1
|
Mathieu S, Lesch E, Garcia S, Graindorge S, Schallenberg-Rüdinger M, Hammani K. De novo RNA base editing in plant organelles with engineered synthetic P-type PPR editing factors. Nucleic Acids Res 2025; 53:gkaf279. [PMID: 40207624 PMCID: PMC11983096 DOI: 10.1093/nar/gkaf279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/06/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
In plant mitochondria and chloroplasts, cytidine-to-uridine RNA editing is necessary for the production of functional proteins. While natural PLS-type PPR proteins are specialized in this process, synthetic PPR proteins offer significant potential for targeted RNA editing. In this study, we engineered chimeric editing factors by fusing synthetic P-type PPR guides with the DYW cytidine deaminase domain of a moss mitochondrial editing factor, PPR56. These designer PPR editors (dPPRe) elicited efficient and precise de novo RNA editing in Escherichia coli as well as in the chloroplasts and mitochondria of Nicotiana benthamiana. Chloroplast transcriptome-wide analysis of the most efficient dPPRe revealed minimal off-target effects, with only three nontarget C sites edited due to sequence similarity with the intended target. This study introduces a novel and precise method for RNA base editing in plant organelles, paving the way for new approaches in gene regulation applicable to plants and potentially other organisms.
Collapse
Affiliation(s)
- Sébastien Mathieu
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Elena Lesch
- Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, 53115 Bonn, Germany
| | - Shahinez Garcia
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Stéfanie Graindorge
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Mareike Schallenberg-Rüdinger
- Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, 53115 Bonn, Germany
| | - Kamel Hammani
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
2
|
Wang Y, Tan BC. Pentatricopeptide repeat proteins in plants: Cellular functions, action mechanisms, and potential applications. PLANT COMMUNICATIONS 2025; 6:101203. [PMID: 39644091 PMCID: PMC11897456 DOI: 10.1016/j.xplc.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Pentatricopeptide repeat (PPR) proteins are involved in nearly all aspects of post-transcriptional processing in plant mitochondria and plastids, playing vital roles in plant growth, development, cytoplasmic male sterility restoration, and responses to biotic and abiotic stresses. Over the last three decades, significant advances have been made in understanding the functions of PPR proteins and the primary mechanisms through which they mediate post-transcriptional processing. This review aims to summarize these advancements, highlighting the mechanisms by which PPR proteins facilitate RNA editing, intron splicing, and RNA maturation in the context of organellar gene expression. We also present the latest progress in PPR engineering and discuss its potential as a biotechnological tool. Additionally, we discuss key challenges and questions that remain in PPR research.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Hu YX, Huang A, Li Y, Molloy DP, Huang C. Emerging roles of the C-to-U RNA editing in plant stress responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112263. [PMID: 39299521 DOI: 10.1016/j.plantsci.2024.112263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
RNA editing is an important post-transcriptional event in all living cells. Within chloroplasts and mitochondria of higher plants, RNA editing involves the deamination of specific cytosine (C) residues in precursor RNAs to uracil (U). An increasing number of recent studies detail specificity of C-to-U RNA editing as an essential prerequisite for several plant stress-related responses. In this review, we summarize the current understanding of responses and functions of C-to-U RNA editing in plants under various stress conditions to provide theoretical reference for future research.
Collapse
Affiliation(s)
- Yu-Xuan Hu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - An Huang
- College of Communication and Art Design, Swan College, Central South University of Forestry and Technology, Changsha 410128, China.
| | - Yi Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - David P Molloy
- Department of Biochemistry and Molecular Biology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China.
| | - Chao Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
4
|
Xu C, Wang JC, Sun L, Zhuang LH, Guo ZJ, Ding QS, Ma DN, Song LY, Li J, Tang HC, Zhu XY, Zheng HL. Genome-Wide Identification of Pentatricopeptide Repeat (PPR) Gene Family and Multi-Omics Analysis Provide New Insights Into the Albinism Mechanism of Kandelia obovata Propagule Leaves. PLANT, CELL & ENVIRONMENT 2024; 47:5498-5510. [PMID: 39222055 DOI: 10.1111/pce.15132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Pentatricopeptide repeat (PPR) gene family constitutes one of the largest gene families in plants, which mainly participate in RNA editing and RNA splicing of organellar RNAs, thereby affecting the organellar development. Recently, some evidence elucidated the important roles of PPR proteins in the albino process of plant leaves. However, the functions of PPR genes in the woody mangrove species have not been investigated. In this study, using a typical true mangrove Kandelia obovata, we systematically identified 298 PPR genes and characterized their general features and physicochemical properties, including evolutionary relationships, the subcellular localization, PPR motif type, the number of introns and PPR motifs, and isoelectric point, and so forth. Furthermore, we combined genome-wide association studies (GWAS) and transcriptome analysis to identify the genetic architecture and potential PPR genes associated with propagule leaves colour variations of K. obovata. As a result, we prioritized 16 PPR genes related to the albino phenotype using different strategies, including differentially expressed genes analysis and genetic diversity analysis. Further analysis discovered two genes of interest, namely Maker00002998 (PLS-type) and Maker00003187 (P-type), which were differentially expressed genes and causal genes detected by GWAS analysis. Moreover, we successfully predicted downstream target chloroplast genes (rps14, rpoC1 and rpoC2) bound by Maker00002998 PPR proteins. The experimental verification of RNA editing sites of rps14, rpoC1, and rpoC2 in our previous study and the verification of interaction between Maker00002998 and rps14 transcript using in vitro RNA pull-down assays revealed that Maker00002998 PPR protein might be involved in the post-transcriptional process of chloroplast genes. Our result provides new insights into the roles of PPR genes in the albinism mechanism of K. obovata propagule leaves.
Collapse
Affiliation(s)
- Chaoqun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ji-Cheng Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ling Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Li-Han Zhuang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ze-Jun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, China
| | - Qian-Su Ding
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Dong-Na Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ling-Yu Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Han-Chen Tang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xue-Yi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Chen M, Xia L, Tan X, Gao S, Wang S, Li M, Zhang Y, Xu T, Cheng Y, Chu Y, Hu S, Wu S, Zhang Z. Seeing the unseen in characterizing RNA editome during rice endosperm development. Commun Biol 2024; 7:1314. [PMID: 39397073 PMCID: PMC11471866 DOI: 10.1038/s42003-024-07032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
Rice (Oryza sativa L.) endosperm is essential to provide nutrients for seed germination and determine grain yield. RNA editing, a post-transcriptional modification essential for plant development, unfortunately, is not fully characterized during rice endosperm development. Here, we perform systematic analyses to characterize RNA editome during rice endosperm development. We find that most editing sites are C-to-U CDS-recoding in mitochondria, leading to increased hydrophobic amino acids and changed structures of mitochondrial proteins. Comparative analysis of RNA editome reveals that CDS-recoding sites present higher editing frequencies with lower variabilities and their resultant recoded amino acids tend to exhibit stronger evolutionary conservation across many land plants. Furthermore, we classify mitochondrial genes into three groups, presenting distinct patterns in terms of CDS-recoding events. Besides, we conduct genome-wide screening to detect pentatricopeptide repeat (PPR) proteins and construct PPR-RNA binding profiles, yielding candidate PPR editing factors related to rice endosperm development. Taken together, our findings provide valuable insights for deciphering fundamental mechanisms of rice endosperm development underlying RNA editing machinery.
