1
|
Zhang M, Zhang X, Chen T, Liao Y, Yang B, Wang G. RNAi-mediated pest control targeting the Troponin I (wupA) gene in sweet potato weevil, Cylas formicarius. INSECT SCIENCE 2025; 32:631-648. [PMID: 38863245 DOI: 10.1111/1744-7917.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
The sweet potato weevil (Cylas formicarius) is a critical pest producing enormous global losses in sweet potato crops. Traditional pest management approaches for sweet potato weevil, primarily using chemical pesticides, causes pollution, food safety issues, and harming natural enemies. While RNA interference (RNAi) is a promising environmentally friendly approach to pest control, its efficacy in controlling the sweet potato weevil has not been extensively studied. In this study, we selected a potential target for controlling C. formicarius, the Troponin I gene (wupA), which is essential for musculature composition and crucial for fundamental life activities. We determined that wupA is abundantly expressed throughout all developmental stages of the sweet potato weevil. We evaluated the efficiency of double-stranded RNAs in silencing the wupA gene via microinjection and oral feeding of sweet potato weevil larvae at different ages. Our findings demonstrate that both approaches significantly reduced the expression of wupA and produced high mortality. Moreover, the 1st instar larvae administered dswupA exhibited significant growth inhibition. We assessed the toxicity of dswupA on the no-target insect silkworm and assessed its safety. Our study indicates that wupA knockdown can inhibit the growth and development of C. formicarius and offer a potential target gene for environmentally friendly control.
Collapse
Affiliation(s)
- Mengjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaxuan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Tingting Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yonglin Liao
- Institute of Plant Protection, Guangdong Academy of Agricultural Science, Guangdong Provincial Key Laboratory High Technology for Plant Protection, Guangzhou, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Li Y, Zhang R, Wu Y, Wu Q, Jiang Q, Ma J, Zhang Y, Qi P, Chen G, Jiang Y, Zheng Y, Wei Y, Xu Q. TaRBP1 stabilizes TaGLTP and negatively regulates stripe rust resistance in wheat. MOLECULAR PLANT PATHOLOGY 2023; 24:1205-1219. [PMID: 37306522 PMCID: PMC10502812 DOI: 10.1111/mpp.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
The dynamic balance and distribution of sphingolipid metabolites modulate the level of programmed cell death and plant defence. However, current knowledge is still limited regarding the molecular mechanism underlying the relationship between sphingolipid metabolism and plant defence. In this study, we identified a wheat RNA-binding protein 1 (TaRBP1) and TaRBP1 mRNA accumulation significantly decreased in wheat after infection by Puccinia striiformis f. sp. tritici (Pst). Knockdown of TaRBP1 via virus-induced gene silencing conferred strong resistance to Pst by enhancing host plant reactive oxygen species (ROS) accumulation and cell death, indicating that TaRBP1 may act as a negative regulator in response to Pst. TaRBP1 formed a homopolymer and interacted with TaRBP1 C-terminus in plants. Additionally, TaRBP1 physically interacted with TaGLTP, a sphingosine transfer protein. Knockdown of TaGLTP enhanced wheat resistance to the virulent Pst CYR31. Sphingolipid metabolites showed a significant accumulation in TaGLTP-silenced wheat and TaRBP1-silenced wheat, respectively. In the presence of the TaRBP1 protein, TaGLTP failed to be degraded in a 26S proteasome-dependent manner in plants. Our results reveal a novel susceptible mechanism by which a plant fine-tunes its defence responses by stabilizing TaGLTP accumulation to suppress ROS and sphingolipid accumulation during Pst infection.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Rongrong Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Yu Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Qin Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| |
Collapse
|
3
|
Prasad P, Jain N, Chaudhary J, Thakur RK, Savadi S, Bhardwaj SC, Gangwar OP, Lata C, Adhikari S, Kumar S, Balyan HS, Gupta PK. Candidate effectors for leaf rust resistance gene Lr28 identified through transcriptome and in-silico analysis. Front Microbiol 2023; 14:1143703. [PMID: 37789861 PMCID: PMC10543267 DOI: 10.3389/fmicb.2023.1143703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/31/2023] [Indexed: 10/05/2023] Open
Abstract
Puccinia spp. causing rust diseases in wheat and other cereals secrete several specialized effector proteins into host cells. Characterization of these proteins and their interaction with host's R proteins could greatly help to limit crop losses due to diseases. Prediction of effector proteins by combining the transcriptome analysis and multiple in-silico approaches is gaining importance in revealing the pathogenic mechanism. The present study involved identification of 13 Puccinia triticina (Pt) coding sequences (CDSs), through transcriptome analysis, that were differentially expressed during wheat-leaf rust interaction; and prediction of their effector like features using different in-silico tools. NCBI-BLAST and pathogen-host interaction BLAST (PHI-BLAST) tools were used to annotate and classify these sequences based on their most closely matched counterpart in both the databases. Homology between CDSs and the annotated sequences in the NCBI database ranged from 79 to 94% and with putative effectors of other plant pathogens in PHI-BLAST from 24.46 to 54.35%. Nine of the 13 CDSs had effector-like features according to EffectorP 3.0 (≥0.546 probability of these sequences to be effector). The qRT-PCR expression analysis revealed that the relative expression of all CDSs in compatible interaction (HD2329) was maximum at 11 days post inoculation (dpi) and that in incompatible interactions (HD2329 + Lr28) was maximum at 3 dpi in seven and 9 dpi in five CDSs. These results suggest that six CDSs (>0.8 effector probability as per EffectorP 3.0) could be considered as putative Pt effectors. The molecular docking and MD simulation analysis of these six CDSs suggested that candidate Lr28 protein binds more strongly to candidate effector c14094_g1_i1 to form more stable complex than the remaining five. Further functional characterization of these six candidate effectors should prove useful for a better understanding of wheat-leaf rust interaction. In turn, this should facilitate effector-based leaf rust resistance breeding in wheat.
Collapse
Affiliation(s)
- Pramod Prasad
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Rajni Kant Thakur
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | | | | | - Om Prakash Gangwar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Charu Lata
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Sneha Adhikari
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Subodh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| |
Collapse
|
4
|
Padilla-Roji I, Ruiz-Jiménez L, Bakhat N, Vielba-Fernández A, Pérez-García A, Fernández-Ortuño D. RNAi Technology: A New Path for the Research and Management of Obligate Biotrophic Phytopathogenic Fungi. Int J Mol Sci 2023; 24:ijms24109082. [PMID: 37240427 DOI: 10.3390/ijms24109082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Powdery mildew and rust fungi are major agricultural problems affecting many economically important crops and causing significant yield losses. These fungi are obligate biotrophic parasites that are completely dependent on their hosts for growth and reproduction. Biotrophy in these fungi is determined by the presence of haustoria, specialized fungal cells that are responsible for nutrient uptake and molecular dialogue with the host, a fact that undoubtedly complicates their study under laboratory conditions, especially in terms of genetic manipulation. RNA interference (RNAi) is the biological process of suppressing the expression of a target gene through double-stranded RNA that induces mRNA degradation. RNAi technology has revolutionized the study of these obligate biotrophic fungi by enabling the analysis of gene function in these fungal. More importantly, RNAi technology has opened new perspectives for the management of powdery mildew and rust diseases, first through the stable expression of RNAi constructs in transgenic plants and, more recently, through the non-transgenic approach called spray-induced gene silencing (SIGS). In this review, the impact of RNAi technology on the research and management of powdery mildew and rust fungi will be addressed.
Collapse
Affiliation(s)
- Isabel Padilla-Roji
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Laura Ruiz-Jiménez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Nisrine Bakhat
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Alejandra Vielba-Fernández
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Alejandro Pérez-García
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Dolores Fernández-Ortuño
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| |
Collapse
|
5
|
Mapuranga J, Chang J, Zhang L, Zhang N, Yang W. Fungal Secondary Metabolites and Small RNAs Enhance Pathogenicity during Plant-Fungal Pathogen Interactions. J Fungi (Basel) 2022; 9:4. [PMID: 36675825 PMCID: PMC9862911 DOI: 10.3390/jof9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Fungal plant pathogens use proteinaceous effectors as well as newly identified secondary metabolites (SMs) and small non-coding RNA (sRNA) effectors to manipulate the host plant's defense system via diverse plant cell compartments, distinct organelles, and many host genes. However, most molecular studies of plant-fungal interactions have focused on secreted effector proteins without exploring the possibly equivalent functions performed by fungal (SMs) and sRNAs, which are collectively known as "non-proteinaceous effectors". Fungal SMs have been shown to be generated throughout the plant colonization process, particularly in the early biotrophic stages of infection. The fungal repertoire of non-proteinaceous effectors has been broadened by the discovery of fungal sRNAs that specifically target plant genes involved in resistance and defense responses. Many RNAs, particularly sRNAs involved in gene silencing, have been shown to transmit bidirectionally between fungal pathogens and their hosts. However, there are no clear functional approaches to study the role of these SM and sRNA effectors. Undoubtedly, fungal SM and sRNA effectors are now a treasured land to seek. Therefore, understanding the role of fungal SM and sRNA effectors may provide insights into the infection process and identification of the interacting host genes that are targeted by these effectors. This review discusses the role of fungal SMs and sRNAs during plant-fungal interactions. It will also focus on the translocation of sRNA effectors across kingdoms, the application of cross-kingdom RNA interference in managing plant diseases and the tools that can be used to predict and study these non-proteinaceous effectors.
