1
|
Palaniswamy R, Kambale R, Mohanavel V, Rajagopalan VR, Manickam S, Muthurajan R. Identifying molecular targets for modulating carotenoid accumulation in rice grains. Biochem Biophys Rep 2024; 40:101815. [PMID: 39290348 PMCID: PMC11406064 DOI: 10.1016/j.bbrep.2024.101815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Carotenoids are potential antioxidants offering extensive human health benefits including protection against chronic diseases. Augmenting the supply of health-benefiting compounds/metabolites through dietary supplements is the most sustainable way for a healthy life. Our study compares the traditional rice cultivar Kavuni and the white rice variety ASD 16. RNA-Seq analysis was carried out in the maturing panicles of Kavuni, which are enriched with antioxidants such as the therapeutic carotenoid lutein, polyphenols, and anthocyanins, along with "ASD 16", a popularly eaten white rice variety, to elucidate the molecular networks regulating accumulation of health benefiting compounds. Systematic analysis of transcriptome data identified preferential up-regulation of carotenoid precursors (OsDXS, OsGGPS) and key carotenoid biosynthetic genes (OsPSY1, OsZ-ISO) in the maturing grains of Kavuni. Our study also identified enhanced expression of OsLYC-E, OsCYP97A, and OsCYP97C transcripts involved in the alpha-carotenoid biosynthetic pathway and thereby leading to elevated lutein content in the grains of Kavuni. Kavuni grains showed preferential down-regulation of negative regulators of carotenoid metabolism viz., AP2 and HY5 and preferential up-regulation of positive modulators of carotenoid metabolism viz., Orange, OsDjB7, and OsSET29, thus creating a favorable molecular framework for carotenoid accumulation. Our study has unearthed valuable gene control points for precise manipulation of carotenoid profiles through CRISPR-based gene editing in rice grains. Perturbation of carotenoid biosynthesis holds unprecedented potential for the rapid development of the next generation of 'Golden rice'.
Collapse
Affiliation(s)
- Rakshana Palaniswamy
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Rohit Kambale
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Vignesh Mohanavel
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Veera Ranjani Rajagopalan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sudha Manickam
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
2
|
Villwock SS, Li L, Jannink JL. Carotenoid-carbohydrate crosstalk: evidence for genetic and physiological interactions in storage tissues across crop species. THE NEW PHYTOLOGIST 2024; 244:1709-1722. [PMID: 39400352 DOI: 10.1111/nph.20196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024]
Abstract
Carotenoids play essential roles in photosynthesis, photoprotection, and human health. Efforts to increase carotenoid content in several staple crops have been successful through both conventional selection and genetic engineering methods. Interestingly, in some cases, altering carotenoid content has had unexpected effects on other aspects of plant metabolism, impacting traits like sugar content, dry matter percentage, fatty acid content, stress tolerance, and phytohormone concentrations. Studies across several diverse crop species have identified negative correlations between carotenoid and starch contents, as well as positive correlations between carotenoids and soluble sugars. Collectively, these reports suggest a metabolic interaction between carotenoids and carbohydrates. We synthesize evidence pointing to four hypothesized mechanisms: (1) direct competition for precursors; (2) physical interactions in plastids; (3) influences of sugar or apocarotenoid signaling networks; and (4) nonmechanistic population or statistical sources of correlations. Though the carotenoid biosynthesis pathway is well understood, the regulation and interactions of carotenoids, especially in nonphotosynthetic tissues, remain unclear. This topic represents an underexplored interplay between primary and secondary metabolism where further research is needed.
Collapse
Affiliation(s)
- Seren S Villwock
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - Li Li
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Plant, Soil and Nutrition Laboratory, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Jean-Luc Jannink
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Plant, Soil and Nutrition Laboratory, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| |
Collapse
|
3
|
Li JW, Zhou P, Deng YJ, Hu ZH, Li XH, Chen X, Xiong AS, Zhuang J. Overexpressing CsPSY1 Gene of Tea Plant, Encoding a Phytoene Synthase, Improves α-Carotene and β-Carotene Contents in Carrot. Mol Biotechnol 2024; 66:3311-3322. [PMID: 37897587 DOI: 10.1007/s12033-023-00942-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023]
Abstract
Tea plants (Camellia sinensis (L.) O. Kuntze) belong to Theaceae family, in the section Thea. Tea plants are widely distributed in subtropical and tropical regions in the word. α-carotene and β-carotene in the tea leaves belong to carotenoids, which are associated with the aroma and color of the tea. Phytoene synthase (PSY) is a rate-limiting enzyme in carotenoids biosynthesis. We identified three CsPSY genes in 'Shuchazao', named CsPSY1, CsPSY2, and CsPSY3. Structural analysis of three CsPSY genes showed that CsPSY1 had a longer intro structure. The cis-acting elements of CsPSYs promoter were mainly associated with light-responsiveness, abiotic stress-responsiveness, and hormone-responsiveness. CsPSY1 exhibited expression in all tissues of the tea plants, whereas CsPSY2 and CsPSY3 were trace expression levels in all tissues. The positive expression of CsPSY1 under hormonal and abiotic stresses suggested its role in plant development and defense responses. The amino acid sequence of CsPSY1 was highly conserved in eight tea cultivars. The recombinant vector pCAMBIA1301-CsPSY1 was constructed to stabilize the overexpression of CsPSY1 in carrot. The contents of α-carotene and β-carotene in transgenic carrot callus were significantly increased. This study provides a foundational basis for further research on the function of CsPSYs and carotenoids accumulation in tea plants.
Collapse
Affiliation(s)
- Jing-Wen Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Zhou
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan-Jie Deng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Sobrino-Mengual G, Alvarez D, Twyman RM, Gerrish C, Fraser PD, Capell T, Christou P. Activation of the native PHYTOENE SYNTHASE 1 promoter by modifying near-miss cis-acting elements induces carotenoid biosynthesis in embryogenic rice callus. PLANT CELL REPORTS 2024; 43:118. [PMID: 38632121 PMCID: PMC11024007 DOI: 10.1007/s00299-024-03199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
KEY MESSAGE Modification of silent latent endosperm-enabled promoters (SLEEPERs) allows the ectopic activation of non-expressed metabolic genes in rice callus Metabolic engineering in plants typically involves transgene expression or the mutation of endogenous genes. An alternative is promoter modification, where small changes in the promoter sequence allow genes to be switched on or off in particular tissues. To activate silent genes in rice endosperm, we screened native promoters for near-miss cis-acting elements that can be converted to endosperm-active regulatory motifs. We chose rice PHYTOENE SYNTHASE 1 (PSY1), encoding the enzyme responsible for the first committed step in the carotenoid biosynthesis pathway, because it is not expressed in rice endosperm. We identified six motifs within a 120-bp region, upstream of the transcriptional start site, which differed from endosperm-active elements by up to four nucleotides. We mutated four motifs to match functional elements in the endosperm-active BCH2 promoter, and this promoter was able to drive GFP expression in callus and in seeds of regenerated plants. The 4 M promoter was not sufficient to drive PSY1 expression, so we mutated the remaining two elements and used the resulting 6 M promoter to drive PSY1 expression in combination with a PDS transgene. This resulted in deep orange callus tissue indicating the accumulation of carotenoids, which was subsequently confirmed by targeted metabolomics analysis. PSY1 expression driven by the uncorrected or 4 M variants of the promoter plus a PDS transgene produced callus that lacked carotenoids. These results confirm that the adjustment of promoter elements can facilitate the ectopic activation of endogenous plant promoters in rice callus and endosperm and most likely in other tissues and plant species.
Collapse
Affiliation(s)
- Guillermo Sobrino-Mengual
- Applied Plant Biotechnology Group, Department of Agricultural and Forest Sciences and Engineering, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Derry Alvarez
- Applied Plant Biotechnology Group, Department of Agricultural and Forest Sciences and Engineering, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, BioActives Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Christopher Gerrish
- Department of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Teresa Capell
- Applied Plant Biotechnology Group, Department of Agricultural and Forest Sciences and Engineering, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Paul Christou
- Applied Plant Biotechnology Group, Department of Agricultural and Forest Sciences and Engineering, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain.
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
5
|
Zhou X, Sun T, Owens L, Yang Y, Fish T, Wrightstone E, Lui A, Yuan H, Chayut N, Burger J, Tadmor Y, Thannhauser T, Guo W, Cheng L, Li L. Carotenoid sequestration protein FIBRILLIN participates in CmOR-regulated β-carotene accumulation in melon. PLANT PHYSIOLOGY 2023; 193:643-660. [PMID: 37233026 DOI: 10.1093/plphys/kiad312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Chromoplasts are plant organelles with a unique ability to sequester and store massive carotenoids. Chromoplasts have been hypothesized to enable high levels of carotenoid accumulation due to enhanced sequestration ability or sequestration substructure formation. However, the regulators that control the substructure component accumulation and substructure formation in chromoplasts remain unknown. In melon (Cucumis melo) fruit, β-carotene accumulation in chromoplasts is governed by ORANGE (OR), a key regulator for carotenoid accumulation in chromoplasts. By using comparative proteomic analysis of a high β-carotene melon variety and its isogenic line low-β mutant that is defective in CmOr with impaired chromoplast formation, we identified carotenoid sequestration protein FIBRILLIN1 (CmFBN1) as differentially expressed. CmFBN1 expresses highly in melon fruit tissue. Overexpression of CmFBN1 in transgenic Arabidopsis (Arabidopsis thaliana) containing ORHis that genetically mimics CmOr significantly enhances carotenoid accumulation, demonstrating its involvement in CmOR-induced carotenoid accumulation. Both in vitro and in vivo evidence showed that CmOR physically interacts with CmFBN1. Such an interaction occurs in plastoglobules and results in promoting CmFBN1 accumulation. CmOR greatly stabilizes CmFBN1, which stimulates plastoglobule proliferation and subsequently carotenoid accumulation in chromoplasts. Our findings show that CmOR directly regulates CmFBN1 protein levels and suggest a fundamental role of CmFBN1 in facilitating plastoglobule proliferation for carotenoid sequestration. This study also reveals an important genetic tool to further enhance OR-induced carotenoid accumulation in chromoplasts in crops.
Collapse
Affiliation(s)
- Xuesong Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Lauren Owens
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Emalee Wrightstone
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Andy Lui
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Noam Chayut
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Joseph Burger
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
| | - Yaakov Tadmor
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
| | - Theodore Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Niaz M, Zhang B, Zhang Y, Yan X, Yuan M, Cheng Y, Lv G, Fadlalla T, Zhao L, Sun C, Chen F. Genetic and molecular basis of carotenoid metabolism in cereals. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:63. [PMID: 36939900 DOI: 10.1007/s00122-023-04336-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Carotenoids are vital pigments for higher plants and play a crucial function in photosynthesis and photoprotection. Carotenoids are precursors of vitamin A synthesis and contribute to human nutrition and health. However, cereal grain endosperm contains a minor carotenoid measure and a scarce supply of provitamin A content. Therefore, improving the carotenoids in cereal grain is of major importance. Carotenoid content is governed by multiple candidate genes with their additive effects. Studies on genes related to carotenoid metabolism in cereals would increase the knowledge of potential metabolic steps of carotenoids and enhance the quality of crop plants. Recognizing the metabolism and carotenoid accumulation in various staple cereal crops over the last few decades has broadened our perspective on the interdisciplinary regulation of carotenogenesis. Meanwhile, the amelioration in metabolic engineering approaches has been exploited to step up the level of carotenoid and valuable industrial metabolites in many crops, but wheat is still considerable in this matter. In this study, we present a comprehensive overview of the consequences of biosynthetic and catabolic genes on carotenoid biosynthesis, current improvements in regulatory disciplines of carotenogenesis, and metabolic engineering of carotenoids. A panoptic and deeper understanding of the regulatory mechanisms of carotenoid metabolism and genetic manipulation (genome selection and gene editing) will be useful in improving the carotenoid content of cereals.
