1
|
Zhou L, Gao G, Tang R, Liu J, Wang Y, Liang Z, Tian S, Qin G. Redox modification of m 6A demethylase SlALKBH2 in tomato regulates fruit ripening. NATURE PLANTS 2025; 11:218-233. [PMID: 39794492 DOI: 10.1038/s41477-024-01893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/04/2024] [Indexed: 01/13/2025]
Abstract
Hydrogen peroxide (H2O2) functions as a critical signalling molecule in controlling multiple biological processes. How H2O2 signalling integrates with other regulatory pathways such as epigenetic modification to coordinately regulate plant development remains elusive. Here we report that SlALKBH2, an m6A demethylase required for normal ripening of tomato fruit, is sensitive to oxidative modification by H2O2, which leads to the formation of homodimers mediated by intermolecular disulfide bonds, and Cys39 serves as a key site in this process. The oxidation of SlALKBH2 promotes protein stability and facilitates its function towards the target transcripts including the pivotal ripening gene SlDML2 encoding a DNA demethylase. Furthermore, we demonstrate that the thioredoxin reductase SlNTRC interacts with SlALKBH2 and catalyses its reduction, thereby modulating m6A levels and fruit ripening. Our study establishes a molecular link between H2O2 and m6A methylation and highlights the importance of redox regulation of m6A modifiers in controlling fruit ripening.
Collapse
Affiliation(s)
- Leilei Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Guangtong Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Renkun Tang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinying Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuying Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guozheng Qin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Yi F, Gu W, Li J, Chen J, Hu L, Cui Y, Zhao H, Guo Y, Lai J, Song W. Miniature Seed6, encoding an endoplasmic reticulum signal peptidase, is critical in seed development. PLANT PHYSIOLOGY 2021; 185:985-1001. [PMID: 33793873 PMCID: PMC8133640 DOI: 10.1093/plphys/kiaa060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/15/2020] [Indexed: 05/15/2023]
Abstract
Endoplasmic reticulum (ER) type I signal peptidases (ER SPases I) are vital proteases that cleave signal peptides from secreted proteins. However, the specific function of ER SPase I in plants has not been genetically characterized, and the substrate is largely unknown. Here, we report the identification of a maize (Zea mays) miniature seed6 (mn6) mutant. The loss-of-function mn6 mutant exhibited severely reduced endosperm size. Map-based cloning and molecular characterization indicated that Mn6 is an S26-family ER SPase I, with Gly102 (box E) in Mn6 critical for protein function during processing. Mass spectrometric and immunoprecipitation analyses revealed that Mn6 is predominantly involved in processing carbohydrate synthesis-related proteins, including the cell wall invertase miniature seed1 (Mn1), which is specifically expressed in the basal endosperm transfer layer. RNA and protein expression levels of Mn1 were both significantly downregulated in the mn6 mutant. Due to the significant reduction in cell wall invertase activity in the transfer cell layer, mutation of Mn6 caused dramatic defects in endosperm development. These results suggest that proper maturation of Mn1 by Mn6 may be a crucial step for proper seed filling and maize development.