Collapse
Affiliation(s)
- Ming Chen
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Xia
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xinyu Tan
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shenghan Gao
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sen Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Man Li
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuansheng Zhang
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianyi Xu
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Cheng
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Chu
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Shuangyang Wu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria.
| | - Zhang Zhang
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Thielen M, Gärtner B, Knoop V, Schallenberg-Rüdinger M, Lesch E. Conquering new grounds: plant organellar C-to-U RNA editing factors can be functional in the plant cytosol. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:895-915. [PMID: 38753873 DOI: 10.1111/tpj.16804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Plant mitochondrial and chloroplast transcripts are subject to numerous events of specific cytidine-to-uridine (C-to-U) RNA editing to correct genetic information. Key protein factors for this process are specific RNA-binding pentatricopeptide repeat (PPR) proteins, which are encoded in the nucleus and post-translationally imported into the two endosymbiotic organelles. Despite hundreds of C-to-U editing sites in the plant organelles, no comparable editing has been found for nucleo-cytosolic mRNAs raising the question why plant RNA editing is restricted to chloroplasts and mitochondria. Here, we addressed this issue in the model moss Physcomitrium patens, where all PPR-type RNA editing factors comprise specific RNA-binding and cytidine deamination functionalities in single proteins. To explore whether organelle-type RNA editing can principally also take place in the plant cytosol, we expressed PPR56, PPR65 and PPR78, three editing factors recently shown to also function in a bacterial setup, together with cytosolic co-transcribed native targets in Physcomitrium. While we obtained unsatisfying results upon their constitutive expression, we found strong cytosolic RNA editing under hormone-inducible expression. Moreover, RNA-Seq analyses revealed varying numbers of up to more than 900 off-targets in other cytosolic transcripts. We conclude that PPR-mediated C-to-U RNA editing is not per se incompatible with the plant cytosol but that its limited target specificity has restricted its occurrence to the much less complex transcriptomes of mitochondria and chloroplast in the course of evolution.
Collapse
Affiliation(s)
- Mirjam Thielen
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Béla Gärtner
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Elena Lesch
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| |
Collapse
|
7
|
Bayer-Császár E, Jörg A, Härtel B, Brennicke A, Takenaka M. The Gating Domain of MEF28 Is Essential for Editing Two Contiguous Cytidines in nad2 mRNA in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2024; 65:590-601. [PMID: 37530742 DOI: 10.1093/pcp/pcad087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
In plant organelles, each C-to-U RNA-editing site is specifically recognized by pentatricopeptide repeat (PPR) proteins with E1-E2, E1-E2-E+ or E1-E2-DYW domain extensions at the C-terminus. The distance between the PPR domain-binding site and the RNA-editing site is usually fixed at four bases, increasing the specificity of target-site recognition in this system. We here report, in contrast to the general case, on MEF28, which edits two adjacent mitochondrial sites, nad2-89 and nad2-90. When the sDYW domain of MEF28 was replaced with one derived from MEF11 or CRR22, the ability to edit downstream sites was lost, suggesting that the DYW domain of MEF28 provides unique target flexibility for two continuous cytidines. By contrast, substitutions of the entire E1-E2-DYW domains by MEF19E1-E2, SLO2E1-E2-E+ or CRR22E1-E2-E+ target both nad2 sites. In these cases, access to the contiguous sites in the chimeric PPR proteins is likely to be provided by the trans-associated DYW1-like proteins via the replaced E1-E2 or E1-E2-E+ domains. Furthermore, we demonstrated that the gating domain of MEF28 plays an important role in specific target-site recognition of the DYW domain. This finding suggests that the DYW domain and its internal gating domain fine-tune the specificity of the target site, which is valuable information for designing specific synthetic RNA-editing tools based on plant RNA-editing factors.
Collapse
Affiliation(s)
| | - Anja Jörg
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89069, Germany
| | - Barbara Härtel
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89069, Germany
| | - Axel Brennicke
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89069, Germany
| | - Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
8
|
McCray TN, Azim MF, Burch-Smith TM. The dicot homolog of maize PPR103 carries a C-terminal DYW domain and may have a role in C-to-U editing of some chloroplast RNA transcripts. PLANT MOLECULAR BIOLOGY 2024; 114:28. [PMID: 38485794 PMCID: PMC10940495 DOI: 10.1007/s11103-024-01424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 01/30/2024] [Indexed: 03/18/2024]
Abstract
In plants, cytidine-to-uridine (C-to-U) editing is a crucial step in processing mitochondria- and chloroplast-encoded transcripts. This editing requires nuclear-encoded proteins including members of the pentatricopeptide (PPR) family, especially PLS-type proteins carrying the DYW domain. IPI1/emb175/PPR103 is a nuclear gene encoding a PLS-type PPR protein essential for survival in Arabidopsis thaliana and maize. Arabidopsis IPI1 was identified as likely interacting with ISE2, a chloroplast-localized RNA helicase associated with C-to-U RNA editing in Arabidopsis and maize. Notably, while the Arabidopsis and Nicotiana IPI1 orthologs possess complete DYW motifs at their C-termini, the maize homolog, ZmPPR103, lacks this triplet of residues which are essential for editing. In this study we examined the function of IPI1 in chloroplast RNA processing in N. benthamiana to gain insight into the importance of the DYW domain to the function of the EMB175/PPR103/ IPI1 proteins. Structural predictions suggest that evolutionary loss of residues identified as critical for catalyzing C-to-U editing in other members of this class of proteins, were likely to lead to reduced or absent editing activity in the Nicotiana and Arabidopsis IPI1 orthologs. Virus-induced gene silencing of NbIPI1 led to defects in chloroplast ribosomal RNA processing and changes to stability of rpl16 transcripts, revealing conserved function with its maize ortholog. NbIPI1-silenced plants also had defective C-to-U RNA editing in several chloroplast transcripts, a contrast from the finding that maize PPR103 had no role in editing. The results indicate that in addition to its role in transcript stability, NbIPI1 may contribute to C-to-U editing in N. benthamiana chloroplasts.
Collapse
Affiliation(s)
- Tyra N McCray
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mohammad F Azim
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Tessa M Burch-Smith
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA.
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| |
Collapse
|
9
|
Vincis Pereira Sanglard L, Small ID, Colas des Francs-Small C. Alteration of Mitochondrial Transcript Expression in Arabidopsis thaliana Using a Custom-Made Library of Pentatricopeptide Repeat Proteins. Int J Mol Sci 2023; 24:13233. [PMID: 37686040 PMCID: PMC10487680 DOI: 10.3390/ijms241713233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are considered a potential tool for manipulating organelle gene expression in plants because they can recognise a wide range of different RNA sequences, and the molecular basis for this sequence recognition is partially known and understood. A library of redesigned PPR proteins related to restorer-of-fertility proteins was created and transformed into plants in order to target mitochondrial transcripts. Ninety different variants tested in vivo showed a wide range of phenotypes. One of these lines, which displayed slow growth and downward curled leaves, showed a clear reduction in complex V. The phenotype was due to a specific cleavage of atp1 transcripts induced by a modified PPR protein from the library, validating the use of this library as a source of mitochondrial 'mutants'. This study is a step towards developing specific RNA targeting tools using PPR proteins that can be aimed at desired targets.
Collapse
Affiliation(s)
| | | | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
10
|
Small I, Melonek J, Bohne AV, Nickelsen J, Schmitz-Linneweber C. Plant organellar RNA maturation. THE PLANT CELL 2023; 35:1727-1751. [PMID: 36807982 PMCID: PMC10226603 DOI: 10.1093/plcell/koad049] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 05/30/2023]
Abstract
Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for the production of a small number of essential components of the photosynthetic and respiratory machinery-and consequently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions and the kinetics of the processes they are involved in.