Collapse
Affiliation(s)
- Mohsin Niaz
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Bingyang Zhang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Yixiao Zhang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Xiangning Yan
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Minjie Yuan
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - YongZhen Cheng
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Guoguo Lv
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Tarig Fadlalla
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Faculty of Agriculture, Nile valley University, Atbara, 346, Sudan
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China.
| |
Collapse
|
7
|
Kim HK, Kim JY, Kim JH, Go JY, Jung YS, Lee HJ, Ahn MJ, Yu J, Bae S, Kim HS, Kwak SS, Kim MS, Cho YG, Jung YJ, Kang KK. Biochemical Characterization of Orange-Colored Rice Calli Induced by Target Mutagenesis of OsOr Gene. PLANTS (BASEL, SWITZERLAND) 2022; 12:56. [PMID: 36616184 PMCID: PMC9823629 DOI: 10.3390/plants12010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
We generated an orange-colored (OC) rice callus line by targeted mutagenesis of the orange gene (OsOr) using the CRISPR-Cas9 system. The OC line accumulated more lutein, β-carotene, and two β-carotene isomers compared to the WT callus line. We also analyzed the expression levels of carotenoid biosynthesis genes by qRT-PCR. Among the genes encoding carotenoid metabolic pathway enzymes, the number of transcripts of the PSY2, PSY3, PDS, ZDS and β-LCY genes were higher in the OC line than in the WT line. In contrast, transcription of the ε-LCY gene was downregulated in the OC line compared to the WT line. In addition, we detected increases in the transcript levels of two genes involved in carotenoid oxidation in the OC lines. The developed OC lines also showed increased tolerance to salt stress. Collectively, these findings indicate that targeted mutagenesis of the OsOr gene via CRISPR/Cas9-mediated genome editing results in β-carotene accumulation in rice calli. Accordingly, we believe that this type of genome-editing technology could represent an effective alternative approach for enhancing the β-carotene content of plants.
Collapse
Affiliation(s)
- Hee Kyoung Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jin Young Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jong Hee Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Ji Yun Go
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Yoo-Seob Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Hyo Ju Lee
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jihyeon Yu
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sangsu Bae
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Me-Sun Kim
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yong-Gu Cho
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yu Jin Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| | - Kwon Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| |
Collapse
|
8
|
Mapping and Validation of BrGOLDEN: A Dominant Gene Regulating Carotenoid Accumulation in Brassica rapa. Int J Mol Sci 2022; 23:ijms232012442. [PMID: 36293299 PMCID: PMC9603932 DOI: 10.3390/ijms232012442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022] Open
Abstract
In plants, the accumulation of carotenoids can maintain the balance of the photosystem and improve crop nutritional quality. Therefore, the molecular mechanisms underlying carotenoid synthesis and accumulation should be further explored. In this study, carotenoid accumulation differed significantly among parental Brassica rapa. Genetic analysis was carried out using the golden inner leaf ‘1900264′ line and the light−yellow inner leaf ‘1900262′ line, showing that the golden inner leaf phenotype was controlled by a single dominant gene. Using bulked−segregant analysis sequencing, BraA09g007080.3C encoding the ORANGE protein was selected as a candidate gene. Sequence alignment revealed that a 4.67 kb long terminal repeat insertion in the third exon of the BrGOLDEN resulted in three alternatively spliced transcripts. The spatiotemporal expression results indicated that BrGOLDEN might regulate the expression levels of carotenoid−synthesis−related genes. After transforming BrGOLDEN into Arabidopsis thaliana, the seed−derived callus showed that BrGOLDENIns and BrGOLDENDel lines presented a yellow color and the BrGOLDENLdel line presented a transparent phenotype. In addition, using the yeast two−hybrid assay, BrGOLDENIns, BrGOLDENLdel, and Brgoldenwt exhibited strong interactions with BrPSY1, but BrGOLDENDel did not interact with BrPSY1 in the split−ubiquitin membrane system. In the secondary and 3D structure analysis, BrGOLDENDel was shown to have lost the PNFPSFIPFLPPL sequences at the 125 amino acid position, which resulted in the α−helices of BrGOLDENDel being disrupted, restricting the formation of the 3D structure and affecting the functions of the protein. These findings may provide new insights into the regulation of carotenoid synthesis in B. rapa.
Collapse
|
9
|
Ampomah-Dwamena C, Tomes S, Thrimawithana AH, Elborough C, Bhargava N, Rebstock R, Sutherland P, Ireland H, Allan AC, Espley RV. Overexpression of PSY1 increases fruit skin and flesh carotenoid content and reveals associated transcription factors in apple ( Malus × domestica). FRONTIERS IN PLANT SCIENCE 2022; 13:967143. [PMID: 36186009 PMCID: PMC9520574 DOI: 10.3389/fpls.2022.967143] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
Knowledge of the transcriptional regulation of the carotenoid metabolic pathway is still emerging and here, we have misexpressed a key biosynthetic gene in apple to highlight potential transcriptional regulators of this pathway. We overexpressed phytoene synthase (PSY1), which controls the key rate-limiting biosynthetic step, in apple and analyzed its effects in transgenic fruit skin and flesh using two approaches. Firstly, the effects of PSY overexpression on carotenoid accumulation and gene expression was assessed in fruit at different development stages. Secondly, the effect of light exclusion on PSY1-induced fruit carotenoid accumulation was examined. PSY1 overexpression increased carotenoid content in transgenic fruit skin and flesh, with beta-carotene being the most prevalent carotenoid compound. Light exclusion by fruit bagging reduced carotenoid content overall, but carotenoid content was still higher in bagged PSY fruit than in bagged controls. In tissues overexpressing PSY1, plastids showed accelerated chloroplast to chromoplast transition as well as high fluorescence intensity, consistent with increased number of chromoplasts and carotenoid accumulation. Surprisingly, the expression of other carotenoid pathway genes was elevated in PSY fruit, suggesting a feed-forward regulation of carotenogenesis when this enzyme step is mis-expressed. Transcriptome profiling of fruit flesh identified differentially expressed transcription factors (TFs) that also were co-expressed with carotenoid pathway genes. A comparison of differentially expressed genes from both the developmental series and light exclusion treatment revealed six candidate TFs exhibiting strong correlation with carotenoid accumulation. This combination of physiological, transcriptomic and metabolite data sheds new light on plant carotenogenesis and TFs that may play a role in regulating apple carotenoid biosynthesis.
Collapse
Affiliation(s)
| | - Sumathi Tomes
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | | | - Caitlin Elborough
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
- BioLumic Limited, Palmerston North, New Zealand
| | - Nitisha Bhargava
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Paul Sutherland
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Hilary Ireland
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| |
Collapse
|
10
|
Zhou X, Rao S, Wrightstone E, Sun T, Lui ACW, Welsch R, Li L. Phytoene Synthase: The Key Rate-Limiting Enzyme of Carotenoid Biosynthesis in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:884720. [PMID: 35498681 PMCID: PMC9039723 DOI: 10.3389/fpls.2022.884720] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/16/2022] [Indexed: 05/27/2023]
Abstract
Phytoene synthase (PSY) catalyzes the first committed step in the carotenoid biosynthesis pathway and is a major rate-limiting enzyme of carotenogenesis. PSY is highly regulated by various regulators and factors to modulate carotenoid biosynthesis in response to diverse developmental and environmental cues. Because of its critical role in controlling the total amount of synthesized carotenoids, PSY has been extensively investigated and engineered in plant species. However, much remains to be learned on its multifaceted regulatory control and its catalytic efficiency for carotenoid enrichment in crops. Here, we present current knowledge on the basic biology, the functional evolution, the dynamic regulation, and the metabolic engineering of PSY. We also discuss the open questions and gaps to stimulate additional research on this most studied gene/enzyme in the carotenogenic pathway.
Collapse
Affiliation(s)
- Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, United States
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Emalee Wrightstone
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Andy Cheuk Woon Lui
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | | | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
11
|
Velmurugan A, Kodiveri Muthukaliannan G. Genetic manipulation for carotenoid production in microalgae an overview. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
12
|
Elevating fruit carotenoid content in apple (Malus x domestica Borkh). Methods Enzymol 2022; 671:63-98. [DOI: 10.1016/bs.mie.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Zhu C, Bai C, Gomez-Gomez L, Sandmann G, Baysal C, Capell T, Christou P. Rice callus as a high-throughput platform for synthetic biology and metabolic engineering of carotenoids. Methods Enzymol 2022; 671:511-526. [DOI: 10.1016/bs.mie.2021.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Yu Y, Yu J, Wang Q, Wang J, Zhao G, Wu H, Zhu Y, Chu C, Fang J. Overexpression of the rice ORANGE gene OsOR negatively regulates carotenoid accumulation, leads to higher tiller numbers and decreases stress tolerance in Nipponbare rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110962. [PMID: 34315587 DOI: 10.1016/j.plantsci.2021.110962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The ORANGE (OR) gene has been reported to regulate chromoplast differentiation and enhance carotenoid biosynthesis in many dicotyledonous plants. However, the function of the OR gene in monocotyledons, especially rice, is poorly known. Here, the OR gene from rice, OsOR, was isolated and characterized by generating overexpressing and genome editing mutant lines. The OsOR-overexpressing plants exhibited pleiotropic phenotypes, such as alternating transverse green and white sectors on leaves at the early tillering stage, that were due to changes in thylakoid development and reduced carotenoid content. In addition, the number of tillers significantly increased in OsOR-overexpressing plants but decreased in osor mutant lines, a result similar to that previously reported for the carotenoid isomerase mutant mit3. The expression of the DWARF3 and DWARF53 genes that are involved in the strigolactone signalling pathway were similarly downregulated in OsOR-overexpressing plants but upregulated in osor mutants. Moreover, the OsOR-overexpressing plants exhibited greater sensitivity to salt and cold stress, and had lower total chlorophyll and higher MDA contents. All results suggest that the OsOR gene plays an important role not only in carotenoid accumulation but also in tiller number regulation and in responses to environmental stress in rice.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; College of Life Science and Engineering, Shenyang University, Shenyang, China
| | - Jiyang Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, China
| | - Qinglong Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; Quality and Safety Institute of Agriculture Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guangxin Zhao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongkai Wu
- College of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Jun Fang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Inhibition of Carotenoid Biosynthesis by CRISPR/Cas9 Triggers Cell Wall Remodelling in Carrot. Int J Mol Sci 2021; 22:ijms22126516. [PMID: 34204559 PMCID: PMC8234013 DOI: 10.3390/ijms22126516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Recent data indicate that modifications to carotenoid biosynthesis pathway in plants alter the expression of genes affecting chemical composition of the cell wall. Phytoene synthase (PSY) is a rate limiting factor of carotenoid biosynthesis and it may exhibit species-specific and organ-specific roles determined by the presence of psy paralogous genes, the importance of which often remains unrevealed. Thus, the aim of this work was to elaborate the roles of two psy paralogs in a model system and to reveal biochemical changes in the cell wall of psy knockout mutants. For this purpose, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated (Cas9) proteins (CRISPR/Cas9) vectors were introduced to carotenoid-rich carrot (Daucus carota) callus cells in order to induce mutations in the psy1 and psy2 genes. Gene sequencing, expression analysis, and carotenoid content analysis revealed that the psy2 gene is critical for carotenoid biosynthesis in this model and its knockout blocks carotenogenesis. The psy2 knockout also decreased the expression of the psy1 paralog. Immunohistochemical staining of the psy2 mutant cells showed altered composition of arabinogalactan proteins, pectins, and extensins in the mutant cell walls. In particular, low-methylesterified pectins were abundantly present in the cell walls of carotenoid-rich callus in contrast to the carotenoid-free psy2 mutant. Transmission electron microscopy revealed altered plastid transition to amyloplasts instead of chromoplasts. The results demonstrate for the first time that the inhibited biosynthesis of carotenoids triggers the cell wall remodelling.