Collapse
Affiliation(s)
| | | | | | | | - Wenxiang Yang
- College of Plant Protection, Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
6
|
Shao Z, Huang L, Zhang Y, Qiang S, Song X. Transgene Was Silenced in Hybrids between Transgenic Herbicide-Resistant Crops and Their Wild Relatives Utilizing Alien Chromosomes. PLANTS (BASEL, SWITZERLAND) 2022; 11:3187. [PMID: 36501227 PMCID: PMC9741405 DOI: 10.3390/plants11233187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The commercialization of transgenic herbicide-resistant (HR) crops may cause gene flow risk. If a transgene in progenies of transgenic crops and wild relatives is silencing, these progenies should be killed by the target herbicide, thus, the gene flow risk could be decreased. We obtained the progenies of backcross generations between wild Brassca juncea (AABB, 2n = 36) and glufosinate-resistant transgenic Brassica napus (AACC, 2n = 38, PAT gene located on the C-chromosome). They carried the HR gene but did not express it normally, i.e., gene silencing occurred. Meanwhile, six to nine methylation sites were found on the promoter of PAT in transgene-silencing progenies, while no methylation sites occurred on that in transgene-expressing progenies. In addition, transgene expressing and silencing backcross progenies showed similar fitness with wild Brassica juncea. In conclusion, we elaborate on the occurrence of transgene-silencing event in backcross progenies between transgenic crop utilizing alien chromosomes and their wild relatives, and the DNA methylation of the transgene promoter was an important factor leading to gene silencing. The insertion site of the transgene could be considered a strategy to reduce the ecological risk of transgenic crops, and applied to cultivate lower gene flow HR crops in the future.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoling Song
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (L.H.); (Y.Z.); (S.Q.)
| |
Collapse
|
7
|
Wu N, Ozketen AC, Cheng Y, Jiang W, Zhou X, Zhao X, Guan Y, Xiang Z, Akkaya MS. Puccinia striiformis f. sp. tritici effectors in wheat immune responses. FRONTIERS IN PLANT SCIENCE 2022; 13:1012216. [PMID: 36420019 PMCID: PMC9677129 DOI: 10.3389/fpls.2022.1012216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The obligate biotrophic fungus Puccinia striiformis f. sp. tritici, which causes yellow (stripe) rust disease, is among the leading biological agents resulting in tremendous yield losses on global wheat productions per annum. The combatting strategies include, but are not limited to, fungicide applications and the development of resistant cultivars. However, evolutionary pressure drives rapid changes, especially in its "effectorome" repertoire, thus allowing pathogens to evade and breach resistance. The extracellular and intracellular effectors, predominantly secreted proteins, are tactical arsenals aiming for many defense processes of plants. Hence, the identity of the effectors and the molecular mechanisms of the interactions between the effectors and the plant immune system have long been targeted in research. The obligate biotrophic nature of P. striiformis f. sp. tritici and the challenging nature of its host, the wheat, impede research on this topic. Next-generation sequencing and novel prediction algorithms in bioinformatics, which are accompanied by in vitro and in vivo validation approaches, offer a speedy pace for the discovery of new effectors and investigations of their biological functions. Here, we briefly review recent findings exploring the roles of P. striiformis f. sp. tritici effectors together with their cellular/subcellular localizations, host responses, and interactors. The current status and the challenges will be discussed. We hope that the overall work will provide a broader view of where we stand and a reference point to compare and evaluate new findings.
Collapse
Affiliation(s)
- Nan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | | | - Yu Cheng
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wanqing Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xuan Zhou
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xinran Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yaorong Guan
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Zhaoxia Xiang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Mahinur S. Akkaya
- School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
8
|
Host-induced gene silencing of PcCesA3 and PcOSBP1 confers resistance to Phytophthora capsici in Nicotiana benthamiana through NbDCL3 and NbDCL4 processed small interfering RNAs. Int J Biol Macromol 2022; 222:1665-1675. [PMID: 36167102 DOI: 10.1016/j.ijbiomac.2022.09.178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022]
Abstract
Host-induced gene silencing (HIGS) is a RNA-based system depend on the biological macromolecules generated in plants to control diseases. However, the effector proteins active in the HIGS are uncertain, which impedes its further application, especially for oomycete that lack efficient HIGS targets. Phytophthora capsici is an important oomycete causes blight in over 70 crops. Here, we comprehensively screened efficient HIGS vectors targeting PcCesA3 or PcOSBP1 in P. capsici to better control it and explore the characteristics of efficient HIGS vectors. Among the 26 vectors with different lengths and structures, we found that hairpin vectors with a 70 nt loop and ~ 500 bp stem showed the highest control efficacy, with the expressing of the screened vectors, the infection and fertility of P. capsici were greatly inhibited in transgenic Nicotiana benthamiana. Based on these efficient vectors, we demonstrated that the amount of HIGS vector generated small interfering RNAs (siRNAs) was positively related to gene silencing efficiency and resistance, and that NbDCL3 and NbDCL4 were the key effectors producing siRNAs. This work discovers the principles for efficient HIGS vectors design, and elucidates the molecular mechanism of HIGS, which could benefit the control of many other plant diseases based on HIGS.
Collapse
|
9
|
Ray P, Sahu D, Aminedi R, Chandran D. Concepts and considerations for enhancing RNAi efficiency in phytopathogenic fungi for RNAi-based crop protection using nanocarrier-mediated dsRNA delivery systems. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:977502. [PMID: 37746174 PMCID: PMC10512274 DOI: 10.3389/ffunb.2022.977502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/19/2022] [Indexed: 09/26/2023]
Abstract
Existing, emerging, and reemerging strains of phytopathogenic fungi pose a significant threat to agricultural productivity globally. This risk is further exacerbated by the lack of resistance source(s) in plants or a breakdown of resistance by pathogens through co-evolution. In recent years, attenuation of essential pathogen gene(s) via double-stranded (ds) RNA-mediated RNA interference (RNAi) in host plants, a phenomenon known as host-induced gene silencing, has gained significant attention as a way to combat pathogen attack. Yet, due to biosafety concerns regarding transgenics, country-specific GMO legislation has limited the practical application of desirable attributes in plants. The topical application of dsRNA/siRNA targeting essential fungal gene(s) through spray-induced gene silencing (SIGS) on host plants has opened up a transgene-free avenue for crop protection. However, several factors influence the outcome of RNAi, including but not limited to RNAi mechanism in plant/fungi, dsRNA/siRNA uptake efficiency, dsRNA/siRNA design parameters, dsRNA stability and delivery strategy, off-target effects, etc. This review emphasizes the significance of these factors and suggests appropriate measures to consider while designing in silico and in vitro experiments for successful RNAi in open-field conditions. We also highlight prospective nanoparticles as smart delivery vehicles for deploying RNAi molecules in plant systems for long-term crop protection and ecosystem compatibility. Lastly, we provide specific directions for future investigations that focus on blending nanotechnology and RNAi-based fungal control for practical applications.
Collapse
Affiliation(s)
- Poonam Ray
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Debashish Sahu
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Raghavendra Aminedi
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Divya Chandran
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
10
|
A Rapid and Efficient Method for Isolation and Transformation of Cotton Callus Protoplast. Int J Mol Sci 2022; 23:ijms23158368. [PMID: 35955501 PMCID: PMC9368834 DOI: 10.3390/ijms23158368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Protoplasts, which lack cell walls, are ideal research materials for genetic engineering. They are commonly employed in fusion (they can be used for more distant somatic cell fusion to obtain somatic hybrids), genetic transformation, plant regeneration, and other applications. Cotton is grown throughout the world and is the most economically important crop globally. It is therefore critical to study successful extraction and transformation efficiency of cotton protoplasts. In the present study, a cotton callus protoplast extraction method was tested to optimize the ratio of enzymes (cellulase, pectinase, macerozyme R-10, and hemicellulase) used in the procedure. The optimized ratio significantly increased the quantity and activity of protoplasts extracted. We showed that when enzyme concentrations of 1.5% cellulase and 1.5% pectinase, and either 1.5% or 0.5% macerozyme and 0.5% hemicellulase were used, one can obtain increasingly stable protoplasts. We successfully obtained fluorescent protoplasts by transiently expressing fluorescent proteins in the isolated protoplasts. The protoplasts were determined to be suitable for use in further experimental studies. We also studied the influence of plasmid concentration and transformation time on protoplast transformation efficiency. When the plasmid concentration reaches 16 µg and the transformation time is controlled within 12–16 h, the best transformation efficiency can be obtained. In summary, this study presents efficient extraction and transformation techniques for cotton protoplasts.
Collapse
|
11
|
Mapuranga J, Zhang N, Zhang L, Chang J, Yang W. Infection Strategies and Pathogenicity of Biotrophic Plant Fungal Pathogens. Front Microbiol 2022; 13:799396. [PMID: 35722337 PMCID: PMC9201565 DOI: 10.3389/fmicb.2022.799396] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/19/2022] [Indexed: 01/01/2023] Open
Abstract
Biotrophic plant pathogenic fungi are widely distributed and are among the most damaging pathogenic organisms of agriculturally important crops responsible for significant losses in quality and yield. However, the pathogenesis of obligate parasitic pathogenic microorganisms is still under investigation because they cannot reproduce and complete their life cycle on an artificial medium. The successful lifestyle of biotrophic fungal pathogens depends on their ability to secrete effector proteins to manipulate or evade plant defense response. By integrating genomics, transcriptomics, and effectoromics, insights into how the adaptation of biotrophic plant fungal pathogens adapt to their host populations can be gained. Efficient tools to decipher the precise molecular mechanisms of rust–plant interactions, and standardized routines in genomics and functional pipelines have been established and will pave the way for comparative studies. Deciphering fungal pathogenesis not only allows us to better understand how fungal pathogens infect host plants but also provides valuable information for plant diseases control, including new strategies to prevent, delay, or inhibit fungal development. Our review provides a comprehensive overview of the efforts that have been made to decipher the effector proteins of biotrophic fungal pathogens and demonstrates how rapidly research in the field of obligate biotrophy has progressed.
Collapse
|
12
|
Hao X, Song S, Zhong Q, Hajano JUD, Guo J, Wu Y. Rescue of an Infectious cDNA Clone of Barley Yellow Dwarf Virus-GAV. PHYTOPATHOLOGY 2021; 111:2383-2391. [PMID: 33961494 DOI: 10.1094/phyto-11-20-0522-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Barley yellow dwarf virus-GAV (BYDV-GAV) is one of the most prevalent viruses causing yellow dwarf disease in wheat in China. The biology and pathology of BYDV-GAV are well studied; however, gene functions and molecular mechanisms of BYDV-GAV disease development are unclear because of the lack of a reverse genetics system. In this study, a full-length complementary DNA (cDNA) clone of BYDV-GAV was constructed and expressed via Agrobacterium-mediated inoculation of Nicotiana benthamiana. Virions produced by BYDV-GAV in N. benthamiana were transmitted to wheat by an aphid vector after acquisition via a sandwich feeding method. Infectivity of the cDNA clone in wheat was verified via reverse transcription PCR and western blot assays, and the recombinant virus elicited typical reddening symptoms in oats and was transmitted between wheat plants. These results confirm the production of biologically active transmissible virions. Using the BYDV-GAV infectious clone, we demonstrate that viral protein P4 was involved in cell-to-cell movement and stunting symptoms in wheat. This is the first report describing the development of an infectious full-length cDNA clone of BYDV-GAV and provides a useful tool for virus-host-vector interaction studies.
Collapse
Affiliation(s)
- Xingan Hao
- Northwest A&F University, College of Plant Protection, Yangling, Shaanxi 712100, China
| | - Shuang Song
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qinrong Zhong
- Northwest A&F University, College of Plant Protection, Yangling, Shaanxi 712100, China
| | - Jamal-U-Ddin Hajano
- Sindh Agriculture University, Faculty of Crop Protection, Department of Plant Pathology, Tandojam 70600, Pakistan
| | - Jie Guo
- Northwest A&F University, College of Plant Protection, Yangling, Shaanxi 712100, China
| | - Yunfeng Wu
- Northwest A&F University, College of Plant Protection, Yangling, Shaanxi 712100, China
| |
Collapse
|
13
|
Konovalova LN, Strelnikova SR, Zlobin NE, Kharchenko PN, Komakhin RA. Efficiency of Transient Expression in Protoplasts of Various Potato Cultivars. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821070048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Tetorya M, Rajam MV. RNAi-mediated silencing of PEX6 and GAS1 genes of Fusarium oxysporum f. sp. lycopersici confers resistance against Fusarium wilt in tomato. 3 Biotech 2021; 11:443. [PMID: 34631344 DOI: 10.1007/s13205-021-02973-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
In the present study, we have explored the potential of the RNAi mediated silencing of genes encoding peroxisomal biogenesis factor and β-1,3-glucanosyltransferase in Fusarium oxysporum f. sp. lycopersici (Fol) to confer resistance to Fusarium wilt in transgenic tomato plants. The partial gene fragments from these genes were utilized independently to generate hairpin RNAi constructs in appropriate silencing vectors and used for Agrobacterium-mediated transformation of tomato. The presence of gene-specific siRNAs was confirmed by stem-loop RT-PCR analysis of selected transgenic tomato lines. Transgenic lines expressing gene-specific dsRNA displayed enhanced resistance to Fol with delayed development of disease symptoms. The survival rate of transgenic tomato lines after fungal infection was higher as compared to that of the untransformed tomato plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02973-8.