Collapse
Affiliation(s)
- Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | | | - Jörg Nickelsen
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | | |
Collapse
|
11
|
McCray TN, Azim MF, Burch-Smith TM. The dicot homolog of maize PPR103 carries a C-terminal DYW domain and is required for C-to-U editing of chloroplast RNA transcripts. RESEARCH SQUARE 2023:rs.3.rs-2574001. [PMID: 36865278 PMCID: PMC9980218 DOI: 10.21203/rs.3.rs-2574001/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In plants, cytidine-to-uridine (C-to-U) editing is a crucial step in processing mitochondria and chloroplast-encoded transcripts. This editing requires nuclear-encoded proteins including members of the pentatricopeptide (PPR) family, especially PLS-type proteins carrying the DYW domain. IPI1/emb175/PPR103 is a nuclear gene encoding a PLS-type PPR protein essential for survival in Arabidopsis thaliana and maize. Arabidopsis IPI1 was identified as likely interacting with ISE2, a chloroplast-localized RNA helicase associated with C-to-U RNA editing in Arabidopsis and maize. Notably, while the Arabidopsis and Nicotiana IPI1 homologs possess complete DYW motifs at their C-termini, the maize homolog, ZmPPR103, lacks this triplet of residues which are essential for editing. We examined the function of ISE2 and IPI1 in chloroplast RNA processing in N. benthamiana. A combination of deep sequencing and Sanger sequencing revealed C-to-U editing at 41 sites in 18 transcripts, with 34 sites conserved in the closely related N. tabacum. Virus induced gene silencing of NbISE2 or NbIPI1 led to defective C-to-U revealed that they have overlapping roles at editing a site in the rpoB transcript but have distinct roles in editing other transcripts. This finding contrasts with maize ppr103 mutants that showed no defects in editing. The results indicate that NbISE2 and NbIPI1 are important for C-to-U editing in N. benthamiana chloroplasts, and they may function in a complex to edit specific sites while having antagonistic effects on editing others. That NbIPI1, carrying a DYW domain, is involved in organelle C-to-U RNA editing supports previous work showing that this domain catalyzes RNA editing.
Collapse
Affiliation(s)
- Tyra N. McCray
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Mohammad F. Azim
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996
- Donald Danforth Plant Science Center, St. Louis, MO 63132
| | - Tessa M. Burch-Smith
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996
- Donald Danforth Plant Science Center, St. Louis, MO 63132
| |
Collapse
|
12
|
McDowell R, Small I, Bond CS. Synthetic PPR proteins as tools for sequence-specific targeting of RNA. Methods 2022; 208:19-26. [DOI: 10.1016/j.ymeth.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
|
13
|
Lesch E, Schilling MT, Brenner S, Yang Y, Gruss O, Knoop V, Schallenberg-Rüdinger M. Plant mitochondrial RNA editing factors can perform targeted C-to-U editing of nuclear transcripts in human cells. Nucleic Acids Res 2022; 50:9966-9983. [PMID: 36107771 PMCID: PMC9508816 DOI: 10.1093/nar/gkac752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/12/2022] Open
Abstract
RNA editing processes are strikingly different in animals and plants. Up to thousands of specific cytidines are converted into uridines in plant chloroplasts and mitochondria whereas up to millions of adenosines are converted into inosines in animal nucleo-cytosolic RNAs. It is unknown whether these two different RNA editing machineries are mutually incompatible. RNA-binding pentatricopeptide repeat (PPR) proteins are the key factors of plant organelle cytidine-to-uridine RNA editing. The complete absence of PPR mediated editing of cytosolic RNAs might be due to a yet unknown barrier that prevents its activity in the cytosol. Here, we transferred two plant mitochondrial PPR-type editing factors into human cell lines to explore whether they could operate in the nucleo-cytosolic environment. PPR56 and PPR65 not only faithfully edited their native, co-transcribed targets but also different sets of off-targets in the human background transcriptome. More than 900 of such off-targets with editing efficiencies up to 91%, largely explained by known PPR-RNA binding properties, were identified for PPR56. Engineering two crucial amino acid positions in its PPR array led to predictable shifts in target recognition. We conclude that plant PPR editing factors can operate in the entirely different genetic environment of the human nucleo-cytosol and can be intentionally re-engineered towards new targets.
Collapse
Affiliation(s)
- Elena Lesch
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Maximilian T Schilling
- Institut für Genetik, Abteilung Zellteilung, Universität Bonn , Karlrobert-Kreiten-Str. 13 , D-53115 Bonn , Germany
| | - Sarah Brenner
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Yingying Yang
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Oliver J Gruss
- Institut für Genetik, Abteilung Zellteilung, Universität Bonn , Karlrobert-Kreiten-Str. 13 , D-53115 Bonn , Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| |
Collapse
|
14
|
Takenaka M, Takenaka S, Barthel T, Frink B, Haag S, Verbitskiy D, Oldenkott B, Schallenberg-Rüdinger M, Feiler CG, Weiss MS, Palm GJ, Weber G. DYW domain structures imply an unusual regulation principle in plant organellar RNA editing catalysis. Nat Catal 2021; 4:510-522. [PMID: 34712911 PMCID: PMC7611903 DOI: 10.1038/s41929-021-00633-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA editosomes selectively deaminate cytidines to uridines in plant organellar transcripts–mostly to restore protein functionality and consequently facilitate mitochondrial and chloroplast function. The RNA editosomal pentatricopeptide repeat proteins serve target RNA recognition, whereas the intensively studied DYW domain elicits catalysis. Here we present structures and functional data of a DYW domain in an inactive ground state and activated. DYW domains harbour a cytidine deaminase fold and a C-terminal DYW motif, with catalytic and structural zinc atoms, respectively. A conserved gating domain within the deaminase fold regulates the active site sterically and mechanistically in a process that we termed gated zinc shutter. Based on the structures, an autoinhibited ground state and its activation are cross-validated by RNA editing assays and differential scanning fluorimetry. We anticipate that, in vivo, the framework of an active plant RNA editosome triggers the release of DYW autoinhibition to ensure a controlled and coordinated cytidine deamination playing a key role in mitochondrial and chloroplast homeostasis.
Collapse
Affiliation(s)
- Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Sachi Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan.,These authors contributed equally: Sachi Takenaka, Tatjana Barthel
| | - Tatjana Barthel
- University of Greifswald, Molecular Structural Biology, Greifswald, Germany.,Present address: Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany.,These authors contributed equally: Sachi Takenaka, Tatjana Barthel
| | - Brody Frink
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Sascha Haag
- Molekulare Botanik, Universität Ulm, Ulm, Germany
| | | | - Bastian Oldenkott
- Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, University of Bonn, Bonn, Germany
| | | | - Christian G Feiler
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Manfred S Weiss
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Gottfried J Palm
- University of Greifswald, Molecular Structural Biology, Greifswald, Germany
| | - Gert Weber
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| |
Collapse
|
15
|
Dai D, Jin L, Huo Z, Yan S, Ma Z, Qi W, Song R. Maize pentatricopeptide repeat protein DEK53 is required for mitochondrial RNA editing at multiple sites and seed development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6246-6261. [PMID: 32710615 DOI: 10.1093/jxb/eraa348] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/21/2020] [Indexed: 05/21/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins were identified as site-specific recognition factors for RNA editing in plant mitochondria and plastids. In this study, we characterized maize (Zea mays) kernel mutant defective kernel 53 (dek53), which has an embryo lethal and collapsed endosperm phenotype. Dek53 encodes an E-subgroup PPR protein, which possesses a short PLS repeat region of only seven repeats. Subcellular localization analysis indicated that DEK53 is localized in the mitochondrion. Strand- and transcript-specific RNA-seq analysis showed that the dek53 mutation affected C-to-U RNA editing at more than 60 mitochondrial C targets. Biochemical analysis of mitochondrial protein complexes revealed a significant reduction in the assembly of mitochondrial complex III in dek53. Transmission electron microscopic examination showed severe morphological defects of mitochondria in dek53 endosperm cells. In addition, yeast two-hybrid and luciferase complementation imaging assays indicated that DEK53 can interact with the mitochondrion-targeted non-PPR RNA editing factor ZmMORF1, suggesting that DEK53 might be a functional component of the organellar RNA editosome.