Collapse
|
16
|
Chettry U, Chrungoo NK. A multifocal approach towards understanding the complexities of carotenoid biosynthesis and accumulation in rice grains. Brief Funct Genomics 2020; 19:324-335. [PMID: 32240289 DOI: 10.1093/bfgp/elaa007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 11/12/2022] Open
Abstract
Carotenoids are mostly C40 terpenoids that participate in several important functions in plants including photosynthesis, responses to various forms of stress, signal transduction and photoprotection. While the antioxidant potential of carotenoids is of particular importance for human health, equally important is the role of β-carotene as the precursor for vitamin A in the human diet. Rice, which contributes upto 40% of dietary energy for mankind, contains very low level of β-carotene, thereby making it an important crop for enhancing β-carotene accumulation in its grains and consequently targeting vitamin A deficiency. Biosynthesis of carotenoids in the endosperm of white rice is blocked at the first enzymatic step wherein geranylgeranyl diphosphate is converted to phytoene by the action of phytoene synthase (PSY). Strategies aimed at enhancing β-carotene levels in the endosperm of white rice identified Narcissus pseudonarcissus (npPSY) and bacterial CRT1 as the regulators of the carotenoid biosynthetic pathway in rice. Besides transcriptional regulation of PSY, posttranscriptional regulation of PSY expression by OR gene, molecular synergism between ε-LCY and β-LCY and epigenetic control of CRITSO through SET DOMAIN containing protein appear to be the other regulatory nodes which regulate carotenoid biosynthesis and accumulation in rice grains. In this review, we elucidate a comprehensive and deeper understanding of the regulatory mechanisms of carotenoid metabolism in crops that will enable us to identify an effective tool to alleviate carotenoid content in rice grains.
Collapse
Affiliation(s)
- Upasna Chettry
- Department of Botany, North-Eastern Hill University, Shillong 793022, India
| | - Nikhil K Chrungoo
- Department of Botany, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
17
|
Sun T, Yuan H, Chen C, Kadirjan-Kalbach DK, Mazourek M, Osteryoung KW, Li L. OR His, a Natural Variant of OR, Specifically Interacts with Plastid Division Factor ARC3 to Regulate Chromoplast Number and Carotenoid Accumulation. MOLECULAR PLANT 2020; 13:864-878. [PMID: 32222485 DOI: 10.1016/j.molp.2020.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 05/19/2023]
Abstract
Chromoplasts are colored plastids that synthesize and store massive amounts of carotenoids. Chromoplast number and size define the sink strength for carotenoid accumulation in plants. However, nothing is known about the mechanisms controlling chromoplast number. Previously, a natural allele of Orange (OR), ORHis, was found to promote carotenoid accumulation by activating chromoplast differentiation and increasing carotenoid biosynthesis, but cells in orange tissues in melon fruit and cauliflower OR mutant have only one or two enlarged chromoplasts. In this study, we investigated an ORHis variant of Arabidopsis OR, genetically mimicking the melon ORHis allele, and found that it also constrains chromoplast number in Arabidopsis calli. Both in vitro and in vivo experiments demonstrate that ORHis specifically interacts with the Membrane Occupation and Recognition Nexus domain of ACCUMULATION AND REPLICATION OF CHLOROPLASTS 3 (ARC3), a crucial regulator of chloroplast division. We further showed that ORHis interferes with the interaction between ARC3 and PARALOG OF ARC6 (PARC6), another key regulator of chloroplast division, suggesting a role of ORHis in competing with PARC6 for binding to ARC3 to restrict chromoplast number. Overexpression or knockout of ARC3 in Arabidopsis ORHis plants significantly alters total carotenoid levels. Moreover, overexpression of the plastid division factor PLASTID DIVISION 1 greatly enhances carotenoid accumulation. These division factors likely alter carotenoid levels via their influence on chromoplast number and/or size. Taken together, our findings provide novel mechanistic insights into the machinery controlling chromoplast number and highlight a potential new strategy for enhancing carotenoid accumulation and nutritional value in food crops.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Cheng Chen
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
18
|
Differential interaction of Or proteins with the PSY enzymes in saffron. Sci Rep 2020; 10:552. [PMID: 31953512 PMCID: PMC6969158 DOI: 10.1038/s41598-020-57480-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/18/2019] [Indexed: 01/11/2023] Open
Abstract
Colored apocarotenoids accumulate at high concentrations in few plant species, where display a role in attraction of pollinators and seed dispersers. Among these apocarotenoids, crocins accumulate at high concentrations in the stigma of saffron and are responsible for the organoleptic and medicinal properties of this spice. Phytoene synthase and Orange protein are key for carotenoid biosynthesis and accumulation. We previously isolated four phytoene synthase genes from saffron with differential roles in carotenoid and apocarotenoid biosynthesis. However, the implications of Orange genes in the regulation of apocarotenoid accumulation are unknown. Here, we have identified two Orange genes from saffron, with different expression patterns. CsOr-a was mainly expressed in vegetative tissues and was induced by light and repressed by heat stress. Both CsOr-a and CsOr-b were expressed in stigmas but showed a different profile during the development of this tissue. The interactions of CsOr-a and CsOr-b were tested with all the four phytoene synthase proteins from saffron and with CsCCD2. None interactions were detected with CCD2 neither with the phytoene synthase 2, involved in apocarotenoid biosynthesis in saffron. The obtained results provide evidence of different mechanisms regulating the phytoene synthase enzymes in saffron by Orange for carotenoid and apocarotenoid accumulation in saffron.
Collapse
|
19
|
Sestili F, Garcia-Molina MD, Gambacorta G, Beleggia R, Botticella E, De Vita P, Savatin DV, Masci S, Lafiandra D. Provitamin A Biofortification of Durum Wheat through a TILLING Approach. Int J Mol Sci 2019; 20:E5703. [PMID: 31739436 PMCID: PMC6888361 DOI: 10.3390/ijms20225703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 01/06/2023] Open
Abstract
Macro- and micronutrients, essential for the maintenance of human metabolism, are assimilated daily through the diet. Wheat and other major cereals are a good source of nutrients, such as carbohydrates and proteins, but cannot supply a sufficient amount of essential micronutrients, including provitamin A. As vitamin A deficiency (VAD) leads to several serious diseases throughout the world, the biofortification of a major staple crop, such as wheat, represents an effective way to preserve human health in developing countries. In the present work, a key enzyme involved in the branch of carotenoids pathway producing β-carotene, lycopene epsilon cyclase, has been targeted by a Targeting Induced Local Lesions in Genomes (TILLING) approach in a "block strategy" perspective. The null mutant genotype showed a strong reduction in the expression of the lcyE gene and also interesting pleiotropic effects on an enzyme (β-ring hydroxylase) acting downstream in the pathway. Biochemical profiling of carotenoids in the wheat mutant lines showed an increase of roughly 75% in β-carotene in the grains of the complete mutant line compared with the control. In conclusion, we describe here the production and characterization of a new wheat line biofortified with provitamin A obtained through a nontransgenic approach, which also sheds new light on the molecular mechanism governing carotenoid biosynthesis in durum wheat.
Collapse
Affiliation(s)
- Francesco Sestili
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy; (F.S.); (M.D.G.-M.); (G.G.); (E.B.); (D.V.S.); (S.M.)
| | - Maria Dolores Garcia-Molina
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy; (F.S.); (M.D.G.-M.); (G.G.); (E.B.); (D.V.S.); (S.M.)
| | - Gianluca Gambacorta
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy; (F.S.); (M.D.G.-M.); (G.G.); (E.B.); (D.V.S.); (S.M.)
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), 71122 Foggia, Italy; (R.B.); (P.D.V.)
| | - Ermelinda Botticella
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy; (F.S.); (M.D.G.-M.); (G.G.); (E.B.); (D.V.S.); (S.M.)
| | - Pasquale De Vita
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), 71122 Foggia, Italy; (R.B.); (P.D.V.)
| | - Daniel Valentin Savatin
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy; (F.S.); (M.D.G.-M.); (G.G.); (E.B.); (D.V.S.); (S.M.)
| | - Stefania Masci
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy; (F.S.); (M.D.G.-M.); (G.G.); (E.B.); (D.V.S.); (S.M.)
| | - Domenico Lafiandra
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy; (F.S.); (M.D.G.-M.); (G.G.); (E.B.); (D.V.S.); (S.M.)
| |
Collapse
|
20
|
Endo A, Saika H, Takemura M, Misawa N, Toki S. A novel approach to carotenoid accumulation in rice callus by mimicking the cauliflower Orange mutation via genome editing. RICE (NEW YORK, N.Y.) 2019; 12:81. [PMID: 31713832 PMCID: PMC6851270 DOI: 10.1186/s12284-019-0345-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/29/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND β-carotene (provitamin A) is an important target for biofortification of crops as a potential solution to the problem of vitamin A deficiency that is prevalent in developing countries. A previous report showed that dominant expression of splicing variants in the Orange (Or) gene causes β-carotene accumulation in cauliflower curd. In this study, we focused on a putative orthologue of the cauliflower or gene in rice, Osor, and attempt to accumulate β-carotene in rice callus by modification of the Osor gene via genome editing using CRISPR/Cas9. FINDINGS CRISPR/Cas9 vectors for the Osor gene were constructed and transformed into rice calli. Some transformed calli showed orange color due to β-carotene hyper-accumulation. Molecular analyses suggest that orange-colored calli are due to an abundance of in-frame aberrant Osor transcripts, whereas out-of-frame mutations were not associated with orange color. CONCLUSIONS We demonstrate that directed gene modification of the Osor gene via CRISPR/Cas9-mediated genome editing results in β-carotene fortification in rice calli. To date, golden rice, which accumulates β-carotene in rice endosperm, has been developed by conventional transgenic approaches. Our results suggest an alternative approach to enhancing β-carotene accumulation in crops.