Collapse
Affiliation(s)
- Meenakshi Tetorya
- Department of Genetics, University of Delhi-South Campus, Benito Juarez Marg, New Delhi, 110021 India
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi-South Campus, Benito Juarez Marg, New Delhi, 110021 India
| |
Collapse
|
15
|
Kaur B, Bhatia D, Mavi GS. Eighty years of gene-for-gene relationship and its applications in identification and utilization of R genes. J Genet 2021. [DOI: 10.1007/s12041-021-01300-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Biotechnological Resources to Increase Disease-Resistance by Improving Plant Immunity: A Sustainable Approach to Save Cereal Crop Production. PLANTS 2021; 10:plants10061146. [PMID: 34199861 PMCID: PMC8229257 DOI: 10.3390/plants10061146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/17/2021] [Accepted: 05/29/2021] [Indexed: 12/16/2022]
Abstract
Plant diseases are globally causing substantial losses in staple crop production, undermining the urgent goal of a 60% increase needed to meet the food demand, a task made more challenging by the climate changes. Main consequences concern the reduction of food amount and quality. Crop diseases also compromise food safety due to the presence of pesticides and/or toxins. Nowadays, biotechnology represents our best resource both for protecting crop yield and for a science-based increased sustainability in agriculture. Over the last decades, agricultural biotechnologies have made important progress based on the diffusion of new, fast and efficient technologies, offering a broad spectrum of options for understanding plant molecular mechanisms and breeding. This knowledge is accelerating the identification of key resistance traits to be rapidly and efficiently transferred and applied in crop breeding programs. This review gathers examples of how disease resistance may be implemented in cereals by exploiting a combination of basic research derived knowledge with fast and precise genetic engineering techniques. Priming and/or boosting the immune system in crops represent a sustainable, rapid and effective way to save part of the global harvest currently lost to diseases and to prevent food contamination.
Collapse
|
17
|
Effectors of Puccinia striiformis f. sp. tritici Suppressing the Pathogenic-Associated Molecular Pattern-Triggered Immune Response Were Screened by Transient Expression of Wheat Protoplasts. Int J Mol Sci 2021; 22:ijms22094985. [PMID: 34067160 PMCID: PMC8125866 DOI: 10.3390/ijms22094985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
Puccinia striiformis f. sp. tritici (Pst) is an important pathogen of wheat (Triticum aestivum L.) stripe rust, and the effector protein secreted by haustoria is a very important component involved in the pathogenic process. Although the candidate effector proteins secreted by Pst haustoria have been predicted to be abundant, few have been functionally validated. Our study confirmed that chitin and flg22 could be used as elicitors of the pathogenic-associated molecular pattern-triggered immune (PTI) reaction in wheat leaves and that TaPr-1-14 could be used as a marker gene to detect the PTI reaction. In addition, the experimental results were consistent in wheat protoplasts. A rapid and efficient method for screening and identifying the effector proteins of Pst was established by using the wheat protoplast transient expression system. Thirty-nine Pst haustorial effector genes were successfully cloned and screened for expression in the protoplast. We identified three haustorial effector proteins, PSEC2, PSEC17, and PSEC45, that may inhibit the response of wheat to PTI. These proteins are localized in the somatic cytoplasm and nucleus of wheat protoplasts and are highly expressed during the infection and parasitism of wheat.
Collapse
|
18
|
Arya SK, Singh S, Upadhyay SK, Tiwari V, Saxena G, Verma PC. RNAi-based gene silencing in Phenacoccus solenopsis and its validation by in planta expression of a double-stranded RNA. PEST MANAGEMENT SCIENCE 2021; 77:1796-1805. [PMID: 33270964 DOI: 10.1002/ps.6204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cotton is a cash crop majorly affected by many hemipteran pests, among them the cotton mealybug, Phenacoccus solenopsis. Cotton mealybug attack has a devastating effect on cotton production and causes huge yield losses. RESULTS In this study, 25 potential RNA interference (RNAi) target genes were selected from the iBeetle database and a transcriptome data set for P. solenopsis. To assess the effectiveness of the selected target genes, three methods were utilized to deliver double-stranded (ds)RNA (ingestion, artificial diet bioassay and transient gene silencing). dsRNA molecules at different concentrations were fed to insects and insect mortality was recorded for each target gene. Based on the mortality data, three genes, Krüppel homologue-1, ADP-ATP/Translocase and IDGF-1, were selected for further gene expression studies using a reduced concentration of dsRNA (5 μg/ml). Of the three genes, Krüppel homologue-1 showed significantly downregulated expression (by 70.81% and 84.33%) at two different time points (8 and 14 days). An RNAi silencing construct was designed for Krüppel homologue-1 under control of the double enhancer CamV35S promoter in the plant binary vector. Significant downregulation of gene expression, by 66.69% and 81.80%, was found for Krüppel homologue-1 using transient gene silencing at the same time intervals. CONCLUSION This work provides the first evidence for targeting the Krüppel homologue-1 gene in a hemipteran pest, P. solenopsis, using RNAi technology through oral delivery and in planta-based transient gene silencing methods. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Surjeet Kumar Arya
- Plant Molecular Biology and Genetic Engineering Department, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow, India
| | - Sanchita Singh
- Plant Molecular Biology and Genetic Engineering Department, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Department of Botany, Lucknow University, Lucknow, Uttar Pradesh, 226007, India
| | | | - Vipin Tiwari
- Plant Molecular Biology and Genetic Engineering Department, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Gauri Saxena
- Department of Botany, Lucknow University, Lucknow, Uttar Pradesh, 226007, India
- Department of Botany, Panjab University, Chandigarh, India
| | - Praveen C Verma
- Plant Molecular Biology and Genetic Engineering Department, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
19
|
RNA Interference Strategies for Future Management of Plant Pathogenic Fungi: Prospects and Challenges. PLANTS 2021; 10:plants10040650. [PMID: 33805521 PMCID: PMC8067263 DOI: 10.3390/plants10040650] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Plant pathogenic fungi are the largest group of disease-causing agents on crop plants and represent a persistent and significant threat to agriculture worldwide. Conventional approaches based on the use of pesticides raise social concern for the impact on the environment and human health and alternative control methods are urgently needed. The rapid improvement and extensive implementation of RNA interference (RNAi) technology for various model and non-model organisms has provided the initial framework to adapt this post-transcriptional gene silencing technology for the management of fungal pathogens. Recent studies showed that the exogenous application of double-stranded RNA (dsRNA) molecules on plants targeting fungal growth and virulence-related genes provided disease attenuation of pathogens like Botrytis cinerea, Sclerotinia sclerotiorum and Fusarium graminearum in different hosts. Such results highlight that the exogenous RNAi holds great potential for RNAi-mediated plant pathogenic fungal disease control. Production of dsRNA can be possible by using either in-vitro or in-vivo synthesis. In this review, we describe exogenous RNAi involved in plant pathogenic fungi and discuss dsRNA production, formulation, and RNAi delivery methods. Potential challenges that are faced while developing a RNAi strategy for fungal pathogens, such as off-target and epigenetic effects, with their possible solutions are also discussed.
Collapse
|
20
|
Oelmüller R. Threat at One End of the Plant: What Travels to Inform the Other Parts? Int J Mol Sci 2021; 22:3152. [PMID: 33808792 PMCID: PMC8003533 DOI: 10.3390/ijms22063152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Adaptation and response to environmental changes require dynamic and fast information distribution within the plant body. If one part of a plant is exposed to stress, attacked by other organisms or exposed to any other kind of threat, the information travels to neighboring organs and even neighboring plants and activates appropriate responses. The information flow is mediated by fast-traveling small metabolites, hormones, proteins/peptides, RNAs or volatiles. Electric and hydraulic waves also participate in signal propagation. The signaling molecules move from one cell to the neighboring cell, via the plasmodesmata, through the apoplast, within the vascular tissue or-as volatiles-through the air. A threat-specific response in a systemic tissue probably requires a combination of different traveling compounds. The propagating signals must travel over long distances and multiple barriers, and the signal intensity declines with increasing distance. This requires permanent amplification processes, feedback loops and cross-talks among the different traveling molecules and probably a short-term memory, to refresh the propagation process. Recent studies show that volatiles activate defense responses in systemic tissues but also play important roles in the maintenance of the propagation of traveling signals within the plant. The distal organs can respond immediately to the systemic signals or memorize the threat information and respond faster and stronger when they are exposed again to the same or even another threat. Transmission and storage of information is accompanied by loss of specificity about the threat that activated the process. I summarize our knowledge about the proposed long-distance traveling compounds and discuss their possible connections.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
21
|
Mahto BK, Singh A, Pareek M, Rajam MV, Dhar-Ray S, Reddy PM. Host-induced silencing of the Colletotrichum gloeosporioides conidial morphology 1 gene (CgCOM1) confers resistance against Anthracnose disease in chilli and tomato. PLANT MOLECULAR BIOLOGY 2020; 104:381-395. [PMID: 32803478 DOI: 10.1007/s11103-020-01046-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/06/2020] [Indexed: 05/22/2023]
Abstract
Host mediated silencing of COM1 gene of Colletotrichum gloeosporioides disables appressorial differentiation and effectively prevents the development of Anthracnose disease in chilli and tomato. Anthracnose disease is caused by the ascomycetes fungal species Colletotrichum, which is responsible for heavy yield losses in chilli and tomato worldwide. Conventionally, harmful pesticides are used to contain anthracnose disease with limited success. In this study, we assessed the potential of Host-Induced Gene Silencing (HIGS) approach to target the Colletotrichum gloeosporioides COM1 (CgCOM1) developmental gene involved in the fungal conidial and appressorium formation, to restrict fungal infection in chilli and tomato fruits. For this study, we have developed stable transgenic lines of chilli and tomato expressing CgCOM1-RNAi construct employing Agrobacterium-mediated transformation. Transgenic plants were characterized by molecular and gene expression analyses. Production of specific CgCOM1 siRNA in transgenic chilli and tomato RNAi lines was confirmed by stem-loop RT-PCR. Fungal challenge assays on leaves and fruits showed that the transgenic lines were resistant to anthracnose disease-causing C. gloeosporioides in comparison to wild type and empty-vector control plants. RT-qPCR analyses in transgenic lines revealed extremely low abundance of CgCOM1 transcripts in the C. gloeosporioides infected tissues, indicating near complete silencing of CgCOM1 gene expression in the pathogen. Microscopic examination of the Cg-challenged leaves of chilli-CgCOM1i lines revealed highly suppressed conidial germination, germ tube development, appressoria formation and mycelial growth of C. gloeosporioides, resulting in reduced infection of plant tissues. These results demonstrated highly efficient use of HIGS in silencing the expression of essential fungal developmental genes to inhibit the growth of pathogenic fungi, thus providing a highly precise approach to arrest the spread of disease.