Collapse
Affiliation(s)
- Dawei Dai
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lifang Jin
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhenzhen Huo
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Shumei Yan
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Matsuda T, Sugita M, Ichinose M. The L motifs of two moss pentatricopeptide repeat proteins are involved in RNA editing but predominantly not in RNA recognition. PLoS One 2020; 15:e0232366. [PMID: 32348368 PMCID: PMC7190159 DOI: 10.1371/journal.pone.0232366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/13/2020] [Indexed: 11/18/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins, composed of PPR motifs repeated in tandem, are sequence-specific RNA binding proteins. Recent bioinformatic studies have shown that the combination of polar amino acids at positions 5 and last in each PPR motif recognizes RNA bases, and an RNA recognition code for PPR proteins has been proposed. Subsequent studies confirmed that the P (canonical length) and S (short) motifs bind to specific nucleotides according to this code. However, the contribution of L (long) motifs to RNA recognition is mostly controversial, owing to the presence of a nonpolar amino acid at position 5. The PLS-class PPR protein PpPPR_56 is a mitochondrial RNA editing factor in the moss Physcomitrella patens. Here, we performed in vitro RNA binding and in vivo complementation assays with PpPPR_56 and its variants containing mutated L motifs to investigate their contributions to RNA recognition. In vitro RNA binding assay showed that the original combination of amino acids at positions 5 and last in the L motifs of PpPPR_56 is not required for RNA recognition. In addition, an in vivo complementation assay with RNA editing factors PpPPR_56 and PpPPR_78 revealed the importance of nonpolar amino acids at position 5 of C-terminal L motifs for efficient RNA editing. Our findings suggest that L motifs function as non-binding spacers, not as RNA-binding motifs, to facilitate the formation of a complex between PLS-class PPR protein and RNA. As a result, the DYW domain, a putative catalytic deaminase responsible for C-to-U RNA editing, is correctly placed in proximity to C, which is to be edited.
Collapse
Affiliation(s)
- Takuya Matsuda
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya, Japan
- * E-mail: (MI); (MS)
| | - Mizuho Ichinose
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa-ku, Nagoya, Japan
- * E-mail: (MI); (MS)
| |
Collapse
|
17
|
Small ID, Schallenberg-Rüdinger M, Takenaka M, Mireau H, Ostersetzer-Biran O. Plant organellar RNA editing: what 30 years of research has revealed. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1040-1056. [PMID: 31630458 DOI: 10.1111/tpj.14578] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 05/21/2023]
Abstract
The central dogma in biology defines the flow of genetic information from DNA to RNA to protein. Accordingly, RNA molecules generally accurately follow the sequences of the genes from which they are transcribed. This rule is transgressed by RNA editing, which creates RNA products that differ from their DNA templates. Analyses of the RNA landscapes of terrestrial plants have indicated that RNA editing (in the form of C-U base transitions) is highly prevalent within organelles (that is, mitochondria and chloroplasts). Numerous C→U conversions (and in some plants also U→C) alter the coding sequences of many of the organellar transcripts and can also produce translatable mRNAs by creating AUG start sites or eliminating premature stop codons, or affect the RNA structure, influence splicing and alter the stability of RNAs. RNA-binding proteins are at the heart of post-transcriptional RNA expression. The C-to-U RNA editing process in plant mitochondria involves numerous nuclear-encoded factors, many of which have been identified as pentatricopeptide repeat (PPR) proteins that target editing sites in a sequence-specific manner. In this review we report on major discoveries on RNA editing in plant organelles, since it was first documented 30 years ago.
Collapse
Affiliation(s)
- Ian D Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abt. Molekulare Evolution, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| |
Collapse
|
18
|
The Analysis of the Editing Defects in the dyw2 Mutant Provides New Clues for the Prediction of RNA Targets of Arabidopsis E+-Class PPR Proteins. PLANTS 2020; 9:plants9020280. [PMID: 32098170 PMCID: PMC7076377 DOI: 10.3390/plants9020280] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/02/2023]
Abstract
C to U editing is one of the post-transcriptional steps which are required for the proper expression of chloroplast and mitochondrial genes in plants. It depends on several proteins acting together which include the PLS-class pentatricopeptide repeat proteins (PPR). DYW2 was recently shown to be required for the editing of many sites in both organelles. In particular almost all the sites associated with the E+ subfamily of PPR proteins are depending on DYW2, suggesting that DYW2 is required for the function of E+-type PPR proteins. Here we strengthened this link by identifying 16 major editing sites controlled by 3 PPR proteins: OTP90, a DYW-type PPR and PGN and MEF37, 2 E+-type PPR proteins. A re-analysis of the DYW2 editotype showed that the 49 sites known to be associated with the 18 characterized E+-type PPR proteins all depend on DYW2. Considering only the 288 DYW2-dependent editing sites as potential E+-type PPR sites, instead of the 795 known editing sites, improves the performances of binding predictions systems based on the PPR code for E+-type PPR proteins. However, it does not compensate for poor binding predictions.
Collapse
|
19
|
Zhang Q, Xu Y, Huang J, Zhang K, Xiao H, Qin X, Zhu L, Zhu Y, Hu J. The Rice Pentatricopeptide Repeat Protein PPR756 Is Involved in Pollen Development by Affecting Multiple RNA Editing in Mitochondria. FRONTIERS IN PLANT SCIENCE 2020; 11:749. [PMID: 32595669 PMCID: PMC7303307 DOI: 10.3389/fpls.2020.00749] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/12/2020] [Indexed: 05/21/2023]
Abstract
In land plants, the pentatricopeptide repeat (PPR) proteins form a large family involved in post-transcriptional processing of RNA in mitochondria and chloroplasts, which is critical for plant development and evolutionary adaption. Although studies showed a number of PPR proteins generally influence the editing of organellar genes, few of them were characterized in detail in rice. Here, we report a PLS-E subclass PPR protein in rice, PPR756, loss of function of which led to the abolishment of RNA editing events among three mitochondrial genes including atp6, ccmC, and nad7. Their defective C-to-U transformation then resulted in improper amino acid retention which could cause abortive pollen development. Furthermore, PPR756 could bind to the three target genes directly and interact with three OsMORFs (multiple organellar RNA editing factors): OsMORF1, OsMORF8-1, and OsMORF8-2. The knock-out plants of PPR756 exhibited retarded growth and greener leaves during the early vegetative stages, along with sterile pollen and lower seed setting at the reproductive stage. These results established a role for PPR756 in rice development, participating in RNA editing of three various transcripts and cooperating with OsMORFs via an editosome manner in rice.