Collapse
Affiliation(s)
- Akira Endo
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 Japan
- Present Address of AE: Biotechnology Research Laboratories, KANEKA CORPORATION, 1-8, Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688 Japan
| | - Hiroaki Saika
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 Japan
| | - Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836 Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836 Japan
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Yokohama, 244-0813 Japan
| |
Collapse
|
21
|
Zhang H, Chen J, Zhang F, Song Y. Transcriptome analysis of callus from melon. Gene 2019; 684:131-138. [PMID: 30321656 DOI: 10.1016/j.gene.2018.10.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 09/21/2018] [Accepted: 10/11/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To identify the key genes promoting the differentiation of melon non-embryogenic callus into embryogenic callus. METHODS The transcriptome sequencing analysis was used to analyze the mRNA sequence in embryogenic callus (Z) and non-embryogenic callus (F); transcript mapping, gene expression analysis, cluster analysis, classification analysis and enrichment analysis were then used to detect the differentially expressed genes and enriched pathways. RESULTS The correlation coefficient between sample Z and sample F was 0.929 after transcript mapping. The overall gene expression levels in sample Z were higher as compared with sample F. Furthermore, cluster analysis showed that the expression of genes involved in photosynthesis was increased in sample Z when comparing to F. Besides, the classification of differential Gene Ontology (GO) showed that many metabolic processes were affected with the metabolism enhanced in embryogenic callus. Interestingly, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis further demonstrated the high metabolic activity and active secondary metabolite formation in the embryogenic callus. CONCLUSION The genes associated with photosynthesis, metabolic pathways and biosynthesis of secondary metabolites may promote the differentiation of callus into embryogenic callus.
Collapse
Affiliation(s)
- Huijun Zhang
- Anhui Key Laboratory of Plant Resources and Biology, School of Life Science, Huaibei Normal University, No. 100 Dongshan Road, Huaibei 235000, Anhui Province, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Haerbing 150030, Heilongjiang Province, China
| | - Jinfeng Chen
- College of Horticulture, Nanjing Agricultural University, NO.1 weigang, Nanjing 210095, Jiangsu, China.
| | - Fei Zhang
- Anhui Key Laboratory of Plant Resources and Biology, School of Life Science, Huaibei Normal University, No. 100 Dongshan Road, Huaibei 235000, Anhui Province, China
| | - Yunxian Song
- Anhui Key Laboratory of Plant Resources and Biology, School of Life Science, Huaibei Normal University, No. 100 Dongshan Road, Huaibei 235000, Anhui Province, China
| |
Collapse
|
22
|
D’Andrea L, Rodriguez-Concepcion M. Manipulation of Plastidial Protein Quality Control Components as a New Strategy to Improve Carotenoid Contents in Tomato Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:1071. [PMID: 31543891 PMCID: PMC6739439 DOI: 10.3389/fpls.2019.01071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/07/2019] [Indexed: 05/19/2023]
Abstract
Carotenoids such as β-carotene (pro-vitamin A) and lycopene accumulate at high levels during tomato (Solanum lycopersicum L.) fruit ripening, contributing to the characteristic color and nutritional quality of ripe tomatoes. Besides their role as pigments in chromoplast-harboring tissues such as ripe fruits, carotenoids are important for photosynthesis and photoprotection in the chloroplasts of photosynthetic tissues. Interestingly, recent work in Arabidopsis thaliana (L.) Heynh. has unveiled a critical role of chloroplast protein quality control components in the regulation of carotenoid biosynthesis. The accumulation (i.e. degradation rate) and activity (i.e. folding status) of phytoene synthase (PSY) and other Arabidopsis biosynthetic enzymes is modulated by chaperones such as Orange (OR) and Hsp70 in coordination with the stromal Clp protease complex. OR and Clp protease were recently shown to also influence PSY stability and carotenoid accumulation in tomato. Here we show how manipulating the levels of plastid-localized Hsp70 in transgenic tomato plants can also impact the accumulation of carotenoids in ripe fruit. The resulting carotenoid profile and chromoplast ultrastructure, however, are different from those obtained in tomatoes from transgenic lines with increased OR activity. These results suggest that different chaperone families target different processes related to carotenoid metabolism and accumulation during tomato ripening. We further discuss other possible targets for future manipulation in tomato based on the knowledge acquired in Arabidopsis.
Collapse
Affiliation(s)
- Lucio D’Andrea
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- *Correspondence: Manuel Rodriguez-Concepcion,
| |
Collapse
|
23
|
Osorio CE. The Role of Orange Gene in Carotenoid Accumulation: Manipulating Chromoplasts Toward a Colored Future. FRONTIERS IN PLANT SCIENCE 2019; 10:1235. [PMID: 31636649 PMCID: PMC6788462 DOI: 10.3389/fpls.2019.01235] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/05/2019] [Indexed: 05/11/2023]
Abstract
Carotenoids are isoprenoid pigments synthesized in plants, algae, and photosynthetic bacteria and fungus. Their role is essential in light capture, photoprotection, pollinator attraction, and phytohormone production. Furthermore, they can regulate plant development when they are processed as small signaling molecules. Due to their importance for human health, as promoters of the immune system and antioxidant activity, carotenoids have been used in the pharmaceutical, food, and nutraceutical industries. Regulation of carotenoid synthesis and accumulation has been extensively studied. Excellent work has been done unraveling the mode of action of phytoene synthase (PSY), a rate-limiting enzyme of carotenoid biosynthesis pathway, in model species and staple crops. Lately, interest has been turned to Orange protein and its interaction with PSY during carotenoid biosynthesis. Discovered as a dominant mutation in Brassica oleracea, Orange protein regulates carotenoid accumulation by posttranscriptionally regulating PSY, promoting the formation of carotenoid-sequestering structures, and also preventing carotenoid degradation. Furthermore, Orange protein contributes to homeostasis regulation, improving plant tolerance to abiotic stress. In this mini review, the focus is made on recent evidence that elucidates Orange protein mode of action and expression in different plant species. Additionally, strategies are proposed to modify Orange gene by utilization of genome editing techniques. A better understanding of carotenoid biosynthesis and accumulation will lead to a positive impact on the development of healthy food for a growing population.
Collapse
|
24
|
Wang Z, Xu W, Kang J, Li M, Huang J, Ke Q, Kim HS, Xu B, Kwak SS. Overexpression of alfalfa Orange gene in tobacco enhances carotenoid accumulation and tolerance to multiple abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:613-622. [PMID: 30121513 DOI: 10.1016/j.plaphy.2018.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 05/22/2023]
Abstract
The multifunctional Orange (Or) protein plays crucial roles in carotenoid homeostasis, photosynthesis stabilization, and antioxidant activity in plants under various abiotic stress conditions. The Or gene has been cloned in several crops but not in alfalfa (Medicago sativa L.). Alfalfa is widely cultivated across the world; however, its cultivation is largely limited by various abiotic stresses, including drought. In this study, we isolated the Or gene from alfalfa (MsOr) cv. Xinjiang Daye. The amino acid sequence of the deduced MsOr protein revealed that the protein contained two trans-membrane domains and a DnaJ cysteine-rich zinc finger domain, and showed a high level of similarity with the Or protein of other plants species. The MsOr protein was localized in leaf chloroplasts of tobacco. The expression of MsOr was the highest in mature leaves and was significantly induced by abiotic stresses, especially drought. To perform functional analysis of the MsOr gene, we overexpressed MsOr gene in tobacco (Nicotiana benthamiana). Compared with wild-type (WT) plants, transgenic tobacco lines showed higher carotenoid accumulation and increased tolerance to various abiotic stresses, including drought, heat, salt, and methyl viologen-mediated oxidative stress. Additionally, contents of hydrogen peroxide and malondialdehyde were lower in the transgenic lines than in WT plants, suggesting superior membrane stability and antioxidant capacity of TOR lines under multiple abiotic stresses. These results indicate the MsOr gene as a potential target for the development of alfalfa cultivars with enhanced carotenoid content and tolerance to multiple environmental stresses.
Collapse
Affiliation(s)
- Zhi Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, Shaanxi, China
| | - Weizhou Xu
- College of Life Science, Yulin University, Yulin, 719000, Shaanxi, China
| | - Jiyue Kang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, Shaanxi, China
| | - Min Li
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, Shaanxi, China
| | - Jin Huang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, Shaanxi, China
| | - Qingbo Ke
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, Shaanxi, China
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon, 34141, South Korea
| | - Bingcheng Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, Shaanxi, China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon, 34141, South Korea.
| |
Collapse
|
25
|
Kim HS, Ji CY, Lee CJ, Kim SE, Park SC, Kwak SS. Orange: a target gene for regulating carotenoid homeostasis and increasing plant tolerance to environmental stress in marginal lands. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3393-3400. [PMID: 29385615 DOI: 10.1093/jxb/ery023] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/13/2018] [Indexed: 05/19/2023]
Abstract
Carotenoids play essential roles in various light-harvesting processes in plants and help protect the photosynthetic machinery from photo-oxidative damage. Orange genes, which play a role in carotenoid accumulation, have recently been isolated from several plant species, and their functions have been intensively investigated. The Orange gene (IbOr) of sweet potato [Ipomoea batatas (L.) Lam] helps maintain carotenoid homeostasis to improve plant tolerance to environmental stress. IbOr, a protein with strong holdase chaperone activity, directly interacts with phytoene synthase, a key enzyme involved in carotenoid biosynthesis, in plants under stress conditions, resulting in increased carotenoid accumulation and abiotic stress tolerance. In addition, IbOr interacts with the oxygen-evolving enhancer protein 2-1, a member of a protein complex in photosystem II that is denatured under heat stress. Transgenic sweet potato plants overexpressing IbOr showed enhanced tolerance to high temperatures (47 °C). These findings indicate that IbOr protects plants from environmental stress not only by controlling carotenoid biosynthesis, but also by directly stabilizing photosystem II. In this review, we discuss the functions of IbOr and Or proteins in other plant species and their possible biotechnological applications for molecular breeding for sustainable development on marginal lands.