Collapse
Affiliation(s)
- Binod Kumar Mahto
- TERI School of Advanced Studies, 10 Institutional Area, New Delhi, 110070, India
- The Energy and Resources Institute, Lodi Road, New Delhi, 110003, India
| | - Anjulata Singh
- TERI School of Advanced Studies, 10 Institutional Area, New Delhi, 110070, India
- The Energy and Resources Institute, Lodi Road, New Delhi, 110003, India
| | - Manish Pareek
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Manchikatla V Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | | - Pallavolu M Reddy
- The Energy and Resources Institute, Lodi Road, New Delhi, 110003, India.
| |
Collapse
|
22
|
Xu Q, Wang J, Zhao J, Xu J, Sun S, Zhang H, Wu J, Tang C, Kang Z, Wang X. A polysaccharide deacetylase from Puccinia striiformis f. sp. tritici is an important pathogenicity gene that suppresses plant immunity. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1830-1842. [PMID: 31981296 PMCID: PMC7336287 DOI: 10.1111/pbi.13345] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/20/2020] [Indexed: 05/22/2023]
Abstract
The cell wall of filamentous fungi, comprised of chitin, polysaccharide and glycoproteins, maintains the integrity of hyphae and protect them from defence responses by potential host plants. Here, we report that one polysaccharide deacetylase of Puccinia striiformis f. sp. tritici (Pst), Pst_13661, suppresses Bax-induced cell death in plants and Pst_13661 is highly induced during early stages of the interaction between wheat and Pst. Importantly, the transgenic wheat expressing the RNA interference (RNAi) construct of Pst_13661 exhibits high resistance to major Pst epidemic races CYR31, CYR32 and CYR33 by inhibiting growth and development of Pst, indicating that Pst_13661 is an available pathogenicity factor and is a potential target for generating broad-spectrum resistance breeding material of wheat. It forms a homo-polymer and has high affinity for chitin and germ tubes of Pst compared with the control. Besides, Pst_13661 suppresses chitin-induced plant defence in plants. Hence, we infer that Pst_13661 may modify the fungal cell wall to prevent recognition by apoplastic surveillance systems in plants. This study opens new approaches for developing durable disease-resistant germplasm by disturbing the growth and development of fungi and develops novel strategies to control crop diseases.
Collapse
Affiliation(s)
- Qiang Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jinren Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jinghua Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Shutian Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Huifei Zhang
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTai’anShandongChina
| | - JiaJie Wu
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTai’anShandongChina
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
23
|
Zhang Q, Zhang X, Zhuang R, Wei Z, Shu W, Wang X, Kang Z. TaRac6 Is a Potential Susceptibility Factor by Regulating the ROS Burst Negatively in the Wheat- Puccinia striiformis f. sp. tritici Interaction. FRONTIERS IN PLANT SCIENCE 2020; 11:716. [PMID: 32695124 PMCID: PMC7338558 DOI: 10.3389/fpls.2020.00716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/06/2020] [Indexed: 05/30/2023]
Abstract
Rac/Rop proteins play important roles in the regulation of cell growth and plant defense responses. However, the function of Rac/Rop proteins in wheat remains largely unknown. In this study, a small G protein gene, designated as TaRac6, was characterized from wheat (Triticum aestivum) in response to Puccinia striiformis f. sp. tritici (Pst) and was found to be highly homologous to the Rac proteins identified in other plant species. Transient expression analyses of the TaRac6-GFP fusion protein in Nicotiana benthamiana leaves showed that TaRac6 was localized in the whole cell. Furthermore, transient expression of TaRac6 inhibited Bax-triggered plant cell death (PCD) in N. benthamiana. Transcript accumulation of TaRac6 was increased at 24 h post-inoculation (hpi) in the compatible interaction between wheat and Pst, while it was not induced in an incompatible interaction. More importantly, silencing of TaRac6 by virus induced gene silencing (VIGS) enhanced the resistance of wheat (Suwon 11) to Pst (CYR31) by producing fewer uredinia. Histological observations revealed that the hypha growth of Pst was markedly inhibited along with more H2O2 generated in the TaRac6-silenced leaves in response to Pst. Moreover, transcript levels of TaCAT were significantly down-regulated, while those of TaSOD and TaNOX were significantly up-regulated. These results suggest that TaRac6 functions as a potential susceptibility factor, which negatively regulate the reactive oxygen species (ROS) burst in the wheat-Pst interaction.
Collapse
Affiliation(s)
- Qiong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xinmei Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Rui Zhuang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zetong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Weixue Shu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
24
|
Wang X, Che MZ, Khalil HB, McCallum BD, Bakkeren G, Rampitsch C, Saville BJ. The role of reactive oxygen species in the virulence of wheat leaf rust fungus Puccinia triticina. Environ Microbiol 2020; 22:2956-2967. [PMID: 32390310 PMCID: PMC7496513 DOI: 10.1111/1462-2920.15063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species (ROS) play an important role during host–pathogen interactions and are often an indication of induced host defence responses. In this study, we demonstrate for the first time that Puccinia triticina (Pt) generates ROS, including superoxide, H2O2 and hydroxyl radicals, during wheat infection. Through pharmacological inhibition, we found that ROS are critical for both Pt urediniospore germination and pathogenic development on wheat. A comparative RNA‐Seq analysis of different stages of Pt infection process revealed 291 putative Pt genes associated with the oxidation–reduction process. Thirty‐seven of these genes encode known proteins. The expressions of five Pt genes, including PtNoxA, PtNoxB, PtNoxR, PtCat and PtSod, were subsequently verified using RT‐qPCR analysis. The results show that the expressions of PtNoxA, PtNoxB, PtNoxR, PtCat and PtSod are up‐regulated during urediniospore germination. In comparison, the expressions of PtNoxA, PtNoxB, PtNoxR and PtCat are down‐regulated during wheat infection from 12 to 120 h after inoculation (HAI), whereas the expression of PtSod is up‐regulated with a peak of expression at 120 HAI. We conclude that ROS are critical for the full virulence of Pt and a coordinate down‐regulation of PtNox genes may be important for successful infection in wheat.
Collapse
Affiliation(s)
- Xiben Wang
- Morden Research & Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, Manitoba, R6M 1Y5, Canada
| | - Mingzhe Z Che
- Morden Research & Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, Manitoba, R6M 1Y5, Canada.,Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, No. 2 Yuan Ming Yuan West Road, People's Republic of China
| | - Hala B Khalil
- Summerland Research & Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, V0H 1Z0, Canada.,Department of Genetics, Faculty of Agriculture, Ain Shams University, 68 Hadayek Shoubra, Postal code, Cairo, 11241, Egypt
| | - Brent D McCallum
- Morden Research & Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, Manitoba, R6M 1Y5, Canada
| | - Guus Bakkeren
- Summerland Research & Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, V0H 1Z0, Canada
| | - Christof Rampitsch
- Morden Research & Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, Manitoba, R6M 1Y5, Canada
| | - Barry J Saville
- Forensic Science Program Trent University, Peterborough, Ontario, K9J 7B8, Canada
| |
Collapse
|
25
|
Wei J, Cui L, Zhang N, Du D, Meng Q, Yan H, Liu D, Yang W. Puccinia triticina pathotypes THTT and THTS display complex transcript profiles on wheat cultivar Thatcher. BMC Genet 2020; 21:48. [PMID: 32345220 PMCID: PMC7189582 DOI: 10.1186/s12863-020-00851-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/01/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wheat leaf rust is an important disease worldwide. Understanding the pathogenic molecular mechanism of Puccinia triticina Eriks. (Pt) and the inconstant toxic region is critical for managing the disease. The present study aimed to analyze the pathogenic divergence between Pt isolates. RESULTS Total RNA was extracted from the wheat cultivar Thatcher infected by two Pt isolates, Tc361_1 (THTT) and Tc284_2 (THTS), at 144 h post inoculation (hpi). The mRNA was then sequenced, and a total of 2784 differentially expressed genes (DEGs) were detected. Forty-five genes were specifically expressed in THTT; these genes included transcription initiation factors and genes with transmembrane transporter activity and other genes. Twenty-six genes were specifically expressed in THTS, including genes with GTPase activity, ABC transporters and other genes. Fifty-four differentially expressed candidate effectors were screened from the two isolates. Two candidate effectors were chosen and validated on tobacco, and the results showed that they could inhibit necrosis induced by BAX. qRT-PCR of 12 significant DEGs was carried out to validate that the results are similar to those of RNA-seq at 144 hpi, to show the expression levels of these DEGs in the early stage and to elucidate the differences in expression between the two Pt pathotypes. CONCLUSION The results obtained in this study showed that although the two pathotypes of THTT and THTS contribute similar virulence to wheat, there are a large number of genes participate in the interaction with the susceptible wheat cultivar Thatcher, and revealed the pathogenicity of rust is very complicated.
Collapse
Affiliation(s)
- Jie Wei
- Department of Plant Pathology, Hebei Agricultural University/Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, 071001, China
| | - Liping Cui
- Department of Plant Pathology, Hebei Agricultural University/Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, 071001, China
| | - Na Zhang
- Department of Plant Pathology, Hebei Agricultural University/Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, 071001, China
| | - Dongdong Du
- Department of Plant Pathology, Hebei Agricultural University/Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, 071001, China
| | - Qingfang Meng
- Department of Plant Pathology, Hebei Agricultural University/Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, 071001, China
| | - Hongfei Yan
- Department of Plant Pathology, Hebei Agricultural University/Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, 071001, China
| | - Daqun Liu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenxiang Yang
- Department of Plant Pathology, Hebei Agricultural University/Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, 071001, China.
| |
Collapse
|
26
|
Wang M, Dean RA. Movement of small RNAs in and between plants and fungi. MOLECULAR PLANT PATHOLOGY 2020; 21:589-601. [PMID: 32027079 PMCID: PMC7060135 DOI: 10.1111/mpp.12911] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 05/12/2023]
Abstract
RNA interference is a biological process whereby small RNAs inhibit gene expression through neutralizing targeted mRNA molecules. This process is conserved in eukaryotes. Here, recent work regarding the mechanisms of how small RNAs move within and between organisms is examined. Small RNAs can move locally and systemically in plants through plasmodesmata and phloem, respectively. In fungi, transportation of small RNAs may also be achieved by septal pores and vesicles. Recent evidence also supports bidirectional cross-kingdom communication of small RNAs between host plants and adapted fungal pathogens to affect the outcome of infection. We discuss several mechanisms for small RNA trafficking and describe evidence for transport through naked form, combined with RNA-binding proteins or enclosed by vesicles.