Collapse
Affiliation(s)
- Qiannan Zhang
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yanghong Xu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jishuai Huang
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kai Zhang
- Department of Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Surgical Research, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Haijun Xiao
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaojian Qin
- Chongqing Key Laboratory of Molecular Biology of Plants Environmental Adaptations, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Linlin Zhu
- No.9 Middle School of Zhengzhou, Zhengzhou, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Hu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
- *Correspondence: Jun Hu,
| |
Collapse
|
20
|
Shotwell CR, Cleary JD, Berglund JA. The potential of engineered eukaryotic RNA-binding proteins as molecular tools and therapeutics. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1573. [PMID: 31680457 DOI: 10.1002/wrna.1573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/21/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Eukaroytic RNA-binding proteins (RBPs) recognize and process RNAs through recognition of their sequence motifs via RNA-binding domains (RBDs). RBPs usually consist of one or more RBDs and can include additional functional domains that modify or cleave RNA. Engineered RBPs have been used to answer basic biology questions, control gene expression, locate viral RNA in vivo, as well as many other tasks. Given the growing number of diseases associated with RNA and RBPs, engineered RBPs also have the potential to serve as therapeutics. This review provides an in depth description of recent advances in engineered RBPs and discusses opportunities and challenges in the field. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Methods > RNA Nanotechnology RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Carl R Shotwell
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - John D Cleary
- RNA Institute, University at Albany, Albany, New York
| | - J Andrew Berglund
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York
| |
Collapse
|
21
|
Dedow LK, Bailey-Serres J. Searching for a Match: Structure, Function and Application of Sequence-Specific RNA-Binding Proteins. PLANT & CELL PHYSIOLOGY 2019; 60:1927-1938. [PMID: 31329953 DOI: 10.1093/pcp/pcz072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/11/2019] [Indexed: 05/21/2023]
Abstract
Plants encode over 1800 RNA-binding proteins (RBPs) that modulate a myriad of steps in gene regulation from chromatin organization to translation, yet only a small number of these proteins and their target transcripts have been functionally characterized. Two classes of eukaryotic RBPs, pentatricopeptide repeat (PPR) and pumilio/fem-3 binding factors (PUF), recognize and bind to specific sequential RNA sequences through protein-RNA interactions. These modular proteins possess helical structural units containing key residues with high affinity for specific nucleotides, whose sequential order determines binding to a specific target RNA sequence. PPR proteins are nucleus-encoded, but largely regulate post-transcriptional gene regulation within plastids and mitochondria, including splicing, translation and RNA editing. Plant PUFs are involved in gene regulatory processes within the cell nucleus and cytoplasm. The modular structures of PPRs and PUFs that determine sequence specificity has facilitated identification of their RNA targets and biological functions. The protein-based RNA-targeting of PPRs and PUFs contrasts to the prokaryotic cluster regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) that target RNAs in prokaryotes. Together the PPR, PUF and CRISPR-Cas systems provide varied opportunities for RNA-targeted engineering applications.
Collapse
|
22
|
Miranda RG, McDermott JJ, Barkan A. RNA-binding specificity landscapes of designer pentatricopeptide repeat proteins elucidate principles of PPR-RNA interactions. Nucleic Acids Res 2019; 46:2613-2623. [PMID: 29294070 PMCID: PMC5861457 DOI: 10.1093/nar/gkx1288] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/18/2017] [Indexed: 01/30/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are helical-repeat proteins that offer a promising scaffold for the engineering of proteins to bind specified RNAs. PPR tracts bind RNA in a modular 1-repeat, 1-nucleotide fashion. An amino acid code specifying the bound nucleotide has been elucidated. However, this code does not fully explain the sequence specificity of native PPR proteins. Furthermore, it does not address nuances such as the contribution toward binding affinity of various repeat-nucleotide pairs or the impact of mismatches between a repeat and aligning nucleotide. We used an in vitro bind-n-seq approach to describe the population of sequences bound by four artificial PPR proteins built from consensus scaffolds. The specificity of these proteins can be accounted for by canonical code-based nucleotide recognition. The results show, however, that interactions near the 3′-end of binding sites make less contribution to binding affinity than do those near the 5′-end, that proteins with 11 and 14 repeats exhibit similar affinity for their intended targets but 14-repeats are more permissive for mismatches, and that purine-binding repeats are less tolerant of transversion mismatches than are pyrimidine-binding motifs. These findings have implications for mechanisms that establish PPR–RNA interactions and for optimizing PPR design to minimize off-target interactions.
Collapse
Affiliation(s)
- Rafael G Miranda
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - James J McDermott
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
23
|
Ruwe H, Gutmann B, Schmitz-Linneweber C, Small I, Kindgren P. The E domain of CRR2 participates in sequence-specific recognition of RNA in plastids. THE NEW PHYTOLOGIST 2019; 222:218-229. [PMID: 30393849 DOI: 10.1111/nph.15578] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are modular RNA-binding proteins involved in different aspects of RNA metabolism in organelles. PPR proteins of the PLS subclass often contain C-terminal domains that are important for their function, but the role of one of these domains, the E domain, is far from resolved. Here, we elucidate the role of the E domain in CRR2 in plastids. We identified a surprisingly large number of small RNAs that represent in vivo footprints of the Arabidopsis PLS-class PPR protein CRR2. An unexpectedly strong base conservation was found in the nucleotides aligned to the E domain. We used both in vitro and in vivo experiments to reveal the role of the E domain of CRR2. The E domain of CRR2 can be predictably altered to prefer different nucleotides in its RNA ligand, and position 5 of the E1-motif is biologically important for the PPR-RNA interaction. The 'code' of the E domain PPR motifs is different from that of P- and S-motifs. The findings presented here show that the E domain of CRR2 is involved in sequence-specific interaction with its RNA ligand and have implications for our ability to predict RNA targets for PLS-PPRs and their use as biotechnological tools to manipulate specific RNAs in vivo.
Collapse
Affiliation(s)
- Hannes Ruwe
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| | - Bernard Gutmann
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia
| | | | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia
| | - Peter Kindgren
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia
| |
Collapse
|
24
|
Plant-type pentatricopeptide repeat proteins with a DYW domain drive C-to-U RNA editing in Escherichia coli. Commun Biol 2019; 2:85. [PMID: 30854477 PMCID: PMC6397227 DOI: 10.1038/s42003-019-0328-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/18/2019] [Indexed: 11/09/2022] Open
Abstract
RNA editing converting cytidines into uridines is a hallmark of gene expression in land plant chloroplasts and mitochondria. Pentatricopeptide repeat (PPR) proteins have a key role in target recognition, but the functional editosome in the plant organelles has remained elusive. Here we show that individual Physcomitrella patens DYW-type PPR proteins alone can perform efficient C-to-U editing in Escherichia coli reproducing the moss mitochondrial editing. Single amino acid exchanges in the DYW domain abolish RNA editing, confirming it as the functional cytidine deaminase. The modification of RNA targets and the identification of numerous off-targets in the E. coli transcriptome reveal nucleotide identities critical for RNA recognition and cytidine conversion. The straightforward amenability of the new E. coli setup will accelerate future studies on RNA target recognition through PPRs, on the C-to-U editing deamination machinery and towards future establishment of transcript editing in other genetic systems. Bastian Oldenkott et al. show that single moss pentatricopeptide repeat proteins with a DYW domain are sufficient to drive efficient C-to-U RNA editing in Escherichia coli. They demonstrate that the E.coli system is an easy to manipulate platform for future studies on RNA target recognition and C-to-U RNA editing.