Collapse
Affiliation(s)
- Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro, Daejeon, Korea
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro, Daejeon, Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology, Gajeong-ro, Daejeon, Korea
| | - Chan-Ju Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro, Daejeon, Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology, Gajeong-ro, Daejeon, Korea
| | - So-Eun Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro, Daejeon, Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology, Gajeong-ro, Daejeon, Korea
| | - Sung-Chul Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro, Daejeon, Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro, Daejeon, Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology, Gajeong-ro, Daejeon, Korea
| |
Collapse
|
26
|
Expression and Interaction Analysis among Saffron ALDHs and Crocetin Dialdehyde. Int J Mol Sci 2018; 19:ijms19051409. [PMID: 29747375 PMCID: PMC5983644 DOI: 10.3390/ijms19051409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/02/2022] Open
Abstract
In saffron, the cleavage of zeaxanthin by means of CCD2 generates crocetin dialdehyde, which is then converted by an unknown aldehyde dehydrogenase to crocetin. A proteome from saffron stigma was released recently and, based on the expression pattern and correlation analyses, five aldehyde dehydrogenases (ALDHs) were suggested as possible candidates to generate crocetin from crocetin dialdehydes. We selected four of the suggested ALDHs and analyzed their expression in different tissues, determined their activity over crocetin dialdehyde, and performed structure modeling and docking calculation to find their specificity. All the ALDHs were able to convert crocetin dialdehyde to crocetin, but two of them were stigma tissue-specific. Structure modeling and docking analyses revealed that, in all cases, there was a high coverage of residues in the models. All of them showed a very close conformation, indicated by the low root-mean-square deviation (RMSD) values of backbone atoms, which indicate a high similarity among them. However, low affinity between the enzymes and the crocetin dialdehyde were observed. Phylogenetic analysis and binding affinities calculations, including some ALDHs from Gardenia jasmonoides, Crocus sieberi, and Buddleja species that accumulate crocetin and Bixa orellana synthetizing the apocarotenoid bixin selected on their expression pattern matching with the accumulation of either crocins or bixin, pointed out that family 2 C4 members might be involved in the conversion of crocetin dialdehyde to crocetin with high specificity.
Collapse
|
27
|
Rodriguez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D, Limon MC, Meléndez-Martínez AJ, Olmedilla-Alonso B, Palou A, Ribot J, Rodrigo MJ, Zacarias L, Zhu C. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 2018; 70:62-93. [PMID: 29679619 DOI: 10.1016/j.plipres.2018.04.004] [Citation(s) in RCA: 523] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
Carotenoids are lipophilic isoprenoid compounds synthesized by all photosynthetic organisms and some non-photosynthetic prokaryotes and fungi. With some notable exceptions, animals (including humans) do not produce carotenoids de novo but take them in their diets. In photosynthetic systems carotenoids are essential for photoprotection against excess light and contribute to light harvesting, but perhaps they are best known for their properties as natural pigments in the yellow to red range. Carotenoids can be associated to fatty acids, sugars, proteins, or other compounds that can change their physical and chemical properties and influence their biological roles. Furthermore, oxidative cleavage of carotenoids produces smaller molecules such as apocarotenoids, some of which are important pigments and volatile (aroma) compounds. Enzymatic breakage of carotenoids can also produce biologically active molecules in both plants (hormones, retrograde signals) and animals (retinoids). Both carotenoids and their enzymatic cleavage products are associated with other processes positively impacting human health. Carotenoids are widely used in the industry as food ingredients, feed additives, and supplements. This review, contributed by scientists of complementary disciplines related to carotenoid research, covers recent advances and provides a perspective on future directions on the subjects of carotenoid metabolism, biotechnology, and nutritional and health benefits.
Collapse
Affiliation(s)
| | - Javier Avalos
- Department of Genetics, Universidad de Sevilla, 41012 Seville, Spain
| | - M Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07120 Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07120 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Albert Boronat
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lourdes Gomez-Gomez
- Instituto Botánico, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - Damaso Hornero-Mendez
- Department of Food Phytochemistry, Instituto de la Grasa (IG-CSIC), 41013 Seville, Spain
| | - M Carmen Limon
- Department of Genetics, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio J Meléndez-Martínez
- Food Color & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain
| | | | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07120 Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07120 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07120 Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07120 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Maria J Rodrigo
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
| | - Lorenzo Zacarias
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, Universitat de Lleida-Agrotecnio, 25198 Lleida, Spain
| |
Collapse
|
28
|
Schaub P, Rodriguez-Franco M, Cazzonelli CI, Álvarez D, Wüst F, Welsch R. Establishment of an Arabidopsis callus system to study the interrelations of biosynthesis, degradation and accumulation of carotenoids. PLoS One 2018; 13:e0192158. [PMID: 29394270 PMCID: PMC5796706 DOI: 10.1371/journal.pone.0192158] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 12/02/2022] Open
Abstract
The net amounts of carotenoids accumulating in plant tissues are determined by the rates of biosynthesis and degradation. While biosynthesis is rate-limited by the activity of PHYTOENE SYNTHASE (PSY), carotenoid losses are caused by catabolic enzymatic and non-enzymatic degradation. We established a system based on non-green Arabidopsis callus which allowed investigating major determinants for high steady-state levels of β-carotene. Wild-type callus development was characterized by strong carotenoid degradation which was only marginally caused by the activity of carotenoid cleavage oxygenases. In contrast, carotenoid degradation occurred mostly non-enzymatically and selectively affected carotenoids in a molecule-dependent manner. Using carotenogenic pathway mutants, we found that linear carotenes such as phytoene, phytofluene and pro-lycopene resisted degradation and accumulated while β-carotene was highly susceptible towards degradation. Moderately increased pathway activity through PSY overexpression was compensated by degradation revealing no net increase in β-carotene. However, higher pathway activities outcompeted carotenoid degradation and efficiently increased steady-state β-carotene amounts to up to 500 μg g-1 dry mass. Furthermore, we identified oxidative β-carotene degradation products which correlated with pathway activities, yielding β-apocarotenals of different chain length and various apocarotene-dialdehydes. The latter included methylglyoxal and glyoxal as putative oxidative end products suggesting a potential recovery of carotenoid-derived carbon for primary metabolic pathways. Moreover, we investigated the site of β-carotene sequestration by co-localization experiments which revealed that β-carotene accumulated as intra-plastid crystals which was confirmed by electron microscopy with carotenoid-accumulating roots. The results are discussed in the context of using the non-green calli carotenoid assay system for approaches targeting high steady-state β-carotene levels prior to their application in crops.
Collapse
Affiliation(s)
- Patrick Schaub
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| | | | - Christopher Ian Cazzonelli
- Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus, Richmond, NSW Australia
| | - Daniel Álvarez
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| | - Florian Wüst
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| | - Ralf Welsch
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| |
Collapse
|
29
|
Yu S, Tian L. Breeding Major Cereal Grains through the Lens of Nutrition Sensitivity. MOLECULAR PLANT 2018; 11:23-30. [PMID: 28827167 DOI: 10.1016/j.molp.2017.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 05/18/2023]
Abstract
Cereal grains are the common food staples that collectively provide over 50% of dietary calories and proteins for the world's population. Although the Green Revolution has greatly increased the yield of commercial cereal crops, they often lack nutrients essential for human health in the edible tissues. In developing nutrition-sensitive agriculture, the nutritional quality of cereal grains has been a major target for improvement using breeding and biotechnology approaches. This review examines recent progress on biofortification of micronutrients (provitamin A and folates) and an essential amino acid (lysine) in three major cereal grains, wheat, rice, and maize, through plant breeding. In addition, how natural variations, induced mutations, and the advanced genome-editing technologies can be applied to improving the nutrient content and stability in these cereal grains are discussed. High-yield cereal crops pyramided with improved (micro)nutrient contents hold great promise to meet the increasing demand of nutritionally limited populations and to contribute to achieving sustainable nutrition security.
Collapse
Affiliation(s)
- Shu Yu
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Li Tian
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA; Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
| |
Collapse
|
30
|
Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L. Carotenoid Metabolism in Plants: The Role of Plastids. MOLECULAR PLANT 2018; 11:58-74. [PMID: 28958604 DOI: 10.1016/j.molp.2017.09.010] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/02/2017] [Accepted: 09/13/2017] [Indexed: 05/17/2023]
Abstract
Carotenoids are indispensable to plants and critical in human diets. Plastids are the organelles for carotenoid biosynthesis and storage in plant cells. They exist in various types, which include proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. These plastids have dramatic differences in their capacity to synthesize and sequester carotenoids. Clearly, plastids play a central role in governing carotenogenic activity, carotenoid stability, and pigment diversity. Understanding of carotenoid metabolism and accumulation in various plastids expands our view on the multifaceted regulation of carotenogenesis and facilitates our efforts toward developing nutrient-enriched food crops. In this review, we provide a comprehensive overview of the impact of various types of plastids on carotenoid biosynthesis and accumulation, and discuss recent advances in our understanding of the regulatory control of carotenogenesis and metabolic engineering of carotenoids in light of plastid types in plants.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hongbo Cao
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Mohammad Yazdani
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Yaakov Tadmor
- Plant Science Institute, Israeli Agricultural Research Organization, Newe Yaar Research Center, P.O. Box 1021, Ramat Yishai 30095, Israel
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
31
|
|
32
|
Nogueira M, Enfissi EM, Almeida J, Fraser PD. Creating plant molecular factories for industrial and nutritional isoprenoid production. Curr Opin Biotechnol 2017; 49:80-87. [PMID: 28837945 DOI: 10.1016/j.copbio.2017.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/30/2017] [Accepted: 08/03/2017] [Indexed: 11/26/2022]
Abstract
Chemical refining is a highly efficient process that has driven industrialisation and globalisation. However, dwindling fuel reserves and climatic fluctuation are now imposing key societal and economic challenges to health and welfare provision, agriculture, manufacturing outputs and energy. Plants are potentially exploitable 'green' chemical factories, with vast chemical diversity that can be used for the discovery and production of food, feed, medicines and biomaterials. Despite notable advances, plant based production under real-life scenarios remains, in most cases, economically uncompetitive when compared to inherently non-sustainable petrochemical based processes. In the present review the strategies available and those emerging will be described. Furthermore, how can the new evolving molecular tools such as genome editing be utilised to create a new paradigm of plant-based production? To illustrate the present status quo, we have chosen the isoprenoids as the class of natural products. These compounds display vast chemical diversity and have been used across multiple industrial sectors as medicines, supplements in food and feedstuffs, colourants and fragrances.
Collapse
Affiliation(s)
- Marilise Nogueira
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 ORB, UK
| | - Eugenia Ma Enfissi
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 ORB, UK
| | - Juliana Almeida
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 ORB, UK
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 ORB, UK.
| |
Collapse
|
33
|
Morikawa T, Uraguchi Y, Sanda S, Nakagawa S, Sawayama S. Overexpression of DnaJ-Like Chaperone Enhances Carotenoid Synthesis in Chlamydomonas reinhardtii. Appl Biochem Biotechnol 2017; 184:80-91. [PMID: 28612271 DOI: 10.1007/s12010-017-2521-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/19/2017] [Indexed: 11/25/2022]
Abstract
Production of functional carotenoids using microalgae may facilitate the commercialization of anti-aging nutritional supplements. The green alga Chlamydomonas reinhardtii uses a non-mevalonate (MEP) pathway for isopentenyl diphosphate (IPP) synthesis. Two enzymes thought to play important roles in this MEP pathway to IPP synthesis are 1-deoxy-D-xylulose 5-phosphate synthase (DXS) and reductase (DXR). DnaJ-like chaperone (Orange protein) is thought to support phytoene synthase, a key enzyme in plant carotenoid synthesis. Genes for Orange (OR), DXS, and DXR were overexpressed via nuclear transformation into C. reinhardtii. CDS of OR, DXS, and DXR were amplified and connected with dual promoters of heat-shock protein 70A and ribulose bisphosphate carboxylase small chain 2. Compared with the parental strain, transformant CrOR#2 produced increased lutein and β-carotene (1.9-fold and 1.7-fold per cell, respectively). Transformant CrDXS#1 produced lutein and β-carotene at lower per-cell abundances than those for the parental strain. CrDXR#2 transformant produced lutein and β-carotene at higher per-cell abundances than their parental counterpart; however, these transformants produced lutein and β-carotene at lower per-medium abundances than their parental counterparts. These results suggest that OR protein supports phytoene synthase in C. reinhardtii and that the phytoene synthesis step is rate-limiting in carotenoid synthesis.