Collapse
Affiliation(s)
- Fei Yi
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Wei Gu
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Jianfang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Jian Chen
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Li Hu
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Yang Cui
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Haiming Zhao
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Weibin Song
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Author for communication:
| |
Collapse
|
3
|
Mukherjee S. Cysteine modifications (oxPTM) and protein sulphenylation-mediated sulfenome expression in plants: evolutionary conserved signaling networks? PLANT SIGNALING & BEHAVIOR 2021; 16:1831792. [PMID: 33300450 PMCID: PMC7781837 DOI: 10.1080/15592324.2020.1831792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant resilience to oxidative stress possibly operates through the restoration of intracellular redox milieu and the activity of various posttranslationally modified proteins. Among various modes of redox regulation operative in plants cys oxPTMs are brought about by the activity of reactive oxygen species (ROS), reactive nitrogen species (RNS), and hydrogen peroxide. Cysteine oxPTMs are capable of transducing ROS-mediated long-distance hormone signaling (ABA, JA, SA) in plants. S-sulphenylation is an intermediary modification en route to other oxidative states of cysteine. In silico analysis have revealed evolutionary conservation of certain S-sulphenylated proteins across human and plants. Further analysis of protein sulphenylation in plants should be extended to the functional follow-up studies followed by site-specific characterization and case-by-case validation of protein activity. The repertoire of physiological methods (fluorescent conjugates (dimedone) and yeast AP-1 (YAP1)-based genetic probes) in the recent past has been successful in the detection of sulphenylated proteins and other cysteine-based modifications in plants. In view of a better understanding of the sulfur-based redoxome it is necessary to update our timely progress on the methodological advancements for the detection of cysteine-based oxPTM. This substantiative information can extend our investigations on plant-environment interaction thus improving crop manipulation strategies. The simulation-based computational approach has emerged as a new method to determine the directive mechanism of cysteine oxidation in plants. Thus, sulfenome analysis in various plant systems might reflect as a pinnacle of plant redox biology in the future.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West, Bengal, India
- CONTACT Soumya Mukherjee Department of Botany, Jangipur College, University of Kalyani, West, Bengal742213, India
| |
Collapse
|
4
|
Abstract
The past several decades have witnessed tremendous growth in the protein targeting, transport and translocation field. Major advances were made during this time period. Now the molecular details of the targeting factors, receptors and the membrane channels that were envisioned in Blobel's Signal Hypothesis in the 1970s have been revealed by powerful structural methods. It is evident that there is a myriad of cytosolic and membrane associated systems that accurately sort and target newly synthesized proteins to their correct membrane translocases for membrane insertion or protein translocation. Here we will describe the common principles for protein transport in prokaryotes and eukaryotes.
Collapse
|
5
|
Hey D, Grimm B. Requirement of ONE-HELIX PROTEIN 1 (OHP1) in early Arabidopsis seedling development and under high light intensity. PLANT SIGNALING & BEHAVIOR 2018; 13:e1550317. [PMID: 30489183 PMCID: PMC6296352 DOI: 10.1080/15592324.2018.1550317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant ONE-HELIX PROTEINS (OHPs) are part of the light-harvesting complex superfamily whose members are involved in various processes related to sensing and capturing light as well as light protection. We recently showed the requirement of a functional OHP1-OHP2 heterodimer for efficient D1 synthesis. Interestingly, while the ohp1 knockout mutant showed a strong defect in accumulation of the photosystem II and is hardly viable, virus-induced gene silencing of OHP1 had no detectable impact on plant growth and performance under standard growth conditions. However, in vivo labeling assays with 35S-methionine indicate a reduced D1 synthesis rate. Here, we show that VIGS-OHP1 plants are more susceptible towards elevated light intensities than control plants. This underlines an obligatory function of OHP1 for light acclimation.
Collapse
Affiliation(s)
- Daniel Hey
- Lebenswissenschaftliche Fakultät, Institut für Biologie, AG Pflanzenphysiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bernhard Grimm
- Lebenswissenschaftliche Fakultät, Institut für Biologie, AG Pflanzenphysiologie, Humboldt-Universität zu Berlin, Berlin, Germany
- CONTACT Bernhard Grimm Lebenswissenschaftliche Fakultät, Institut für Biologie, AG Pflanzenphysiologie, Humboldt-Universität zu Berlin, Philippstrasse 13, Berlin 10115, Germany
| |
Collapse
|
6
|
Nishimura K, Kato Y, Sakamoto W. Essentials of Proteolytic Machineries in Chloroplasts. MOLECULAR PLANT 2017; 10:4-19. [PMID: 27585878 DOI: 10.1016/j.molp.2016.08.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/17/2016] [Accepted: 08/21/2016] [Indexed: 05/22/2023]
Abstract
Plastids are unique organelles that can alter their structure and function in response to environmental and developmental stimuli. Chloroplasts are one type of plastid and are the sites for various metabolic processes, including photosynthesis. For optimal photosynthetic activity, the chloroplast proteome must be properly shaped and maintained through regulated proteolysis and protein quality control mechanisms. Enzymatic functions and activities are conferred by protein maturation processes involving consecutive proteolytic reactions. Protein abundances are optimized by the balanced protein synthesis and degradation, which is depending on the metabolic status. Malfunctioning proteins are promptly degraded. Twenty chloroplast proteolytic machineries have been characterized to date. Specifically, processing peptidases and energy-driven processive proteases are the major players in chloroplast proteome biogenesis, remodeling, and maintenance. Recently identified putative proteases are potential regulators of photosynthetic functions. Here we provide an updated, comprehensive overview of chloroplast protein degradation machineries and discuss their importance for photosynthesis. Wherever possible, we also provide structural insights into chloroplast proteases that implement regulated proteolysis of substrate proteins/peptides.