Collapse
Affiliation(s)
- Mengying Wang
- Fungal Genomics LaboratoryCenter for Integrated Fungal ResearchDepartment of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| | - Ralph A. Dean
- Fungal Genomics LaboratoryCenter for Integrated Fungal ResearchDepartment of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
27
|
Abstract
Among the thousands of rust species described, many are known for their devastating effects on their hosts, which include major agriculture crops and trees. Hence, for over a century, these basidiomycete pathogenic fungi have been researched and experimented with. However, due to their biotrophic nature, they are challenging organisms to work with and, needing their hosts for propagation, represent pathosystems that are not easily experimentally accessible. Indeed, efforts to perform genetics have been few and far apart for the rust fungi, though one study performed in the 1940s was famously instrumental in formulating the gene-for-gene hypothesis describing pathogen-host interactions. By taking full advantage of the molecular genetic tools developed in the 1980s, research on many plant pathogenic microbes thrived, yet similar work on the rusts remained very challenging though not without some successes. However, the genomics era brought real breakthrough research for the biotrophic fungi and with innovative experimentation and the use of heterologous systems, molecular genetic analyses over the last 2 decades have significantly advanced our insight into the function of many rust fungus genes and their role in the interaction with their hosts. This has allowed optimizing efforts for resistance breeding and the design and testing of various novel strategies to reduce the devastating diseases they cause.
Collapse
Affiliation(s)
- Guus Bakkeren
- Agriculture and Agri-Food Canada, Summerland Research & Development Centre, 4200 Hwy 97, Summerland, BC, Canada V0H 1Z0
| | - Les J Szabo
- U.S. Department of Agriculture-Agriculture Research Service, Cereal Disease Laboratory and University of Minnesota, 1551 Lindig Street, St. Paul, MN 55108, U.S.A
| |
Collapse
|
28
|
Prasad P, Savadi S, Bhardwaj SC, Gupta PK. The progress of leaf rust research in wheat. Fungal Biol 2020; 124:537-550. [PMID: 32448445 DOI: 10.1016/j.funbio.2020.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 01/25/2023]
Abstract
Leaf rust (also called brown rust) in wheat, caused by fungal pathogen Puccinia triticina Erikss. (Pt) is one of the major constraints in wheat production worldwide. Pt is widespread with diverse population structure and undergoes rapid evolution to produce new virulent races against resistant cultivars that are regularly developed to provide resistance against the prevailing races of the pathogen. Occasionally, the disease may also take the shape of an epidemic in some wheat-growing areas causing major economic losses. In the recent past, substantial progress has been made in characterizing the sources of leaf rust resistance including non-host resistance (NHR). Progress has also been made in elucidating the population biology of Pt and the mechanisms of wheat-Pt interaction. So far, ∼80 leaf rust resistance genes (Lr genes) have been identified and characterized; some of them have also been used for the development of resistant wheat cultivars. It has also been shown that a gene-for-gene relationship exists between individual wheat Lr genes and the corresponding Pt Avr genes so that no Lr gene can provide resistance unless the prevailing race of the pathogen carries the corresponding Avr gene. Several Lr genes have also been cloned and their products characterized, although no Avr gene corresponding a specific Lr gene has so far been identified. However, several candidate effectors for Pt have been identified and functionally characterized using genome-wide analyses, transcriptomics, RNA sequencing, bimolecular fluorescence complementation (BiFC), virus-induced gene silencing (VIGS), transient expression and other approaches. This review summarizes available information on different aspects of the pathogen Pt, genetics/genomics of leaf rust resistance in wheat including cloning and characterization of Lr genes and epigenetic regulation of disease resistance.
Collapse
Affiliation(s)
- Pramod Prasad
- Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Siddanna Savadi
- ICAR-Directorate of Cashew Research, Puttur, Karnataka, 574202, India
| | - S C Bhardwaj
- Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
29
|
Molecular Approaches for Analyzing Environmental Chaetomium Diversity and Exploitation of Chaetomium thermophilum for Biochemical Analyses. Fungal Biol 2020. [DOI: 10.1007/978-3-030-31612-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Koch A, Höfle L, Werner BT, Imani J, Schmidt A, Jelonek L, Kogel K. SIGS vs HIGS: a study on the efficacy of two dsRNA delivery strategies to silence Fusarium FgCYP51 genes in infected host and non-host plants. MOLECULAR PLANT PATHOLOGY 2019; 20:1636-1644. [PMID: 31603277 PMCID: PMC6859480 DOI: 10.1111/mpp.12866] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CYP3RNA, a double-stranded (ds)RNA designed to concomitantly target the two sterol 14α-demethylase genes FgCYP51A and FgCYP51B and the fungal virulence factor FgCYP51C, inhibits the growth of the ascomycete fungus Fusarium graminearum (Fg) in vitro and in planta. Here we compare two different methods (setups) of dsRNA delivery, viz. transgene expression (host-induced gene silencing, HIGS) and spray application (spray-induced gene silencing, SIGS), to assess the activity of CYP3RNA and novel dsRNA species designed to target one or two FgCYP51 genes. Using Arabidopsis and barley, we found that dsRNA designed to target two FgCYP51 genes inhibited fungal growth more efficiently than dsRNA targeting a single gene, although both dsRNA species reduced fungal infection. Either dsRNA delivery method reduced fungal growth stronger than anticipated from previous mutational knock-out (KO) strategies, where single gene KO had no significant effect on fungal viability. Consistent with the strong inhibitory effects of the dsRNAs on fungal development in both setups, we detected to a large extent dsRNA-mediated co-silencing of respective non-target FgCYP51 genes. Together, our data further support the valuation that dsRNA applications have an interesting potential for pesticide target validation and gene function studies, apart from their potential for crop protection.
Collapse
Affiliation(s)
- Aline Koch
- Institute of PhytopathologyCentre for BioSystemsLand Use and NutritionJustus Liebig UniversityHeinrich‐Buff‐Ring 26D‐35392GiessenGermany
| | - Lisa Höfle
- Institute of PhytopathologyCentre for BioSystemsLand Use and NutritionJustus Liebig UniversityHeinrich‐Buff‐Ring 26D‐35392GiessenGermany
| | - Bernhard Timo Werner
- Institute of PhytopathologyCentre for BioSystemsLand Use and NutritionJustus Liebig UniversityHeinrich‐Buff‐Ring 26D‐35392GiessenGermany
| | - Jafargholi Imani
- Institute of PhytopathologyCentre for BioSystemsLand Use and NutritionJustus Liebig UniversityHeinrich‐Buff‐Ring 26D‐35392GiessenGermany
| | - Alexandra Schmidt
- Institute of PhytopathologyCentre for BioSystemsLand Use and NutritionJustus Liebig UniversityHeinrich‐Buff‐Ring 26D‐35392GiessenGermany
| | - Lukas Jelonek
- Institute of Bioinformatics and Systems BiologyJustus Liebig UniversityHeinrich‐Buff‐Ring 58D‐35392GiessenGermany
| | - Karl‐Heinz Kogel
- Institute of PhytopathologyCentre for BioSystemsLand Use and NutritionJustus Liebig UniversityHeinrich‐Buff‐Ring 26D‐35392GiessenGermany
| |
Collapse
|
31
|
Morozov SY, Solovyev AG, Kalinina NO, Taliansky ME. Double-Stranded RNAs in Plant Protection Against Pathogenic Organisms and Viruses in Agriculture. Acta Naturae 2019; 11:13-21. [PMID: 31993231 PMCID: PMC6977960 DOI: 10.32607/20758251-2019-11-4-13-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/29/2019] [Indexed: 11/24/2022] Open
Abstract
Recent studies have shown that plants are able to express the artificial genes responsible for the synthesis of double-stranded RNAs (dsRNAs) and hairpin double-stranded RNAs (hpRNAs), as well as uptake and process exogenous dsRNAs and hpRNAs to suppress the gene expression of plant pathogenic viruses, fungi, or insects. Both endogenous and exogenous dsRNAs are processed into small interfering RNAs (siRNAs) that can spread locally and systemically through the plant, enter pathogenic microorganisms, and induce RNA interference-mediated pathogen resistance in plants. There are numerous examples of the development of new biotechnological approaches to plant protection using transgenic plants and exogenous dsRNAs. This review summarizes new data on the use of transgenes and exogenous dsRNAs for the suppression of fungal and insect virulence genes, as well as viruses to increase the resistance of plants to these pathogens. We also analyzed the current ideas about the mechanisms of dsRNA processing and transport in plants.
Collapse
Affiliation(s)
- S. Y. Morozov
- International Laboratory «Resistom», The Skolkovo Innovation Center, Moscow, 143026 Russia**
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - A. G. Solovyev
- International Laboratory «Resistom», The Skolkovo Innovation Center, Moscow, 143026 Russia**
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - N. O. Kalinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - M. E. Taliansky
- International Laboratory «Resistom», The Skolkovo Innovation Center, Moscow, 143026 Russia**
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, 117997 Russia
| |
Collapse
|
32
|
Page MT, Parry MA, Carmo‐Silva E. A high-throughput transient expression system for rice. PLANT, CELL & ENVIRONMENT 2019; 42:2057-2064. [PMID: 30938460 PMCID: PMC6618034 DOI: 10.1111/pce.13542] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 05/18/2023]
Abstract
Rice is an important global crop and represents a vital source of calories for many food insecure regions. Efforts to improve this crop by improving yield, nutritional content, stress tolerance, or resilience to climate change are certain to include biotechnological approaches, which rely on the expression of transgenes in planta. The throughput and cost of currently available transgenic expression systems is frequently incompatible with modern, high-throughput molecular cloning methods. Here, we present a protocol for isolating high yields of green rice protoplasts and for PEG-mediated transformation of isolated protoplasts. Factors affecting transformation efficiency were investigated, and the resulting protocol is fast, cheap, robust, high-throughput, and does not require specialist equipment. When coupled to a high-throughput modular cloning system such as Golden Gate, this transient expression system provides a valuable resource to help break the "design-build-test" bottleneck by permitting the rapid screening of large numbers of transgenic expression cassettes prior to stable plant transformation. We used this system to rapidly assess the expression level, subcellular localisation, and protein aggregation pattern of nine single-gene expression cassettes, which represent the essential component parts of the β-cyanobacterial carboxysome.
