation(s)
- Arturo Marí-Ordóñez
- Swiss Federal Institute of Technology (ETH-Z), Department of Biology, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
50
|
Rowley MJ, Böhmdorfer G, Wierzbicki AT. Analysis of long non-coding RNAs produced by a specialized RNA polymerase in Arabidopsis thaliana. Methods 2013; 63:160-9. [PMID: 23707621 DOI: 10.1016/j.ymeth.2013.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 11/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in several processes including control of gene expression. In Arabidopsis thaliana, a class of lncRNAs is produced by a specialized RNA Polymerase V (Pol V), which is involved in controlling genome activity by transcriptional gene silencing. lncRNAs produced by Pol V have been proposed to serve as scaffolds for binding of several silencing factors which further mediate the establishment of repressive chromatin modifications. We present methods for discovery and characterization of lncRNAs produced by Pol V. Chromatin Immunoprecipitation coupled with deep sequencing (ChIP-seq) allows discovery of genomic regions bound by proteins in a manner dependent on either Pol V or transcripts produced by Pol V. RNA Immunoprecipitation (RIP) allows testing lncRNA-protein interactions at identified loci. Finally, real-time RT-PCR allows detection of low abundance Pol V transcripts from total RNA. These methods may be more broadly applied to discovery and characterization of RNAs produced by distinct RNA Polymerases.
Collapse
Affiliation(s)
- M Jordan Rowley
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|