Collapse
Affiliation(s)
- Kenji Nishimura
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Yusuke Kato
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan.
| |
Collapse
|
7
|
Endow JK, Rocha AG, Baldwin AJ, Roston RL, Yamaguchi T, Kamikubo H, Inoue K. Polyglycine Acts as a Rejection Signal for Protein Transport at the Chloroplast Envelope. PLoS One 2016; 11:e0167802. [PMID: 27936133 PMCID: PMC5147994 DOI: 10.1371/journal.pone.0167802] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/21/2016] [Indexed: 11/19/2022] Open
Abstract
PolyGly is present in many proteins in various organisms. One example is found in a transmembrane β-barrel protein, translocon at the outer-envelope-membrane of chloroplasts 75 (Toc75). Toc75 requires its N-terminal extension (t75) for proper localization. t75 comprises signals for chloroplast import (n75) and envelope sorting (c75) in tandem. n75 and c75 are removed by stromal processing peptidase and plastidic type I signal peptidase 1, respectively. PolyGly is present within c75 and its deletion or substitution causes mistargeting of Toc75 to the stroma. Here we have examined the properties of polyGly-dependent protein targeting using two soluble passenger proteins, the mature portion of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (mSS) and enhanced green fluorescent protein (EGFP). Both t75-mSS and t75-EGFP were imported into isolated chloroplasts and their n75 removed. Resultant c75-mSS was associated with the envelope at the intermembrane space, whereas c75-EGFP was partially exposed outside the envelope. Deletion of polyGly or substitution of tri-Ala for the critical tri-Gly segment within polyGly caused each passenger to be targeted to the stroma. Transient expression of t75-EGFP in Nicotiana benthamiana resulted in accumulation of c75-EGFP exposed at the surface of the chloroplast, but the majority of the EGFP passenger was found free in the cytosol with most of its c75 attachment removed. Results of circular dichroism analyses suggest that polyGly within c75 may form an extended conformation, which is disrupted by tri-Ala substitution. These data suggest that polyGly is distinct from a canonical stop-transfer sequence and acts as a rejection signal at the chloroplast inner envelope.
Collapse
Affiliation(s)
- Joshua K. Endow
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, California, United States of America
| | - Agostinho Gomes Rocha
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, California, United States of America
| | - Amy J. Baldwin
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, California, United States of America
| | - Rebecca L. Roston
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, California, United States of America
| | - Toshio Yamaguchi
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, California, United States of America
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Kentaro Inoue
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, California, United States of America
| |
Collapse
|
8
|
Klasek L, Inoue K. Dual Protein Localization to the Envelope and Thylakoid Membranes Within the Chloroplast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 323:231-63. [PMID: 26944623 DOI: 10.1016/bs.ircmb.2015.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The chloroplast houses various metabolic processes essential for plant viability. This organelle originated from an ancestral cyanobacterium via endosymbiosis and maintains the three membranes of its progenitor. Among them, the outer envelope membrane functions mainly in communication with cytoplasmic components while the inner envelope membrane houses selective transport of various metabolites and the biosynthesis of several compounds, including membrane lipids. These two envelope membranes also play essential roles in import of nuclear-encoded proteins and in organelle division. The third membrane, the internal membrane system known as the thylakoid, houses photosynthetic electron transport and chemiosmotic phosphorylation. The inner envelope and thylakoid membranes share similar lipid composition. Specific targeting pathways determine their defined proteomes and, thus, their distinct functions. Nonetheless, several proteins have been shown to exist in both the envelope and thylakoid membranes. These proteins include those that play roles in protein transport, tetrapyrrole biosynthesis, membrane dynamics, or transport of nucleotides or inorganic phosphate. In this review, we summarize the current knowledge about proteins localized to both the envelope and thylakoid membranes in the chloroplast, discussing their roles in each membrane and potential mechanisms of their dual localization. Addressing the unanswered questions about these dual-localized proteins should help advance our understanding of chloroplast development, protein transport, and metabolic regulation.