Collapse
|
25
|
Li XL, Huang WL, Yang HH, Jiang RC, Sun F, Wang HC, Zhao J, Xu CH, Tan BC. EMP18 functions in mitochondrial atp6 and cox2 transcript editing and is essential to seed development in maize. THE NEW PHYTOLOGIST 2019; 221:896-907. [PMID: 30168136 DOI: 10.1111/nph.15425] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/02/2018] [Indexed: 05/02/2023]
Abstract
RNA editing plays an important role in organellar gene expression in plants, and pentatricopeptide repeat (PPR) proteins are involved in this function. Because of its large family size, many PPR proteins are not known for their function and roles in plant growth and development. Through genetic and molecular analyses of the empty pericarp18 (emp18) mutant in maize (Zea mays), we cloned the Emp18 gene, revealed its molecular function, and defined its role in the mitochondrial complex assembly and seed development. Emp18 encodes a mitochondrial-localized DYW-PPR protein. Null mutation of Emp18 arrests embryo and endosperm development at an early stage in maize, resulting in embryo lethality. Mutants are deficient in the cytidine (C)-to-uridine (U) editing at atp6-635 and cox2-449, which converts a Leu to Pro in ATP6 and a Met to Thr in Cox2. The atp6 gene encodes the subunit a of F1 Fo -ATPase. The Leu to Pro alteration disrupts an α-helix of subunit a, resulting in a dramatic reduction in assembly and activity of F1 Fo -ATPase holoenzyme and an accumulation of free F1 -subcomplex. These results demonstrate that EMP18 functions in the C-to-U editing of atp6 and cox2, and is essential to mitochondrial biogenesis and seed development in maize.
Collapse
Affiliation(s)
- Xiu-Lan Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Wen-Long Huang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Huan-Huan Yang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Rui-Cheng Jiang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Feng Sun
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Hong-Chun Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Jiao Zhao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Chun-Hui Xu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| |
Collapse
|
26
|
Perlaza-Jiménez L, Walther D. A genome-wide scan for correlated mutations detects macromolecular and chromatin interactions in Arabidopsis thaliana. Nucleic Acids Res 2018; 46:8114-8132. [PMID: 29986106 PMCID: PMC6144803 DOI: 10.1093/nar/gky576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/14/2018] [Indexed: 01/05/2023] Open
Abstract
The concept of exploiting correlated mutations has been introduced and applied successfully to identify interactions within and between biological macromolecules. Its rationale lies in the preservation of physical interactions via compensatory mutations. With the massive increase of available sequence information, approaches based on correlated mutations have regained considerable attention. We analyzed a set of 10 707 430 single nucleotide polymorphisms detected in 1135 accessions of the plant Arabidopsis thaliana. To measure their covariance and to reveal the global genome-wide sequence correlation structure of the Arabidopsis genome, the adjusted mutual information has been estimated for each possible pair of polymorphic sites. We developed a series of filtering steps to account for genetic linkage and lineage relations between Arabidopsis accessions, as well as transitive covariance as possible confounding factors. We show that upon appropriate filtering, correlated mutations prove indeed informative with regard to molecular interactions, and furthermore, appear to reflect on chromosomal interactions. Our study demonstrates that the concept of correlated mutations can also be applied successfully to within-species sequence variation and establishes a promising approach to help unravel the complex molecular interactions in A. thaliana and other species with broad sequence information.
Collapse
Affiliation(s)
- Laura Perlaza-Jiménez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
27
|
Lenz H, Hein A, Knoop V. Plant organelle RNA editing and its specificity factors: enhancements of analyses and new database features in PREPACT 3.0. BMC Bioinformatics 2018; 19:255. [PMID: 29970001 PMCID: PMC6029061 DOI: 10.1186/s12859-018-2244-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/13/2018] [Indexed: 01/20/2023] Open
Abstract
Background Gene expression in plant chloroplasts and mitochondria is affected by RNA editing. Numerous C-to-U conversions, accompanied by reverse U-to-C exchanges in some plant clades, alter the genetic information encoded in the organelle genomes. Predicting and analyzing RNA editing, which ranges from only few sites in some species to thousands in other taxa, is bioinformatically demanding. Results Here, we present major enhancements and extensions of PREPACT, a WWW-based service for analysing, predicting and cataloguing plant-type RNA editing. New features in PREPACT’s core include direct GenBank accession query input and options to restrict searches to candidate U-to-C editing or to sites where editing has been documented previously in the references. The reference database has been extended by 20 new organelle editomes. PREPACT 3.0 features new modules “EdiFacts” and “TargetScan”. EdiFacts integrates information on pentatricopeptide repeat (PPR) proteins characterized as site-specific RNA editing factors. PREPACT’s editome references connect into EdiFacts, linking editing events to specific co-factors where known. TargetScan allows position-weighted querying for sequence motifs in the organelle references, optionally restricted to coding regions or sequences around editing sites, or in queries uploaded by the user. TargetScan is mainly intended to evaluate and further refine the proposed PPR-RNA recognition code but may be handy for other tasks as well. We present an analysis for the immediate sequence environment of more than 15,000 documented editing sites finding strong and different bias in the editome data sets. Conclusions We exemplarily present the novel features of PREPACT 3.0 aimed to enhance the analyses of plant-type RNA editing, including its new modules EdiFacts integrating information on characterized editing factors and TargetScan aimed to analyse RNA editing site recognition specificities. Electronic supplementary material The online version of this article (10.1186/s12859-018-2244-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Henning Lenz
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany.,IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Anke Hein
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
28
|
Diaz MF, Bentolila S, Hayes ML, Hanson MR, Mulligan RM. A protein with an unusually short PPR domain, MEF8, affects editing at over 60 Arabidopsis mitochondrial C targets of RNA editing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:638-649. [PMID: 29035004 DOI: 10.1111/tpj.13709] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/27/2017] [Accepted: 08/30/2017] [Indexed: 05/15/2023]
Abstract
An RNA-seq approach was used to investigate the role of a PLS-subfamily pentatricopeptide repeat protein, Mitochondrial Editing Factor 8 (MEF8), on editing in Arabidopsis mitochondria and plastids. MEF8 has an intact DYW domain, but possesses an unusually short PLS repeat region of only five repeats. The MEF8 T-DNA insertion (mef8) line exhibited reduced editing at 38 mitochondrial editing sites and increased editing at 24 sites; therefore the absence of MEF8 affects 11% of the mitochondrial editome. Notably, 60% of the matR transcripts' sites showed a decrease of editing extent in the mef8 mutant. An E549A substitution in the MEF8 protein replaced the putatively catalytic glutamate of the HXE motif in the DYW domain. Complementation with MEF8-E549A failed to restore editing at the main target sites but was able to restore editing at the matR transcript; it also decreased the editing extent of most of the C targets exhibiting an increase of editing extent in the mef8 mutant plant. Thus, MEF8 has two antagonistic effects on mitochondrial editing: stimulatory, which requires a catalytic glutamate for most of the targets except for the matR transcript, and inhibitory, for which glutamate is dispensable.