Collapse
Affiliation(s)
- Mike T. Page
- Lancaster Environment CentreLancaster UniversityLancasterUK
| | | | | |
Collapse
|
33
|
Prasad P, Savadi S, Bhardwaj SC, Gangwar OP, Kumar S. Rust pathogen effectors: perspectives in resistance breeding. PLANTA 2019; 250:1-22. [PMID: 30980247 DOI: 10.1007/s00425-019-03167-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Identification and functional characterization of plant pathogen effectors promise to ameliorate future research and develop effective and sustainable strategies for controlling or containing crop diseases. Wheat is the second most important food crop of the world after rice. Rust pathogens, one of the major biotic stresses in wheat production, are capable of threatening the world food security. Understanding the molecular basis of plant-pathogen interactions is essential for devising novel strategies for resistance breeding and disease management. Now, it has been established that effectors, the proteins secreted by pathogens, play a key role in plant-pathogen interactions. Therefore, effector biology has emerged as one of the most important research fields in plant biology. Recent advances in genomics and bioinformatics have allowed identification of a large repertoire of candidate effectors, while the evolving high-throughput tools have continued to assist in their functional characterization. The repertoires of effectors have become an important resource for better understanding of effector biology of pathosystems and resistance breeding of crop plants. In recent years, a significant progress has been made in the field of rust effector biology. This review describes the recent advances in effector biology of obligate fungal pathogens, identification and functional analysis of wheat rust pathogens effectors and the potential applications of effectors in molecular plant biology and rust resistance breeding in wheat.
Collapse
Affiliation(s)
- Pramod Prasad
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Siddanna Savadi
- ICAR-Directorate of Cashew Research, Puttur, Karnataka, 574202, India
| | - S C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India.
| | - O P Gangwar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Subodh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| |
Collapse
|
34
|
Lorrain C, Gonçalves Dos Santos KC, Germain H, Hecker A, Duplessis S. Advances in understanding obligate biotrophy in rust fungi. THE NEW PHYTOLOGIST 2019; 222:1190-1206. [PMID: 30554421 DOI: 10.1111/nph.15641] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/13/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 1190 I. Introduction 1190 II. Rust fungi: a diverse and serious threat to agriculture 1191 III. The different facets of rust life cycles and unresolved questions about their evolution 1191 IV. The biology of rust infection 1192 V. Rusts in the genomics era: the ever-expanding list of candidate effector genes 1195 VI. Functional characterization of rust effectors 1197 VII. Putting rusts to sleep: Pucciniales research outlooks 1201 Acknowledgements 1202 References 1202 SUMMARY: Rust fungi (Pucciniales) are the largest group of plant pathogens and represent one of the most devastating threats to agricultural crops worldwide. Despite the economic importance of these highly specialized pathogens, many aspects of their biology remain obscure, largely because rust fungi are obligate biotrophs. The rise of genomics and advances in high-throughput sequencing technology have presented new options for identifying candidate effector genes involved in pathogenicity mechanisms of rust fungi. Transcriptome analysis and integrated bioinformatics tools have led to the identification of key genetic determinants of host susceptibility to infection by rusts. Thousands of genes encoding secreted proteins highly expressed during host infection have been reported for different rust species, which represents significant potential towards understanding rust effector function. Recent high-throughput in planta expression screen approaches (effectoromics) have pushed the field ahead even further towards predicting high-priority effectors and identifying avirulence genes. These new insights into rust effector biology promise to inform future research and spur the development of effective and sustainable strategies for managing rust diseases.
Collapse
Affiliation(s)
- Cécile Lorrain
- INRA Centre Grand Est - Nancy, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Microorganismes, Champenoux, 54280, France
| | | | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Quebec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | - Arnaud Hecker
- Université de Lorraine, UMR 1136 Université de Lorraine/INRA Interactions Arbres/Microorganismes, Vandoeuvre-lès-Nancy, France
| | - Sébastien Duplessis
- INRA Centre Grand Est - Nancy, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Microorganismes, Champenoux, 54280, France
| |
Collapse
|
35
|
Evolution of Disease Defense Genes and Their Regulators in Plants. Int J Mol Sci 2019; 20:ijms20020335. [PMID: 30650550 PMCID: PMC6358896 DOI: 10.3390/ijms20020335] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Biotic stresses do damage to the growth and development of plants, and yield losses for some crops. Confronted with microbial infections, plants have evolved multiple defense mechanisms, which play important roles in the never-ending molecular arms race of plant–pathogen interactions. The complicated defense systems include pathogen-associated molecular patterns (PAMP) triggered immunity (PTI), effector triggered immunity (ETI), and the exosome-mediated cross-kingdom RNA interference (CKRI) system. Furthermore, plants have evolved a classical regulation system mediated by miRNAs to regulate these defense genes. Most of the genes/small RNAs or their regulators that involve in the defense pathways can have very rapid evolutionary rates in the longitudinal and horizontal co-evolution with pathogens. According to these internal defense mechanisms, some strategies such as molecular switch for the disease resistance genes, host-induced gene silencing (HIGS), and the new generation of RNA-based fungicides, have been developed to control multiple plant diseases. These broadly applicable new strategies by transgene or spraying ds/sRNA may lead to reduced application of pesticides and improved crop yield.
Collapse
|
36
|
Qi T, Guo J, Peng H, Liu P, Kang Z, Guo J. Host-Induced Gene Silencing: A Powerful Strategy to Control Diseases of Wheat and Barley. Int J Mol Sci 2019; 20:E206. [PMID: 30626050 PMCID: PMC6337638 DOI: 10.3390/ijms20010206] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022] Open
Abstract
Wheat and barley are the most highly produced and consumed grains in the world. Various pathogens-viruses, bacteria, fungi, insect pests, and nematode parasites-are major threats to yield and economic losses. Strategies for the management of disease control mainly depend on resistance or tolerance breeding, chemical control, and biological control. The discoveries of RNA silencing mechanisms provide a transgenic approach for disease management. Host-induced gene silencing (HIGS) employing RNA silencing mechanisms and, specifically, silencing the targets of invading pathogens, has been successfully applied in crop disease prevention. Here, we cover recent studies that indicate that HIGS is a valuable tool to protect wheat and barley from diseases in an environmentally friendly way.
Collapse
Affiliation(s)
- Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Huan Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
37
|
Zhu X, Guo J, He F, Zhang Y, Tan C, Yang Q, Huang C, Kang Z, Guo J. Silencing PsKPP4, a MAP kinase kinase kinase gene, reduces pathogenicity of the stripe rust fungus. MOLECULAR PLANT PATHOLOGY 2018; 19:2590-2602. [PMID: 30047240 PMCID: PMC6638076 DOI: 10.1111/mpp.12731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Many obligately parasitic pathogens absorb nutrients from host plants via specialized infection structures, called haustoria and infection hyphae, to further colonization and growth in the host plant. In the wheat (Triticum aestivum) stripe rust fungus, Puccinia striiformis f. sp. tritici (Pst), the mitogen-activated protein kinase kinase (MAPKK) PsFUZ7 is involved in the regulation of haustorium formation and invasive growth. Here, we functionally characterized PsKPP4 of Pst, which is homologous to the yeast MAPKKK STE11. Similar to the silencing of PsFUZ7, the knockdown of PsKPP4 was detected in the vegetative hyphae and haustoria, resulting in the reduced pathogenicity of Pst. Pst urediniospores treated with the STE11 MAPKKK activation inhibitor produced deformed germ tubes. In addition, overexpression of PsKPP4 in fission yeast resulted in the production of fusiform cells and increased tolerance of yeast cells to oxidative stress. The transformation of PsKPP4 into the mst11 mutant of Magnaporthe oryzae partially restored mst11 function. The PsKPP4 protein contains a sterile alpha motif (SAM), Ras association (RA) and kinase domains, similar to its homologues in other fungi. Yeast two-hybrid assays revealed that the SAM domain is essential for the interaction between PsKPP4 and PsUBC2, a homologue of Ustilago maydis UBC2, known to interact with KPP4, which is associated with the regulation of the Fus3 cascade. Host-induced gene silencing of PsUBC2 reduced the pathogenicity of Pst slightly, indicating that PsUBC2 also plays a minor role in the regulation of the infection pathway of Pst. These observations indicate that PsKPP4, interacting with PsUBC2, may play an important role in the regulation of infection-related morphogenesis in Pst.
Collapse
Affiliation(s)
- Xiaoguo Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYangling712100ShaanxiChina
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYangling712100ShaanxiChina
| | - Fuxin He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYangling712100ShaanxiChina
| | - Yang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYangling712100ShaanxiChina
| | - Chenglong Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYangling712100ShaanxiChina
| | - Qian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYangling712100ShaanxiChina
| | - Chuanming Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYangling712100ShaanxiChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYangling712100ShaanxiChina
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYangling712100ShaanxiChina
| |
Collapse
|
38
|
Bicalho Nogueira G, Dos Santos LV, de Queiroz CB, Ribeiro Corrêa TL, Pedrozo Menicucci R, Soares Bazzolli DM, de Araújo EF, de Queiroz MV. The histidine kinase slnCl1 of Colletotrichum lindemuthianum as a pathogenicity factor against Phaseolus vulgaris L. Microbiol Res 2018; 219:110-122. [PMID: 30642461 DOI: 10.1016/j.micres.2018.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Colletotrichum lindemuthianum, the causal agent of anthracnose, is responsible for significant damage in the common bean (Phaseolus vulgaris L.). Unraveling the genetic mechanisms involved in the plant/pathogen interaction is a powerful approach for devising efficient methods to control this disease. In the present study, we employed the Restriction Enzyme-Mediated Integration (REMI) methodology to identify the gene slnCl1, encoding a histidine kinase protein, as involved in pathogenicity. The mutant strain, MutCl1, generated by REMI, showed an insertion in the slnCl1 gene, deficiency of the production and melanization of appressoria, as well as the absence of pathogenicity on bean leaves when compared with the wild-type strain. The slnCl1 gene encodes a histidine kinase class IV called SlnCl1 showing identity of 97% and 83% with histidine kinases from Colletotrichum orbiculare and Colletotrichum gloesporioides, respectively. RNA interference was used for silencing the histidine kinase gene and confirm slnCl1 as a pathogenicity factor. Furthermore, we identified four major genes involved in the RNA interference-mediated gene silencing in Colletotrichum spp. and demonstrated the functionality of this process in C. lindemuthianum. Silencing of the EGFP reporter gene and slnCl1 were demonstrated using qPCR. This work reports for the first time the isolation and characterization of a HK in C. lindemuthianum and the occurrence of gene silencing mediated by RNA interference in this organism, demonstrating its potential use in the functional characterization of pathogenicity genes.