Collapse
Affiliation(s)
- Tateki Morikawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yusuke Uraguchi
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Shohei Sanda
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Shigeki Sawayama
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
34
|
Berman J, Zorrilla-López U, Medina V, Farré G, Sandmann G, Capell T, Christou P, Zhu C. The Arabidopsis ORANGE (AtOR) gene promotes carotenoid accumulation in transgenic corn hybrids derived from parental lines with limited carotenoid pools. PLANT CELL REPORTS 2017; 36:933-945. [PMID: 28314904 DOI: 10.1007/s00299-017-2126-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/28/2017] [Indexed: 05/21/2023]
Abstract
The AtOR gene enhances carotenoid levels in corn by promoting the formation of plastoglobuli when the carotenoid pool is limited, but has no further effect when carotenoids are already abundant. The cauliflower orange (or) gene mutation influences carotenoid accumulation in plants by promoting the transition of proplastids into chromoplasts, thus creating intracellular storage compartments that act as metabolic sink. We overexpressed the Arabidopsis OR gene under the control of the endosperm-specific wheat LMW glutenin promoter in a white corn variety that normally accumulates only trace amounts of carotenoids. The total endosperm carotenoid content in the best-performing AtOR transgenic corn line was 32-fold higher than wild-type controls (~25 µg/g DW at 30 days after pollination) but the principal carotenoids remained the same, suggesting that AtOR increases the abundance of existing carotenoids without changing the metabolic composition. We analyzed the expression of endogenous genes representing the carotenoid biosynthesis and MEP pathways, as well as the plastid fusion/translocation factor required for chromoplast formation, but only the DXS1 gene was upregulated in the transgenic corn plants. The line expressing AtOR at the highest level was crossed with four transgenic corn lines expressing different carotenogenic genes and accumulating different carotenoids. The introgression of AtOR increased the carotenoid content of the hybrids when there was a limited carotenoid pool in the parental line, but had no effect when carotenoids were already abundant in the parent. The AtOR gene therefore appears to enhance carotenoid levels by promoting the formation of carotenoid-sequestering plastoglobuli when the carotenoid pool is limited, but has no further effect when carotenoids are already abundant because high levels of carotenoids can induce the formation of carotenoid-sequestering plastoglobuli even in the absence of AtOR.
Collapse
Affiliation(s)
- Judit Berman
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Uxue Zorrilla-López
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Vicente Medina
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Gemma Farré
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Gerhard Sandmann
- Biosynthesis Group, Molecular Biosciences, Johann Wolfgang Goethe Universität, 60054, Frankfurt, Germany
| | - Teresa Capell
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain.
| |
Collapse
|
35
|
Provitamin A biofortification of crop plants: a gold rush with many miners. Curr Opin Biotechnol 2017; 44:169-180. [DOI: 10.1016/j.copbio.2017.02.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/11/2023]
|
36
|
Expressing the sweet potato orange gene in transgenic potato improves drought tolerance and marketable tuber production. C R Biol 2017; 339:207-213. [PMID: 27212605 DOI: 10.1016/j.crvi.2016.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/16/2016] [Accepted: 04/22/2016] [Indexed: 01/11/2023]
Abstract
Potato (Solanum tuberosum L.) is generally considered to be sensitive to drought stress. Even short periods of water shortage can result in reduced tuber production and quality. We previously reported that transgenic potato plants expressing the sweet potato orange gene (IbOr) under the control of the stress-inducible SWPA2 promoter (referred to as SOR plants) showed increased tolerance to methyl viologen-mediated oxidative stress and high salinity, along with increased carotenoid contents. In this study, in an effort to improve the productivity and environmental stress tolerance of potato, we subjected transgenic potato plants expressing IbOr to water-deficient conditions in the greenhouse. The SOR plants exhibited increased tolerance to drought stress under greenhouse conditions. IbOr expression was associated with slightly negative phenotypes, including reduced tuber production. Controlling IbOr expression imparted the same degree of drought tolerance while ameliorating these negative phenotypic effects, leading to levels of tuber production similar to or better than those of wild-type plants under drought stress conditions. In particular, under drought stress, drought tolerance and the production of marketable tubers (over 80g) were improved in transgenic plants compared with non-transgenic plants. These results suggest that expressing the IbOr transgene can lead to significant gains in drought tolerance and tuber production in potato, thereby improving these agronomically important traits.
Collapse
|
37
|
Jiang L, Wang W, Lian T, Zhang C. Manipulation of Metabolic Pathways to Develop Vitamin-Enriched Crops for Human Health. FRONTIERS IN PLANT SCIENCE 2017; 8:937. [PMID: 28634484 PMCID: PMC5460589 DOI: 10.3389/fpls.2017.00937] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/19/2017] [Indexed: 05/22/2023]
Abstract
Vitamin deficiencies are major forms of micronutrient deficiencies, and are associated with huge economic losses as well as severe physical and intellectual damages to humans. Much evidence has demonstrated that biofortification plays an important role in combating vitamin deficiencies due to its economical and effective delivery of nutrients to populations in need. Biofortification enables food plants to be enriched with vitamins through conventional breeding and/or biotechnology. Here, we focus on the progress in the manipulation of the vitamin metabolism, an essential part of biofortification, by the genetic modification or by the marker-assisted selection to understand mechanisms underlying metabolic improvement in food plants. We also propose to integrate new breeding technologies with metabolic pathway modification to facilitate biofortification in food plants and, thereby, to benefit human health.
Collapse
Affiliation(s)
- Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
- National Key Facility for Crop Gene Resources and Genetic ImprovementBeijing, China
- *Correspondence: Ling Jiang, Chunyi Zhang,
| | - Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
- National Key Facility for Crop Gene Resources and Genetic ImprovementBeijing, China
| | - Tong Lian
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
- National Key Facility for Crop Gene Resources and Genetic ImprovementBeijing, China
- *Correspondence: Ling Jiang, Chunyi Zhang,
| |
Collapse
|
38
|
You MK, Kim JH, Lee YJ, Jeong YS, Ha SH. Plastoglobule-Targeting Competence of a Putative Transit Peptide Sequence from Rice Phytoene Synthase 2 in Plastids. Int J Mol Sci 2016; 18:ijms18010018. [PMID: 28025520 PMCID: PMC5297653 DOI: 10.3390/ijms18010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 11/16/2022] Open
Abstract
Plastoglobules (PGs) are thylakoid membrane microdomains within plastids that are known as specialized locations of carotenogenesis. Three rice phytoene synthase proteins (OsPSYs) involved in carotenoid biosynthesis have been identified. Here, the N-terminal 80-amino-acid portion of OsPSY2 (PTp) was demonstrated to be a chloroplast-targeting peptide by displaying cytosolic localization of OsPSY2(ΔPTp):mCherry in rice protoplast, in contrast to chloroplast localization of OsPSY2:mCherry in a punctate pattern. The peptide sequence of a PTp was predicted to harbor two transmembrane domains eligible for a putative PG-targeting signal. To assess and enhance the PG-targeting ability of PTp, the original PTp DNA sequence (PTp) was modified to a synthetic DNA sequence (stPTp), which had 84.4% similarity to the original sequence. The motivation of this modification was to reduce the GC ratio from 75% to 65% and to disentangle the hairpin loop structures of PTp. These two DNA sequences were fused to the sequence of the synthetic green fluorescent protein (sGFP) and drove GFP expression with different efficiencies. In particular, the RNA and protein levels of stPTp-sGFP were slightly improved to 1.4-fold and 1.3-fold more than those of sGFP, respectively. The green fluorescent signals of their mature proteins were all observed as speckle-like patterns with slightly blurred stromal signals in chloroplasts. These discrete green speckles of PTp-sGFP and stPTp-sGFP corresponded exactly to the red fluorescent signal displayed by OsPSY2:mCherry in both etiolated and greening protoplasts and it is presumed to correspond to distinct PGs. In conclusion, we identified PTp as a transit peptide sequence facilitating preferential translocation of foreign proteins to PGs, and developed an improved PTp sequence, a stPTp, which is expected to be very useful for applications in plant biotechnologies requiring precise micro-compartmental localization in plastids.
Collapse
Affiliation(s)
- Min Kyoung You
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Korea.
- Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea.
| | - Jin Hwa Kim
- Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea.
| | - Yeo Jin Lee
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Korea.
- Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea.
| | - Ye Sol Jeong
- Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea.
| | - Sun-Hwa Ha
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Korea.
- Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea.
| |
Collapse
|
39
|
Sun TH, Zhou F, Liu CJ, Zhuang Z, Lu S. The DnaJ-like zinc finger domain protein ORANGE localizes to the nucleus in etiolated cotyledons of Arabidopsis thaliana. PROTOPLASMA 2016; 253:1599-1604. [PMID: 26634929 DOI: 10.1007/s00709-015-0919-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/25/2015] [Indexed: 05/26/2023]
Abstract
Vitamin A deficiency (VAD) is a worldwide health problem. Overexpression of the DnaJ-like zinc finger domain protein ORANGE (OR) is a novel strategy for the biofortification of pro-vitamin A carotenoids in different staple crops to alleviate VAD. In plants, OR triggers the differentiation from non-pigmented plastids into carotenoid-accumulating plastids. There are different reports on the subcellular localization of this protein in either chloroplasts or the nucleus, both of which were supported by confocal observation and protein-protein interaction results. In this work, we studied the subcellular localization of OR in the cotyledons of germinating seedlings whose plastids were transitioning from non-pigmented proplastids into carotenoid-accumulating etioplasts in the dark, and then into chloroplasts upon illumination. Our Western blot analysis identified two bands of the Arabidopsis OR protein (AtOR) from the chloroplast fraction of the mature leaves (i.e., a 34-kDa form corresponding to the full-length peptide and a 30-kDa form suggesting the removal of the N-terminal chloroplast transit peptide). We found that the full-length AtOR was predominantly localized in the nucleus in etiolated cotyledons, although its abundance decreased upon illumination. Our bioinformatics analysis indicated a nuclear localization signal (NLS) after the N-terminal chloroplast transit peptide. When we substituted different N-terminal regions of AtOR with the green fluorescent protein, our confocal observations demonstrated that this NLS was sufficient to target AtOR to the nucleus. Our results demonstrate that AtOR is a dual-targeted protein that mainly localizes in the nucleus in etiolated cotyledons.