Collapse
Affiliation(s)
- Michael F Diaz
- Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Stephane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Michael L Hayes
- Department of Chemistry and Biochemistry, California State University, Los Angeles, CA, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - R Michael Mulligan
- Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
29
|
RNA editing machinery in plant organelles. SCIENCE CHINA-LIFE SCIENCES 2017; 61:162-169. [DOI: 10.1007/s11427-017-9170-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/27/2017] [Indexed: 12/18/2022]
|
30
|
Liu Z, Dong F, Wang X, Wang T, Su R, Hong D, Yang G. A pentatricopeptide repeat protein restores nap cytoplasmic male sterility in Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4115-4123. [PMID: 28922764 PMCID: PMC5853434 DOI: 10.1093/jxb/erx239] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/19/2017] [Indexed: 05/20/2023]
Abstract
Two forms of male-sterile cytoplasm, designated nap and pol, are found in the oilseed rape species, Brassica napus. The nap cytoplasm is observed in most B. napus varieties, and it confers male sterility on a limited number of cultivars that lack the corresponding restorer gene, Rfn. In the present study, using linkage analysis in combination with 5652 BC1 progeny derived from a cross between a nap cytoplasmic male sterility (CMS) line 181A and a restorer line H5, we delimited the Rfn gene to a 10.5 kb region on chromosome A09, which contained three putative ORFs. Complementation by transformation rescue revealed that the introduction of ORF2, which encodes a pentatricopeptide repeat (PPR) protein, resulted in the recovery of fertility of nap CMS plants. Expression analysis suggested that the Rfn was highly expressed in flower buds and it was preferentially expressed in the tapetum and meiocytes during anther development. Further RNA gel blots and immunodetection suggested that the Rfn gene may play a complicated role in restoring the nap CMS. Our work laid the foundation for dissecting the molecular basis of CMS fertility restoration and the nuclear-mitochondrial interactions in CMS/Rf systems.
Collapse
Affiliation(s)
- Zhi Liu
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, PR China
- National Research Center of Rapeseed Engineering and Technology, National Rapeseed Genetic Improvement Center (Wuhan Branch), Huazhong Agricultural University, Wuhan, PR China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Faming Dong
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, PR China
- National Research Center of Rapeseed Engineering and Technology, National Rapeseed Genetic Improvement Center (Wuhan Branch), Huazhong Agricultural University, Wuhan, PR China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Xiang Wang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, PR China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Tao Wang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, PR China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Rui Su
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, PR China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Dengfeng Hong
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, PR China
- National Research Center of Rapeseed Engineering and Technology, National Rapeseed Genetic Improvement Center (Wuhan Branch), Huazhong Agricultural University, Wuhan, PR China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Guangsheng Yang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, PR China
- National Research Center of Rapeseed Engineering and Technology, National Rapeseed Genetic Improvement Center (Wuhan Branch), Huazhong Agricultural University, Wuhan, PR China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
- Correspondence:
| |
Collapse
|
31
|
Shi X, Hanson MR, Bentolila S. Functional diversity of Arabidopsis organelle-localized RNA-recognition motif-containing proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28371504 DOI: 10.1002/wrna.1420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/20/2022]
Abstract
RNA-Binding Proteins (RBPs) play key roles in plant gene expression and regulation. RBPs contain a variety of RNA-binding motifs, the most abundant and most widespread one in eukaryotes is the RNA recognition motif (RRM). Many nucleus-encoded RRM-containing proteins are transported into chloroplasts and/or mitochondria, and participate in various RNA-related processes in plant organelles. Loss of these proteins can have a detrimental effect on some critical processes such as photosynthesis and respiration, sometimes leading to lethality. Progress has been made in the last few years in understanding the function of particular organelle-localized RRM-containing proteins. Members of the Organelle RRM protein (ORRM, some also characterized as Glycine-Rich RNA-Binding Proteins) family and the Chloroplast RiboNucleoProtein (cpRNP) family, are involved in various types of RNA metabolism, including RNA editing, RNA stability and RNA processing. Organelle-localized RRM proteins also function in plant development and stress responses, in some conditions acting as protein or RNA chaperones. There has been recent progress in characterizing the function of organelle-localized RRM proteins in RNA-related processes and how RRM proteins contribute to the normal growth and development of plants. WIREs RNA 2017, 8:e1420. doi: 10.1002/wrna.1420 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Stephane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
32
|
Schallenberg-Rüdinger M, Oldenkott B, Hiss M, Trinh PL, Knoop V, Rensing SA. A Single-Target Mitochondrial RNA Editing Factor of Funaria hygrometrica Can Fully Reconstitute RNA Editing at Two Sites in Physcomitrella patens. PLANT & CELL PHYSIOLOGY 2017; 58:496-507. [PMID: 28394399 DOI: 10.1093/pcp/pcw229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/21/2016] [Indexed: 05/26/2023]
Abstract
Nuclear-encoded pentatricopeptide repeat (PPR) proteins are key factors for site-specific RNA editing, converting cytidines into uridines in plant mitochondria and chloroplasts. All editing factors in the model moss Physcomitrella patens have a C-terminal DYW domain with similarity to cytidine deaminase. However, numerous editing factors in flowering plants lack such a terminal DYW domain, questioning its immediate role in the pyrimidine base conversion process. Here we further investigate the Physcomitrella DYW-type PPR protein PPR_78, responsible for mitochondrial editing sites cox1eU755SL and rps14eU137SL. Complementation assays with truncated proteins demonstrate that the DYW domain is essential for full PPR_78 editing functionality. The DYW domain can be replaced, however, with its counterpart from another editing factor, PPR_79. The PPR_78 ortholog of the related moss Funaria hygrometrica fully complements the Physcomitrella mutant for editing at both sites, although the editing site in rps14 is lacking in Funaria. Editing factor orthologs in different taxa may thus retain editing capacity for multiple sites despite the absence of editing requirement.
Collapse
Affiliation(s)
- Mareike Schallenberg-Rüdinger
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee, Bonn, Germany
| | - Bastian Oldenkott
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee, Bonn, Germany
| | - Manuel Hiss
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
| | - Phuong Le Trinh
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee, Bonn, Germany
- Key Laboratory of Enzyme and Protein Technology (KLEPT), VNU University of Science, Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Volker Knoop
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee, Bonn, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Ferrari R, Tadini L, Moratti F, Lehniger MK, Costa A, Rossi F, Colombo M, Masiero S, Schmitz-Linneweber C, Pesaresi P. CRP1 Protein: (dis)similarities between Arabidopsis thaliana and Zea mays. FRONTIERS IN PLANT SCIENCE 2017; 8:163. [PMID: 28261232 PMCID: PMC5309229 DOI: 10.3389/fpls.2017.00163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/26/2017] [Indexed: 05/25/2023]
Abstract
Biogenesis of chloroplasts in higher plants is initiated from proplastids, and involves a series of processes by which a plastid able to perform photosynthesis, to synthesize amino acids, lipids, and phytohormones is formed. All plastid protein complexes are composed of subunits encoded by the nucleus and chloroplast genomes, which require a coordinated gene expression to produce the correct concentrations of organellar proteins and to maintain organelle function. To achieve this, hundreds of nucleus-encoded factors are imported into the chloroplast to control plastid gene expression. Among these factors, members of the Pentatricopeptide Repeat (PPR) containing protein family have emerged as key regulators of the organellar post-transcriptional processing. PPR proteins represent a large family in plants, and the extent to which PPR functions are conserved between dicots and monocots deserves evaluation, in light of differences in photosynthetic metabolism (C3 vs. C4) and localization of chloroplast biogenesis (mesophyll vs. bundle sheath cells). In this work we investigated the role played in the process of chloroplast biogenesis by At5g42310, a member of the Arabidopsis PPR family which we here refer to as AtCRP1 (Chloroplast RNA Processing 1), providing a comparison with the orthologous ZmCRP1 protein from Zea mays. Loss-of-function atcrp1 mutants are characterized by yellow-albinotic cotyledons and leaves owing to defects in the accumulation of subunits of the thylakoid protein complexes. As in the case of ZmCRP1, AtCRP1 associates with the 5' UTRs of both psaC and, albeit very weakly, petA transcripts, indicating that the role of CRP1 as regulator of chloroplast protein synthesis has been conserved between maize and Arabidopsis. AtCRP1 also interacts with the petB-petD intergenic region and is required for the generation of petB and petD monocistronic RNAs. A similar role has been also attributed to ZmCRP1, although the direct interaction of ZmCRP1 with the petB-petD intergenic region has never been reported, which could indicate that AtCRP1 and ZmCRP1 differ, in part, in their plastid RNA targets.