Collapse
Affiliation(s)
- Guilherme Bicalho Nogueira
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
| | - Leandro Vieira Dos Santos
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil; Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Casley Borges de Queiroz
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
| | - Thamy Lívia Ribeiro Corrêa
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil; Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Renato Pedrozo Menicucci
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
| | - Denise Mara Soares Bazzolli
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
| | - Elza Fernandes de Araújo
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
| | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil.
| |
Collapse
|
39
|
Rincão MP, de Carvalho MCDCG, Nascimento LC, Lopes-Caitar VS, de Carvalho K, Darben LM, Yokoyama A, Carazzolle MF, Abdelnoor RV, Marcelino-Guimarães FC. New insights into Phakopsora pachyrhizi infection based on transcriptome analysis in planta. Genet Mol Biol 2018; 41:671-691. [PMID: 30235396 PMCID: PMC6136362 DOI: 10.1590/1678-4685-gmb-2017-0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/02/2018] [Indexed: 11/30/2022] Open
Abstract
Asian soybean rust (ASR) is one of the most destructive diseases affecting soybeans. The causative agent of ASR, the fungus Phakopsora pachyrhizi, presents characteristics that make it difficult to study in vitro, limiting our knowledge of plant-pathogen dynamics. Therefore, this work used leaf lesion laser microdissection associated with deep sequencing to determine the pathogen transcriptome during compatible and incompatible interactions with soybean. The 36,350 generated unisequences provided an overview of the main genes and biological pathways that were active in the fungus during the infection cycle. We also identified the most expressed transcripts, including sequences similar to other fungal virulence and signaling proteins. Enriched P. pachyrhizi transcripts in the resistant (PI561356) soybean genotype were related to extracellular matrix organization and metabolic signaling pathways and, among infection structures, in amino acid metabolism and intracellular transport. Unisequences were further grouped into gene families along predicted sequences from 15 other fungi and oomycetes, including rust fungi, allowing the identification of conserved multigenic families, as well as being specific to P. pachyrhizi. The results revealed important biological processes observed in P. pachyrhizi, contributing with information related to fungal biology and, consequently, a better understanding of ASR.
Collapse
Affiliation(s)
- Michelle Pires Rincão
- Programa de Pós-Graduação em Genétiva e Biologia Molecular, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, PR, Brazil
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
| | | | - Leandro Costa Nascimento
- Laboratory of Genomics and Expression (LGE), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | - Valéria S. Lopes-Caitar
- Programa de Pós-Graduação em Genétiva e Biologia Molecular, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, PR, Brazil
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
| | - Kenia de Carvalho
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
| | - Luana M. Darben
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
| | - Alessandra Yokoyama
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratory of Genomics and Expression (LGE), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | | | | |
Collapse
|
40
|
Sperschneider J, Dodds PN, Gardiner DM, Singh KB, Taylor JM. Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0. MOLECULAR PLANT PATHOLOGY 2018; 19:2094-2110. [PMID: 29569316 PMCID: PMC6638006 DOI: 10.1111/mpp.12682] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 05/14/2023]
Abstract
Plant-pathogenic fungi secrete effector proteins to facilitate infection. We describe extensive improvements to EffectorP, the first machine learning classifier for fungal effector prediction. EffectorP 2.0 is now trained on a larger set of effectors and utilizes a different approach based on an ensemble of classifiers trained on different subsets of negative data, offering different views on classification. EffectorP 2.0 achieves an accuracy of 89%, compared with 82% for EffectorP 1.0 and 59.8% for a small size classifier. Important features for effector prediction appear to be protein size, protein net charge as well as the amino acids serine and cysteine. EffectorP 2.0 decreases the number of predicted effectors in secretomes of fungal plant symbionts and saprophytes by 40% when compared with EffectorP 1.0. However, EffectorP 1.0 retains value, and combining EffectorP 1.0 and 2.0 results in a stringent classifier with a low false positive rate of 9%. EffectorP 2.0 predicts significant enrichments of effectors in 12 of 13 sets of infection-induced proteins from diverse fungal pathogens, whereas a small cysteine-rich classifier detects enrichment in only seven of 13. EffectorP 2.0 will fast track the prioritization of high-confidence effector candidates for functional validation and aid in improving our understanding of effector biology. EffectorP 2.0 is available at http://effectorp.csiro.au.
Collapse
Affiliation(s)
- Jana Sperschneider
- Centre for Environment and Life Sciences, CSIRO Agriculture and FoodPerth, WA 6014Australia
| | - Peter N. Dodds
- Black Mountain Laboratories, CSIRO Agriculture and FoodCanberra, ACT 2601Australia
| | - Donald M. Gardiner
- CSIRO Agriculture and FoodQueensland Bioscience PrecinctBrisbane, Qld 4067Australia
| | - Karam B. Singh
- Centre for Environment and Life Sciences, CSIRO Agriculture and FoodPerth, WA 6014Australia
- Department of Environment and Agriculture, Centre for Crop and Disease ManagementCurtin UniversityBentley, WA 6102Australia
| | - Jennifer M. Taylor
- Black Mountain Laboratories, CSIRO Agriculture and FoodCanberra, ACT 2601Australia
| |
Collapse
|
41
|
Panwar V, Jordan M, McCallum B, Bakkeren G. Host-induced silencing of essential genes in Puccinia triticina through transgenic expression of RNAi sequences reduces severity of leaf rust infection in wheat. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1013-1023. [PMID: 28941315 PMCID: PMC5902777 DOI: 10.1111/pbi.12845] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/18/2017] [Accepted: 09/20/2017] [Indexed: 05/05/2023]
Abstract
Leaf rust, caused by the pathogenic fungus Puccinia triticina (Pt), is one of the most serious biotic threats to sustainable wheat production worldwide. This obligate biotrophic pathogen is prevalent worldwide and is known for rapid adaptive evolution to overcome resistant wheat varieties. Novel disease control approaches are therefore required to minimize the yield losses caused by Pt. Having shown previously the potential of host-delivered RNA interference (HD-RNAi) in functional screening of Pt genes involved in pathogenesis, we here evaluated the use of this technology in transgenic wheat plants as a method to achieve protection against wheat leaf rust (WLR) infection. Stable expression of hairpin RNAi constructs with sequence homology to Pt MAP-kinase (PtMAPK1) or a cyclophilin (PtCYC1) encoding gene in susceptible wheat plants showed efficient silencing of the corresponding genes in the interacting fungus resulting in disease resistance throughout the T2 generation. Inhibition of Pt proliferation in transgenic lines by in planta-induced RNAi was associated with significant reduction in target fungal transcript abundance and reduced fungal biomass accumulation in highly resistant plants. Disease protection was correlated with the presence of siRNA molecules specific to targeted fungal genes in the transgenic lines harbouring the complementary HD-RNAi construct. This work demonstrates that generating transgenic wheat plants expressing RNAi-inducing transgenes to silence essential genes in rust fungi can provide effective disease resistance, thus opening an alternative way for developing rust-resistant crops.
Collapse
Affiliation(s)
- Vinay Panwar
- Agriculture and Agri‐Food CanadaMorden Research and Development CentreMordenMBCanada
- Agriculture and Agri‐Food CanadaSummerland Research and Development CentreSummerlandBCCanada
| | - Mark Jordan
- Agriculture and Agri‐Food CanadaMorden Research and Development CentreMordenMBCanada
| | - Brent McCallum
- Agriculture and Agri‐Food CanadaMorden Research and Development CentreMordenMBCanada
| | - Guus Bakkeren
- Agriculture and Agri‐Food CanadaSummerland Research and Development CentreSummerlandBCCanada
| |
Collapse
|
42
|
Qi T, Zhu X, Tan C, Liu P, Guo J, Kang Z, Guo J. Host-induced gene silencing of an important pathogenicity factor PsCPK1 in Puccinia striiformis f. sp. tritici enhances resistance of wheat to stripe rust. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:797-807. [PMID: 28881438 PMCID: PMC5814584 DOI: 10.1111/pbi.12829] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/13/2017] [Accepted: 08/23/2017] [Indexed: 05/18/2023]
Abstract
Rust fungi are devastating plant pathogens and cause a large economic impact on wheat production worldwide. To overcome this rapid loss of resistance in varieties, we generated stable transgenic wheat plants expressing short interfering RNAs (siRNAs) targeting potentially vital genes of Puccinia striiformis f. sp. tritici (Pst). Protein kinase A (PKA) has been proved to play important roles in regulating the virulence of phytopathogenic fungi. PsCPK1, a PKA catalytic subunit gene from Pst, is highly induced at the early infection stage of Pst. The instantaneous silencing of PsCPK1 by barley stripe mosaic virus (BSMV)-mediated host-induced gene silencing (HIGS) results in a significant reduction in the length of infection hyphae and disease phenotype. These results indicate that PsCPK1 is an important pathogenicity factor by regulating Pst growth and development. Two transgenic lines expressing the RNA interference (RNAi) construct in a normally susceptible wheat cultivar displayed high levels of stable and consistent resistance to Pst throughout the T3 to T4 generations. The presence of the interfering RNAs in transgenic wheat plants was confirmed by northern blotting, and these RNAs were found to efficiently down-regulate PsCPK1 expression in wheat. This study addresses important aspects for the development of fungal-derived resistance through the expression of silencing constructs in host plants as a powerful strategy to control cereal rust diseases.
Collapse
Affiliation(s)
- Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaoguo Zhu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Chenlong Tan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
43
|
Zhao M, Wang J, Ji S, Chen Z, Xu J, Tang C, Chen S, Kang Z, Wang X. Candidate Effector Pst_8713 Impairs the Plant Immunity and Contributes to Virulence of Puccinia striiformis f. sp. tritici. FRONTIERS IN PLANT SCIENCE 2018; 9:1294. [PMID: 30254653 PMCID: PMC6141802 DOI: 10.3389/fpls.2018.01294] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/17/2018] [Indexed: 05/20/2023]
Abstract
Puccinia striiformis f. sp. tritici (Pst), the causal agent of stripe rust, is an obligate biotrophic pathogen responsible for severe wheat disease epidemics worldwide. Pst and other rust fungi are acknowledged to deliver many effector proteins to the host, but little is known about the effectors' functions. Here, we report a candidate effector Pst_8713 isolated based on the genome data of CY32 and the expression of Pst_8713 is highly induced during the early infection stage. The Pst_8713 gene shows a low level of intra-species polymorphism. It has a functional N-terminal signal peptide and its product was found in the host cytoplasm and nucleus. Co-infiltrations in Nicotiana benthamiana demonsrated that Pst_8713 was capable of suppressing cell death triggered by mouse pro-apoptotic protein-BAX or Phytophthora infestans PAMP-INF1. Overexpression of Pst_8713 in plants suppressed pattern-triggered immunity (PTI) -associated callose deposition and expression of PTI-associated marker genes and promoted bacterial growth in planta. Effector-triggered immunity (ETI) induced by an avirulent Pst isolate was weakened when we overexpressed Pst_8713 in wheat leaves which accompanied by reduction of reactive oxygen species (ROS) accumulation and hypersensitive response (HR). In addition, the host induced gene silencing (HIGS) experiment showed that knockdown of Pst_8713 weakened the virulence of Pst by producing fewer uredinia. These results indicated that candidate effector Pst_8713 is involved in plant defense suppression and contributes to enhancing the Pst virulence.