Collapse
Affiliation(s)
- Laura Klasek
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States of America
| | - Kentaro Inoue
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States of America.
| |
Collapse
|
9
|
Endow JK, Singhal R, Fernandez DE, Inoue K. Chaperone-assisted Post-translational Transport of Plastidic Type I Signal Peptidase 1. J Biol Chem 2015; 290:28778-91. [PMID: 26446787 DOI: 10.1074/jbc.m115.684829] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Indexed: 01/19/2023] Open
Abstract
Type I signal peptidase (SPase I) is an integral membrane Ser/Lys protease with one or two transmembrane domains (TMDs), cleaving transport signals off translocated precursor proteins. The catalytic domain of SPase I folds to form a hydrophobic surface and inserts into the lipid bilayers at the trans-side of the membrane. In bacteria, SPase I is targeted co-translationally, and the catalytic domain remains unfolded until it reaches the periplasm. By contrast, SPases I in eukaryotes are targeted post-translationally, requiring an alternative strategy to prevent premature folding. Here we demonstrate that two distinct stromal components are involved in post-translational transport of plastidic SPase I 1 (Plsp1) from Arabidopsis thaliana, which contains a single TMD. During import into isolated chloroplasts, Plsp1 was targeted to the membrane via a soluble intermediate in an ATP hydrolysis-dependent manner. Insertion of Plsp1 into isolated chloroplast membranes, by contrast, was found to occur by two distinct mechanisms. The first mechanism requires ATP hydrolysis and the protein conducting channel cpSecY1 and was strongly enhanced by exogenously added cpSecA1. The second mechanism was independent of nucleoside triphosphates and proteinaceous components but with a high frequency of mis-orientation. This unassisted insertion was inhibited by urea and stroma extract. During import-chase assays using intact chloroplasts, Plsp1 was incorporated into a soluble 700-kDa complex that co-migrated with the Cpn60 complex before inserting into the membrane. The TMD within Plsp1 was required for the cpSecA1-dependent insertion but was dispensable for association with the 700-kDa complex and also for unassisted membrane insertion. These results indicate cooperation of Cpn60 and cpSecA1 for proper membrane insertion of Plsp1 by cpSecY1.
Collapse
Affiliation(s)
- Joshua K Endow
- From the Department of Plant Sciences, University of California, Davis, California 95616 and
| | - Rajneesh Singhal
- the Department of Botany, University of Wisconsin, Madison, Wisconsin 53706
| | - Donna E Fernandez
- the Department of Botany, University of Wisconsin, Madison, Wisconsin 53706
| | - Kentaro Inoue
- From the Department of Plant Sciences, University of California, Davis, California 95616 and
| |
Collapse
|
10
|
Waszczak C, Akter S, Jacques S, Huang J, Messens J, Van Breusegem F. Oxidative post-translational modifications of cysteine residues in plant signal transduction. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2923-34. [PMID: 25750423 DOI: 10.1093/jxb/erv084] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plants, fluctuation of the redox balance by altered levels of reactive oxygen species (ROS) can affect many aspects of cellular physiology. ROS homeostasis is governed by a diversified set of antioxidant systems. Perturbation of this homeostasis leads to transient or permanent changes in the redox status and is exploited by plants in different stress signalling mechanisms. Understanding how plants sense ROS and transduce these stimuli into downstream biological responses is still a major challenge. ROS can provoke reversible and irreversible modifications to proteins that act in diverse signalling pathways. These oxidative post-translational modifications (Ox-PTMs) lead to oxidative damage and/or trigger structural alterations in these target proteins. Characterization of the effect of individual Ox-PTMs on individual proteins is the key to a better understanding of how cells interpret the oxidative signals that arise from developmental cues and stress conditions. This review focuses on ROS-mediated Ox-PTMs on cysteine (Cys) residues. The Cys side chain, with its high nucleophilic capacity, appears to be the principle target of ROS. Ox-PTMs on Cys residues participate in various signalling cascades initiated by plant stress hormones. We review the mechanistic aspects and functional consequences of Cys Ox-PTMs on specific target proteins in view of stress signalling events.