Collapse
Affiliation(s)
- Tian-Hu Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Fei Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Chuan-Jun Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhong Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
40
|
Bai C, Berman J, Farre G, Capell T, Sandmann G, Christou P, Zhu C. Reconstruction of the astaxanthin biosynthesis pathway in rice endosperm reveals a metabolic bottleneck at the level of endogenous β-carotene hydroxylase activity. Transgenic Res 2016; 26:13-23. [DOI: 10.1007/s11248-016-9977-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/14/2016] [Indexed: 10/21/2022]
|
41
|
Arendt P, Pollier J, Callewaert N, Goossens A. Synthetic biology for production of natural and new-to-nature terpenoids in photosynthetic organisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:16-37. [PMID: 26867713 DOI: 10.1111/tpj.13138] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 05/04/2023]
Abstract
With tens of thousands of characterized members, terpenoids constitute the largest class of natural compounds that are synthesized by all living organisms. Several terpenoids play primary roles in the maintenance of cell membrane fluidity, as pigments or as phytohormones, but most of them function as specialized metabolites that are involved in plant resistance to herbivores or plant-environment interactions. Terpenoids are an essential component of human nutrition, and many are economically important pharmaceuticals, aromatics and potential next-generation biofuels. Because of the often low abundance in their natural source, as well as the demand for novel terpenoid structures with new or improved bioactivities, terpenoid biosynthesis has become a prime target for metabolic engineering and synthetic biology projects. In this review we focus on the creation of new-to-nature or tailor-made plant-derived terpenoids in photosynthetic organisms, in particular by means of combinatorial biosynthesis and the activation of silent metabolism. We reflect on the characteristics of different potential photosynthetic host organisms and recent advances in synthetic biology and discuss their utility for the (heterologous) production of (novel) terpenoids.
Collapse
Affiliation(s)
- Philipp Arendt
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, B-9000, Ghent, Belgium
- VIB Medical Biotechnology Center, B-9000, Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Nico Callewaert
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, B-9000, Ghent, Belgium
- VIB Medical Biotechnology Center, B-9000, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| |
Collapse
|
42
|
Bai C, Capell T, Berman J, Medina V, Sandmann G, Christou P, Zhu C. Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor-product balance. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:195-205. [PMID: 25857664 PMCID: PMC11389078 DOI: 10.1111/pbi.12373] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/23/2015] [Accepted: 03/02/2015] [Indexed: 05/17/2023]
Abstract
The profile of secondary metabolites in plants reflects the balance of biosynthesis, degradation and storage, including the availability of precursors and products that affect the metabolic equilibrium. We investigated the impact of the precursor-product balance on the carotenoid pathway in the endosperm of intact rice plants because this tissue does not normally accumulate carotenoids, allowing us to control each component of the pathway. We generated transgenic plants expressing the maize phytoene synthase gene (ZmPSY1) and the bacterial phytoene desaturase gene (PaCRTI), which are sufficient to produce β-carotene in the presence of endogenous lycopene β-cyclase. We combined this mini-pathway with the Arabidopsis thaliana genes AtDXS (encoding 1-deoxy-D-xylulose 5-phosphate synthase, which supplies metabolic precursors) or AtOR (the ORANGE gene, which promotes the formation of a metabolic sink). Analysis of the resulting transgenic plants suggested that the supply of isoprenoid precursors from the MEP pathway is one of the key factors limiting carotenoid accumulation in the endosperm and that the overexpression of AtOR increased the accumulation of carotenoids in part by up-regulating a series of endogenous carotenogenic genes. The identification of metabolic bottlenecks in the pathway will help to refine strategies for the creation of engineered plants with specific carotenoid profiles.
Collapse
Affiliation(s)
- Chao Bai
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Judit Berman
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Vicente Medina
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Gerhard Sandmann
- Institute of Molecular Bioscience, J. W. Goethe University, Frankfurt am Main, Germany
| | - Paul Christou
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
- Institucio Catalana de Recerca i Estudis Avancats, Passeig Lluís Companys, Barcelona, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
| |
Collapse
|
43
|
Ahrazem O, Rubio-Moraga A, Berman J, Capell T, Christou P, Zhu C, Gómez-Gómez L. The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. THE NEW PHYTOLOGIST 2016; 209:650-63. [PMID: 26377696 DOI: 10.1111/nph.13609] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/21/2015] [Indexed: 05/20/2023]
Abstract
The apocarotenoid crocetin and its glycosylated derivatives, crocins, confer the red colour to saffron. Crocetin biosynthesis in saffron is catalysed by the carotenoid cleavage dioxygenase CCD2 (AIG94929). No homologues have been identified in other plant species due to the very limited presence of crocetin and its derivatives in the plant kingdom. Spring Crocus species with yellow flowers accumulate crocins in the stigma and tepals. Four carotenoid CCDs, namely CaCCD1, CaCCD2 and CaCCD4a/b and CaCCD4c were first cloned and characterized. CaCCD2 was localized in plastids, and a longer CCD2 version, CsCCD2L, was also localized in this compartment. The activity of CaCCD2 was assessed in Escherichia coli and in a stable rice gene function characterization system, demonstrating the production of crocetin in both systems. The expression of all isolated CCDs was evaluated in stigma and tepals at three key developmental stages in relation with apocarotenoid accumulation. CaCCD2 expression parallels crocin accumulation, but C14 apocarotenoids most likely are associated to the CaCCD1 activity in Crocus ancyrensis flowers. The specific CCD2 localization and its membrane interaction will contribute to the development of a better understanding of the mechanism of crocetin biosynthesis and regulation in the chromoplast.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
- Fundación Parque Científico y Tecnológico de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
| | - Angela Rubio-Moraga
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
| | - Judit Berman
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida-Agrotecnio Center, Avenida Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Teresa Capell
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida-Agrotecnio Center, Avenida Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Paul Christou
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida-Agrotecnio Center, Avenida Alcalde Rovira Roure 191, 25198, Lleida, Spain
- Institució Catalana de Recerca i Estudis Avancats, 08010, Barcelona, Spain
| | - Changfu Zhu
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida-Agrotecnio Center, Avenida Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Lourdes Gómez-Gómez
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
| |
Collapse
|
44
|
Gayen D, Ghosh S, Paul S, Sarkar SN, Datta SK, Datta K. Metabolic Regulation of Carotenoid-Enriched Golden Rice Line. FRONTIERS IN PLANT SCIENCE 2016; 7:1622. [PMID: 27840631 PMCID: PMC5083848 DOI: 10.3389/fpls.2016.01622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/13/2016] [Indexed: 05/21/2023]
Abstract
Vitamin A deficiency (VAD) is the leading cause of blindness among children and is associated with high risk of maternal mortality. In order to enhance the bioavailability of vitamin A, high carotenoid transgenic golden rice has been developed by manipulating enzymes, such as phytoene synthase (psy) and phytoene desaturase (crtI). In this study, proteome and metabolite analyses were carried out to comprehend metabolic regulation and adaptation of transgenic golden rice after the manipulation of endosperm specific carotenoid pathways. The main alteration was observed in carbohydrate metabolism pathways of the transgenic seeds. The 2D based proteomic studies demonstrated that carbohydrate metabolism-related enzymes, such as pullulanase, UDP-glucose pyrophosphorylase, and glucose-1-phosphate adenylyltransferase, were primarily up-regulated in transgenic rice seeds. In addition, the enzyme PPDK was also elevated in transgenic seeds thus enhancing pyruvate biosynthesis, which is the precursor in the carotenoids biosynthetic pathway. GC-MS based metabolite profiling demonstrated an increase in the levels of glyceric acid, fructo-furanose, and galactose, while decrease in galactonic acid and gentiobiose in the transgenic rice compared to WT. It is noteworthy to mention that the carotenoid content, especially β-carotene level in transgenic rice (4.3 μg/g) was significantly enhanced. The present study highlights the metabolic adaptation process of a transgenic golden rice line (homozygous T4 progeny of SKBR-244) after enhancing carotenoid biosynthesis. The presented information would be helpful in the development of crops enriched in carotenoids by expressing metabolic flux of pyruvate biosynthesis.
Collapse
Affiliation(s)
- Dipak Gayen
- Laboratory for Translational Research on Transgenic Crops, Department of Botany, University of CalcuttaKolkata, India
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Subhrajyoti Ghosh
- Laboratory for Translational Research on Transgenic Crops, Department of Botany, University of CalcuttaKolkata, India
| | - Soumitra Paul
- Laboratory for Translational Research on Transgenic Crops, Department of Botany, University of CalcuttaKolkata, India
| | - Sailendra N. Sarkar
- Laboratory for Translational Research on Transgenic Crops, Department of Botany, University of CalcuttaKolkata, India
| | - Swapan K. Datta
- Laboratory for Translational Research on Transgenic Crops, Department of Botany, University of CalcuttaKolkata, India
- Department of Crop Sciences, Institute of Agriculture, Visva Bharati UniversitySantiniketan, India
| | - Karabi Datta
- Laboratory for Translational Research on Transgenic Crops, Department of Botany, University of CalcuttaKolkata, India
- *Correspondence: Karabi Datta
| |
Collapse
|
45
|
Lado J, Cronje P, Alquézar B, Page A, Manzi M, Gómez-Cadenas A, Stead AD, Zacarías L, Rodrigo MJ. Fruit shading enhances peel color, carotenes accumulation and chromoplast differentiation in red grapefruit. PHYSIOLOGIA PLANTARUM 2015; 154:469-84. [PMID: 25676857 DOI: 10.1111/ppl.12332] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/14/2015] [Accepted: 02/02/2015] [Indexed: 05/06/2023]
Abstract
The distinctive color of red grapefruits is due to lycopene, an unusual carotene in citrus. It has been observed that red 'Star Ruby' (SR) grapefruits grown inside the tree canopy develop a more intense red coloration than those exposed to higher light intensities. To investigate the effect of light on SR peel pigmentation, fruit were bagged or exposed to normal photoperiodic conditions, and changes in carotenoids, expression of carotenoid biosynthetic genes and plastid ultrastructure in the peel were analyzed. Light avoidance accelerated chlorophyll breakdown and induced carotenoid accumulation, rendering fruits with an intense coloration. Remarkably, lycopene levels in the peel of shaded fruits were 49-fold higher than in light-exposed fruit while concentrations of downstream metabolites were notably reduced, suggesting a bottleneck at the lycopene cyclization in the biosynthetic pathway. Paradoxically, this increment in carotenoids in covered fruit was not mirrored by changes in mRNA levels of carotenogenic genes, which were mostly up-regulated by light. In addition, covered fruits experienced profound changes in chromoplast differentiation, and the relative expression of genes related to chromoplast development was enhanced. Ultrastructural analysis of plastids revealed an acceleration of chloroplasts to chromoplast transition in the peel of covered fruits concomitantly with development of lycopene crystals and plastoglobuli. In this sense, an accelerated differentiation of chromoplasts may provide biosynthetic capacity and a sink for carotenoids without involving major changes in transcript levels of carotenogenic genes. Light signals seem to regulate carotenoid accumulation at the molecular and structural level by influencing both biosynthetic capacity and sink strength.