Collapse
|
44
|
Yin C, Hulbert SH. Host-Induced Gene Silencing (HIGS) for Elucidating Puccinia Gene Function in Wheat. Methods Mol Biol 2018; 1848:139-150. [PMID: 30182235 DOI: 10.1007/978-1-4939-8724-5_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biotrophic fungi (Puccinia spp.) cause devastating diseases of wheat and other cereal species globally. The function of large repertories of genes from Puccinia spp. still needs to be discovered to understand the infection process of these obligate parasites, eventually to protect plants from rust diseases. Functional analysis of targeted genes is challenging due to the inherent difficulties with culturing the fungus and transforming the host. RNA interference (RNAi) is a conserved gene regulation process in eukaryotes and known to be a powerful genetic tool in plant biotechnology. More recently, host-induced gene silencing (HIGS) has been developed to assess pathogen gene function in plants. HIGS is an RNAi-based process where double stranded RNA (dsRNA) homologous to a pathogen gene can be expressed in a plant to induce targeted silencing of the pathogen gene. Here we described a detailed HIGS protocol for functional analysis of rust genes from Puccinia species in cereals. As an example we describe an experiment silencing the tryptophan 2-monooxygenase gene (Pgt-IaaM) from Puccinia graminis f. sp. tritici (Pgt) that is involved in virulence to wheat.
Collapse
Affiliation(s)
- Chuntao Yin
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Scot H Hulbert
- Department of Plant Pathology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
45
|
Abstract
The comprehension of fungal biology is important for several reasons. Besides being used in biotechnological processes and in the food industry, fungi are also important animal and vegetal pathogens. Fungal diseases in humans have a great importance worldwide, and understanding fungal biology is crucial for treatment and prevention of these diseases, especially because of emerging antifungal resistance that poses great epidemiological risks. Communication through extracellular vesicles is a ubiquitous mechanism of molecule transfer between cells and is used to transport proteins, nucleic acids, lipids, and other biologically active molecules. Several pathogens can produce and transfer extracellular vesicles, and the importance of this pathway in fungal communication with hosts and between fungal cells has been described for several species in the last years, as shown for Saccharomyces cereviseae, Cryptococcus neoformans, Candida albicans, Paracoccidioides braziliensis, Sporothrix schenckii, Candida parapsilosis, Malassezia sympodialis, Histoplasma capsulatum, among others. In this chapter, we review the role of extracellular vesicles in fungal communication, interaction with hosts and with the environment, and also highlighting important molecules found in fungal EVs.
Collapse
|
46
|
Wang B, Song N, Zhang Q, Wang N, Kang Z. TaMAPK4 Acts as a Positive Regulator in Defense of Wheat Stripe-Rust Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:152. [PMID: 29527215 PMCID: PMC5829626 DOI: 10.3389/fpls.2018.00152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Highly conserved mitogen-activated protein kinase (MAPK) cascades regulate numerous plant processes, including hormonal responses, stress, and innate immunity. In this research, TaMAPK4 was predicted to be a target of tae-miR164. We verified the binding and suppression of TaMAPK4 by co-expression in Nicotiana benthamiana. Moreover, we found TaMAPK4 was localized in the cytoplasm and nucleus using transient expression analyses. TaMAPK4 transcripts increased following salicylic acid (SA) treatment and when host plants were infected with an avirulent race of the stripe-rust pathogen. Silencing of TaMAPK4 by virus-induced gene silencing permitted increased colonization by the avirulent pathogen race. Detailed histological results showed increased Puccinia striiformis (Pst) hyphal length, hyphal branches, and infection uredinial size compared to the non-silenced control. SA accumulation and the transcript levels of TaPR1, TaPR2, and TaPR5 were significantly down-regulated in TaMAPK4 knockdown plants. Overall, these results suggest that TaMAPK4 plays an important role in signaling during the wheat-Pst interaction. These results present new insights into MAPK signaling in wheat defense to rust pathogen.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Na Song
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qiong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ning Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
- *Correspondence: Zhensheng Kang,
| |
Collapse
|
47
|
Jiao M, Yu D, Tan C, Guo J, Lan D, Han E, Qi T, Voegele RT, Kang Z, Guo J. Basidiomycete-specific PsCaMKL1 encoding a CaMK-like protein kinase is required for full virulence of Puccinia striiformis f. sp. tritici. Environ Microbiol 2017; 19:4177-4189. [PMID: 28805296 DOI: 10.1111/1462-2920.13881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 11/29/2022]
Abstract
Calcium/calmodulin-dependent kinases (CaMKs) are Ser/Thr protein kinases (PKs) that respond to changes in cytosolic free Ca2+ and play diverse roles in eukaryotes. In fungi, CAMKs are generally classified into four families CAMK1, CAMKL, RAD53 and CAMK-Unique. Among these, CAMKL constitutes the largest family. In some fungal plant pathogens, members of the CaMKL family have been shown to be responsible for pathogenesis. However, little is known about their role(s) in rust fungi. In this study, we functionally characterized a novel PK gene, PsCaMKL1, from Puccinia striiformis f. sp. tritici (Pst). PsCaMKL1 belongs to a group of PKs that is evolutionarily specific to basidiomyceteous fungi. PsCaMKL1 shows little intra-species polymorphism between Pst isolates. PsCaMKL1 transcripts are highly elevated at early infection stages, whereas gene expression is downregulated in barely germinated urediospores under KN93 treatment. Overexpression of PsCaMKL1 in fission yeast increased resistance to environmental stresses. Knock down of PsCaMKL1 using host-induced gene silencing (HIGS) reduced the virulence of Pst accompanied by reactive oxygen species (ROS) accumulation and a hypersensitive response. These results suggest that PsCaMKL1 is a novel pathogenicity factor that exerts it virulence function by regulating ROS production in wheat.
Collapse
Affiliation(s)
- Min Jiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Dan Yu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Chenglong Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Dingyun Lan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ershang Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ralf Thomas Voegele
- Faculty of Agricultural Sciences, Department of Phytopathology, Institute of Phytomedicine, University of Hohenheim, Stuttgart 70599, Germany
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
48
|
Tiwari IM, Jesuraj A, Kamboj R, Devanna BN, Botella JR, Sharma TR. Host Delivered RNAi, an efficient approach to increase rice resistance to sheath blight pathogen (Rhizoctonia solani). Sci Rep 2017; 7:7521. [PMID: 28790353 PMCID: PMC5548729 DOI: 10.1038/s41598-017-07749-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/04/2017] [Indexed: 01/10/2023] Open
Abstract
Rhizoctonia solani, the causal agent of rice sheath blight disease, causes significant losses worldwide as there are no cultivars providing absolute resistance to this fungal pathogen. We have used Host Delivered RNA Interference (HD-RNAi) technology to target two PATHOGENICITY MAP KINASE 1 (PMK1) homologues, RPMK1-1 and RPMK1-2, from R. solani using a hybrid RNAi construct. PMK1 homologues in other fungal pathogens are essential for the formation of appressorium, the fungal infection structures required for penetration of the plant cuticle, as well as invasive growth once inside the plant tissues and overall viability of the pathogen within the plant. Evaluation of transgenic rice lines revealed a significant decrease in fungal infection levels compared to non-transformed controls and the observed delay in disease symptoms was further confirmed through microscopic studies. Relative expression levels of the targeted genes, RPMK1-1 and RPMK1-2, were determined in R. solani infecting either transgenic or control lines with significantly lower levels observed in R. solani infecting transgenic lines carrying the HD-RNAi constructs. This is the first report demonstrating the effectiveness of HD-RNAi against sheath blight and offers new opportunities for durable control of the disease as it does not rely on resistance conferred by major resistance genes.
Collapse
Affiliation(s)
- Ila Mukul Tiwari
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Arun Jesuraj
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Richa Kamboj
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - B N Devanna
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Jose R Botella
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - T R Sharma
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India, 160071.
| |
Collapse
|
49
|
Wang B, Sun Y, Song N, Zhao M, Liu R, Feng H, Wang X, Kang Z. Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. THE NEW PHYTOLOGIST 2017; 215:338-350. [PMID: 28464281 DOI: 10.1111/nph.14577] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/16/2017] [Indexed: 05/22/2023]
Abstract
Small RNAs (sRNAs), an important type of pathogenicity factor, contribute to impairing host immune responses. However, little is known about sRNAs in Puccinia striiformis f. sp. tritici (Pst), one of the most destructive pathogens of wheat (Triticum aestivum L.). Here, we report a novel microRNA-like RNA (milRNA) from Pst termed microRNA-like RNA 1 (Pst-milR1), which suppresses wheat defenses during wheat-Pst interactions. We identified Pst-milR1 as a novel milRNA in Pst. Biological prediction and co-transformation showed that Pst-milR1 takes part in cross-kingdom RNA interference (RNAi) events by binding the wheat pathogenesis-related 2 (PR2) gene. Silencing of the Pst-milR1 precursor resulted in increased wheat resistance to the virulent Pst isolate CYR31. PR2 knock-down plants increased the susceptibility of wheat to the avirulent Pst isolate CYR23. This suggests that Pst-milR1 represses the plant immune response by suppressing the expression of PR2. Taking our findings together, we postulate that Pst-milR1 is an important pathogenicity factor in Pst, which acts as an effector to suppress host immunity. Our results provide significant new insights into the pathogenicity of the stripe rust pathogen.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanfei Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Na Song
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Mengxin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Rui Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| |
Collapse
|
50
|
Marshall J, Qiao X, Baumbach J, Xie J, Dong L, Bhattacharyya MK. Microfluidic device enabled quantitative time-lapse microscopic-photography for phenotyping vegetative and reproductive phases in Fusarium virguliforme, which is pathogenic to soybean. Sci Rep 2017; 7:44365. [PMID: 28295054 PMCID: PMC5353701 DOI: 10.1038/srep44365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/02/2017] [Indexed: 11/08/2022] Open
Abstract
Time-lapse microscopic-photography allows in-depth phenotyping of microorganisms. Here we report development of such a system using a microfluidic device, generated from polydimethylsiloxane and glass slide, placed on a motorized stage of a microscope for conducting time-lapse microphotography of multiple observations in 20 channels simultaneously. We have demonstrated the utility of the device in studying growth, germination and sporulation in Fusarium virguliforme that causes sudden death syndrome in soybean. To measure the growth differences, we developed a polyamine oxidase fvpo1 mutant in this fungus that fails to grow in minimal medium containing polyamines as the sole nitrogen source. Using this system, we demonstrated that the conidiospores of the pathogen take an average of five hours to germinate. During sporulation, it takes an average of 10.5 h for a conidiospore to mature and get detached from its conidiophore for the first time. Conidiospores are developed in a single conidiophore one after another. The microfluidic device enabled quantitative time-lapse microphotography reported here should be suitable for screening compounds, peptides, micro-organisms to identify fungitoxic or antimicrobial agents for controlling serious plant pathogens. The device could also be applied in identifying suitable target genes for host-induced gene silencing in pathogens for generating novel disease resistance in crop plants.
Collapse
Affiliation(s)
- Jill Marshall
- G303 Agronomy Hall, Iowa State University, Ames, IA 50011-1010, USA
| | - Xuan Qiao
- 2115 Coover Hall, Iowa State University, Ames, IA 50011-1010, USA
| | - Jordan Baumbach
- G303 Agronomy Hall, Iowa State University, Ames, IA 50011-1010, USA
| | - Jingyu Xie
- 2115 Coover Hall, Iowa State University, Ames, IA 50011-1010, USA
| | - Liang Dong
- 2115 Coover Hall, Iowa State University, Ames, IA 50011-1010, USA
| | | |
Collapse
|