Collapse
Affiliation(s)
- Cezary Waszczak
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium * Present address: Division of Plant Biology, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Salma Akter
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium Faculty of Biological Sciences, University of Dhaka, 1000 Dhaka, Bangladesh
| | - Silke Jacques
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Gent, Belgium Department of Medical Protein Research, VIB, 9000 Gent, Belgium
| | - Jingjing Huang
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
11
|
Plastid intramembrane proteolysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:910-4. [PMID: 25528366 DOI: 10.1016/j.bbabio.2014.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 01/25/2023]
Abstract
Progress in the field of regulated intramembrane proteolysis (RIP) in recent years has not surpassed plant biology. Nevertheless, reports on RIP in plants, and especially in chloroplasts, are still scarce. Of the four different families of intramembrane proteases, only two have been linked to chloroplasts so far, rhomboids and site-2 proteases (S2Ps). The lack of chloroplast-located rhomboid proteases was associated with reduced fertility and aberrations in flower morphology, probably due to perturbations in jasmonic acid biosynthesis, which occurs in chloroplasts. Mutations in homologues of S2P resulted in chlorophyll deficiency and impaired chloroplast development, through a yet unknown mechanism. To date, the only known substrate of RIP in chloroplasts is a PHD transcription factor, located in the envelope. Upon proteolytic cleavage by an unknown protease, the soluble N-terminal domain of this protein is released from the membrane and relocates to the nucleus, where it activates the transcription of the ABA response gene ABI4. Continuing studies on these proteases and substrates, as well as identification of the genes responsible for different chloroplast mutant phenotypes, are expected to shed more light on the roles of intramembrane proteases in chloroplast biology.
Collapse
|
12
|
Day PM, Potter D, Inoue K. Evolution and targeting of Omp85 homologs in the chloroplast outer envelope membrane. FRONTIERS IN PLANT SCIENCE 2014; 5:535. [PMID: 25352854 PMCID: PMC4195282 DOI: 10.3389/fpls.2014.00535] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/19/2014] [Indexed: 05/20/2023]
Abstract
Translocon at the outer-envelope-membrane of chloroplasts 75 (Toc75) is the core component of the chloroplast protein import machinery. It belongs to the Omp85 family whose members exist in various Gram-negative bacteria, mitochondria, and chloroplasts of eukaryotes. Chloroplasts of Viridiplantae contain another Omp85 homolog called outer envelope protein 80 (OEP80), whose exact function is unknown. In addition, the Arabidopsis thaliana genome encodes truncated forms of Toc75 and OEP80. Multiple studies have shown a common origin of the Omp85 homologs of cyanobacteria and chloroplasts but their results about evolutionary relationships among cyanobacterial Omp85 (cyanoOmp85), Toc75, and OEP80 are inconsistent. The bipartite targeting sequence-dependent sorting of Toc75 has been demonstrated but the targeting mechanisms of other chloroplast Omp85 homologs remain largely unexplored. This study was aimed to address these unresolved issues in order to further our understanding of chloroplast evolution. Sequence alignments and recently determined structures of bacterial Omp85 homologs were used to predict structures of chloroplast Omp85 homologs. The results enabled us to identify amino acid residues that may indicate functional divergence of Toc75 from cyanoOmp85 and OEP80. Phylogenetic analyses using Omp85 homologs from various cyanobacteria and chloroplasts provided strong support for the grouping of Toc75 and OEP80 sister to cyanoOmp85. However, this support was diminished when the analysis included Omp85 homologs from other bacteria and mitochondria. Finally, results of import assays using isolated chloroplasts support outer membrane localization of OEP80tr and indicate that OEP80 may carry a cleavable targeting sequence.
Collapse
Affiliation(s)
| | | | - Kentaro Inoue
- *Correspondence: Kentaro Inoue, Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA e-mail:
| |
Collapse
|