Collapse
Affiliation(s)
- Joanna Lado
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- Instituto Nacional de Investigación Agropecuaria (INIA), Salto, Uruguay
| | - Paul Cronje
- Citrus Research International (CRI), Department of Horticultural Science, Stellenbosch University, Stellenbosch, South Africa
| | - Berta Alquézar
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-UPV, Valencia, Spain
| | - Anton Page
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Matías Manzi
- Ecofisiología y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universidad Jaume I de Castellón, Castellón de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Ecofisiología y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universidad Jaume I de Castellón, Castellón de la Plana, Spain
| | | | - Lorenzo Zacarías
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - María Jesús Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
46
|
Wang Z, Ke Q, Kim MD, Kim SH, Ji CY, Jeong JC, Lee HS, Park WS, Ahn MJ, Li H, Xu B, Deng X, Lee SH, Lim YP, Kwak SS. Transgenic alfalfa plants expressing the sweetpotato Orange gene exhibit enhanced abiotic stress tolerance. PLoS One 2015; 10:e0126050. [PMID: 25946429 PMCID: PMC4422619 DOI: 10.1371/journal.pone.0126050] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/28/2015] [Indexed: 11/30/2022] Open
Abstract
Alfalfa (Medicago sativa L.), a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr) is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stress tolerance of alfalfa, we transferred the IbOr gene into alfalfa (cv. Xinjiang Daye) under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter through Agrobacterium tumefaciens-mediated transformation. Among the 11 transgenic alfalfa lines (referred to as SOR plants), three lines (SOR2, SOR3, and SOR8) selected based on their IbOr transcript levels were examined for their tolerance to methyl viologen (MV)-induced oxidative stress in a leaf disc assay. The SOR plants exhibited less damage in response to MV-mediated oxidative stress and salt stress than non-transgenic plants. The SOR plants also exhibited enhanced tolerance to drought stress, along with higher total carotenoid levels. The results suggest that SOR alfalfa plants would be useful as forage crops with improved nutritional value and increased tolerance to multiple abiotic stresses, which would enhance the development of sustainable agriculture on marginal lands.
Collapse
Affiliation(s)
- Zhi Wang
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305–4432, Korea
- Department of Horticulture, Chungnam National University, Daejeon, Korea
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Yangling, Shaanxi, P.R. China
| | - Qingbo Ke
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305–4432, Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science & Technology, Daejeon, Korea
| | - Myoung Duck Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305–4432, Korea
| | - Sun Ha Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305–4432, Korea
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305–4432, Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science & Technology, Daejeon, Korea
| | - Jae Cheol Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305–4432, Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science & Technology, Daejeon, Korea
| | - Haeng-Soon Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305–4432, Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science & Technology, Daejeon, Korea
| | - Woo Sung Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Korea
| | - Hongbing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Yangling, Shaanxi, P.R. China
| | - Bingcheng Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Yangling, Shaanxi, P.R. China
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Yangling, Shaanxi, P.R. China
| | - Sang-Hoon Lee
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Korea
| | - Yong Pyo Lim
- Department of Horticulture, Chungnam National University, Daejeon, Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305–4432, Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science & Technology, Daejeon, Korea
| |
Collapse
|
47
|
Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proc Natl Acad Sci U S A 2015; 112:3558-63. [PMID: 25675505 DOI: 10.1073/pnas.1420831112] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carotenoids are indispensable natural pigments to plants and humans. Phytoene synthase (PSY), the rate-limiting enzyme in the carotenoid biosynthetic pathway, and ORANGE (OR), a regulator of chromoplast differentiation and enhancer of carotenoid biosynthesis, represent two key proteins that control carotenoid biosynthesis and accumulation in plants. However, little is known about the mechanisms underlying their posttranscriptional regulation. Here we report that PSY and OR family proteins [Arabidopsis thaliana OR (AtOR) and AtOR-like] physically interacted with each other in plastids. We found that alteration of OR expression in Arabidopsis exerted minimal effect on PSY transcript abundance. However, overexpression of AtOR significantly increased the amount of enzymatically active PSY, whereas an ator ator-like double mutant exhibited a dramatically reduced PSY level. The results indicate that the OR proteins serve as the major posttranscriptional regulators of PSY. The ator or ator-like single mutant had little effect on PSY protein levels, which involves a compensatory mechanism and suggests partial functional redundancy. In addition, modification of PSY expression resulted in altered AtOR protein levels, corroborating a mutual regulation of PSY and OR. Carotenoid content showed a correlated change with OR-mediated PSY level, demonstrating the function of OR in controlling carotenoid biosynthesis by regulating PSY. Our findings reveal a novel mechanism by which carotenoid biosynthesis is controlled via posttranscriptional regulation of PSY in plants.
Collapse
|
48
|
Cao H, Wang J, Dong X, Han Y, Ma Q, Ding Y, Zhao F, Zhang J, Chen H, Xu Q, Xu J, Deng X. Carotenoid accumulation affects redox status, starch metabolism, and flavonoid/anthocyanin accumulation in citrus. BMC PLANT BIOLOGY 2015; 15:27. [PMID: 25644332 PMCID: PMC4323224 DOI: 10.1186/s12870-015-0426-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/15/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND Carotenoids are indispensable plant secondary metabolites that are involved in photosynthesis, antioxidation, and phytohormone biosynthesis. Carotenoids are likely involved in other biological functions that have yet to be discovered. In this study, we integrated genomic, biochemical, and cellular studies to gain deep insight into carotenoid-related biological processes in citrus calli overexpressing CrtB (phytoene synthase from Pantoea agglomerans). Fortunella hindsii Swingle (a citrus relative) and Malus hupehensis (a wild apple) calli were also utilized as supporting systems to investigate the effect of altered carotenoid accumulation on carotenoid-related biological processes. RESULTS Transcriptomic analysis provided deep insight into the carotenoid-related biological processes of redox status, starch metabolism, and flavonoid/anthocyanin accumulation. By applying biochemical and cytological analyses, we determined that the altered redox status was associated with variations in O2 (-) and H2O2 levels. We also ascertained a decline in starch accumulation in carotenoid-rich calli. Furthermore, via an extensive cellular investigation of the newly constructed CrtB overexpressing Fortunella hindsii Swingle, we demonstrated that starch level reducation occurred in parallel with significant carotenoid accumulation. Moreover, studying anthocyanin-rich Malus hupehensis calli showed a negative effect of carotenoids on anthocyanin accumulation. CONCLUSIONS In citrus, altered carotenoid accumulation resulted in dramatic effects on metabolic processes involved in redox modification, starch degradation, and flavonoid/anthocyanin biosynthesis. These findings provided new perspectives to understand the biological importance of carotenogenesis and of the developmental processes associated with the nutritional and sensory qualities of agricultural products that accumulate carotenoids.
Collapse
Affiliation(s)
- Hongbo Cao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- College of Horticulture, Agricultural University of Hebei, 071001, Baoding, Hebei, China.
| | - Jiangbo Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- Present address: College of Plant Science, Tarim University, 843300, Alar, China.
| | - Xintian Dong
- College of Horticulture, Agricultural University of Hebei, 071001, Baoding, Hebei, China.
| | - Yan Han
- College of Horticulture, Agricultural University of Hebei, 071001, Baoding, Hebei, China.
| | - Qiaoli Ma
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Yuduan Ding
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Fei Zhao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Jiancheng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- Present address: Shanxi Agricultural University, 030801, Taigu, Shanxi, China.
| | - Haijiang Chen
- College of Horticulture, Agricultural University of Hebei, 071001, Baoding, Hebei, China.
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| |
Collapse
|
49
|
High-value products from plants: the challenges of process optimization. Curr Opin Biotechnol 2015; 32:156-162. [PMID: 25562816 DOI: 10.1016/j.copbio.2014.12.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 11/20/2022]
Abstract
Plants can be used to produce a diverse repertoire of complex small-molecule compounds and recombinant proteins that are valuable as industrial and pharmaceutical products. But as we move from proof-of-principle experiments and begin to consider the realistic prospects of commercial production, the focus must shift from the achievement of target molecule production and move towards quality, purity and yield aspects that determine commercial feasibility. This review describes some of the recent advances that have been implemented to improve the development of integrated production processes for high-value molecules expressed in plants, including the introduction of novel procedures to increase the likelihood of regulatory acceptance.
Collapse
|
50
|
Park SC, Kim SH, Park S, Lee HU, Lee JS, Park WS, Ahn MJ, Kim YH, Jeong JC, Lee HS, Kwak SS. Enhanced accumulation of carotenoids in sweetpotato plants overexpressing IbOr-Ins gene in purple-fleshed sweetpotato cultivar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 86:82-90. [PMID: 25438140 DOI: 10.1016/j.plaphy.2014.11.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/20/2014] [Indexed: 05/21/2023]
Abstract
Sweetpotato [Ipomoea batatas (L.) Lam] is an important root crop that produces low molecular weight antioxidants such as carotenoids and anthocyanin. The sweetpotato orange (IbOr) protein is involved in the accumulation of carotenoids. To increase the levels of carotenoids in the storage roots of sweetpotato, we generated transgenic sweetpotato plants overexpressing IbOr-Ins under the control of the cauliflower mosaic virus (CaMV) 35S promoter in an anthocyanin-rich purple-fleshed cultivar (referred to as IbOr plants). IbOr plants exhibited increased carotenoid levels (up to 7-fold) in their storage roots compared to wild type (WT) plants, as revealed by HPLC analysis. The carotenoid contents of IbOr plants were positively correlated with IbOr transcript levels. The levels of zeaxanthin were ∼ 12 times elevated in IbOr plants, whereas β-carotene increased ∼ 1.75 times higher than those of WT. Quantitative RT-PCR analysis revealed that most carotenoid biosynthetic pathway genes were up-regulated in the IbOr plants, including PDS, ZDS, LCY-β, CHY-β, ZEP and Pftf, whereas LCY-ɛ was down-regulated. Interestingly, CCD1, CCD4 and NCED, which are related to the degradation of carotenoids, were also up-regulated in the IbOr plants. Anthocyanin contents and transcription levels of associated biosynthetic genes seemed to be altered in the IbOr plants. The yields of storage roots and aerial parts of IbOr plants and WT plants were not significantly different under field cultivation. Taken together, these results indicate that overexpression of IbOr-Ins can increase the carotenoid contents of sweetpotato storage roots.
Collapse
Affiliation(s)
- Sung-Chul Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), Daejeon 305-350, Republic of Korea
| | - Sun Ha Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Seyeon Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), Daejeon 305-350, Republic of Korea
| | - Hyeong-Un Lee
- Bioenergy Crop Research Center, National Institute of Crop Science, Rural Development Administration, Muan 534-833, Republic of Korea
| | - Joon Seol Lee
- Bioenergy Crop Research Center, National Institute of Crop Science, Rural Development Administration, Muan 534-833, Republic of Korea
| | - Woo Sung Park
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Yun-Hee Kim
- Department of Biology Education, College of Education, IALS, PMBBRC, Gyeongsang Naional University, Jinju 660-701, Republic of Korea
| | - Jae Cheol Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Haeng-Soon Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), Daejeon 305-350, Republic of Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), Daejeon 305-350, Republic of Korea.
| |
Collapse
|