Collapse
Affiliation(s)
- Roberto Ferrari
- Dipartimento di Bioscienze, Università degli studi di MilanoMilano, Italy
| | - Luca Tadini
- Dipartimento di Bioscienze, Università degli studi di MilanoMilano, Italy
| | - Fabio Moratti
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | | | - Alex Costa
- Dipartimento di Bioscienze, Università degli studi di MilanoMilano, Italy
| | - Fabio Rossi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli studi di MilanoMilano, Italy
| | - Monica Colombo
- Centro Ricerca e Innovazione, Fondazione Edmund MachSan Michele all’Adige, Italy
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli studi di MilanoMilano, Italy
| | | | - Paolo Pesaresi
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli studi di MilanoMilano, Italy
| |
Collapse
|
34
|
Abstract
Numerous attempts have been made to identify and engineer sequence-specific RNA endonucleases, as these would allow for efficient RNA manipulation. However, no natural RNA endonuclease that recognizes RNA in a sequence-specific manner has been described to date. Here, we report that SUPPRESSOR OF THYLAKOID FORMATION 1 (SOT1), an Arabidopsis pentatricopeptide repeat (PPR) protein with a small MutS-related (SMR) domain, has RNA endonuclease activity. We show that the SMR moiety of SOT1 performs the endonucleolytic maturation of 23S and 4.5S rRNA through the PPR domain, specifically recognizing a 13-nucleotide RNA sequence in the 5' end of the chloroplast 23S-4.5S rRNA precursor. In addition, we successfully engineered the SOT1 protein with altered PPR motifs to recognize and cleave a predicted RNA substrate. Our findings point to SOT1 as an exciting tool for RNA manipulation.
Collapse
|
35
|
Ichinose M, Sugita M. RNA Editing and Its Molecular Mechanism in Plant Organelles. Genes (Basel) 2016; 8:genes8010005. [PMID: 28025543 PMCID: PMC5295000 DOI: 10.3390/genes8010005] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/23/2016] [Accepted: 12/20/2016] [Indexed: 12/03/2022] Open
Abstract
RNA editing by cytidine (C) to uridine (U) conversions is widespread in plant mitochondria and chloroplasts. In some plant taxa, “reverse” U-to-C editing also occurs. However, to date, no instance of RNA editing has yet been reported in green algae and the complex thalloid liverworts. RNA editing may have evolved in early land plants 450 million years ago. However, in some plant species, including the liverwort, Marchantia polymorpha, editing may have been lost during evolution. Most RNA editing events can restore the evolutionarily conserved amino acid residues in mRNAs or create translation start and stop codons. Therefore, RNA editing is an essential process to maintain genetic information at the RNA level. Individual RNA editing sites are recognized by plant-specific pentatricopeptide repeat (PPR) proteins that are encoded in the nuclear genome. These PPR proteins are characterized by repeat elements that bind specifically to RNA sequences upstream of target editing sites. In flowering plants, non-PPR proteins also participate in multiple RNA editing events as auxiliary factors. C-to-U editing can be explained by cytidine deamination. The proteins discovered to date are important factors for RNA editing but a bona fide RNA editing enzyme has yet to be identified.
Collapse
Affiliation(s)
- Mizuho Ichinose
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
- Institute of Transformative Bio-Molecules, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
36
|
Harrison T, Ruiz J, Sloan DB, Ben-Hur A, Boucher C. aPPRove: An HMM-Based Method for Accurate Prediction of RNA-Pentatricopeptide Repeat Protein Binding Events. PLoS One 2016; 11:e0160645. [PMID: 27560805 PMCID: PMC4999063 DOI: 10.1371/journal.pone.0160645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/24/2016] [Indexed: 02/07/2023] Open
Abstract
Pentatricopeptide repeat containing proteins (PPRs) bind to RNA transcripts originating from mitochondria and plastids. There are two classes of PPR proteins. The P class contains tandem P-type motif sequences, and the PLS class contains alternating P, L and S type sequences. In this paper, we describe a novel tool that predicts PPR-RNA interaction; specifically, our method, which we call aPPRove, determines where and how a PLS-class PPR protein will bind to RNA when given a PPR and one or more RNA transcripts by using a combinatorial binding code for site specificity proposed by Barkan et al. Our results demonstrate that aPPRove successfully locates how and where a PPR protein belonging to the PLS class can bind to RNA. For each binding event it outputs the binding site, the amino-acid-nucleotide interaction, and its statistical significance. Furthermore, we show that our method can be used to predict binding events for PLS-class proteins using a known edit site and the statistical significance of aligning the PPR protein to that site. In particular, we use our method to make a conjecture regarding an interaction between CLB19 and the second intronic region of ycf3. The aPPRove web server can be found at www.cs.colostate.edu/~approve.
Collapse
Affiliation(s)
- Thomas Harrison
- Department of Computer Science, Colorado State University, Fort Collins, CO, 80523, United States of America
- * E-mail:
| | - Jaime Ruiz
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, 32611, United States of America
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, United States of America
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, CO, 80523, United States of America
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, 32611, United States of America
| |
Collapse
|
37
|
Hammani K, Takenaka M, Miranda R, Barkan A. A PPR protein in the PLS subfamily stabilizes the 5'-end of processed rpl16 mRNAs in maize chloroplasts. Nucleic Acids Res 2016; 44:4278-88. [PMID: 27095196 PMCID: PMC4872118 DOI: 10.1093/nar/gkw270] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are a large family of helical-repeat proteins that bind RNA in mitochondria and chloroplasts. Precise RNA targets and functions have been assigned to only a small fraction of the >400 members of the PPR family in plants. We used the amino acid code governing the specificity of RNA binding by PPR repeats to infer candidate-binding sites for the maize protein PPR103 and its ortholog Arabidopsis EMB175. Genetic and biochemical data confirmed a predicted binding site in the chloroplast rpl16 5′UTR to be a site of PPR103 action. This site maps to the 5′ end of transcripts that fail to accumulate in ppr103 mutants. A small RNA corresponding to the predicted PPR103 binding site accumulates in a PPR103-dependent fashion, as expected of PPR103's in vivo footprint. Recombinant PPR103 bound specifically to this sequence in vitro. These observations imply that PPR103 stabilizes rpl16 mRNA by impeding 5′→3′ RNA degradation. Previously described PPR proteins with this type of function consist of canonical PPR motifs. By contrast, PPR103 is a PLS-type protein, an architecture typically associated with proteins that specify sites of RNA editing. However, PPR103 is not required to specify editing sites in chloroplasts.
Collapse
Affiliation(s)
- Kamel Hammani
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire des Plantes, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | - Rafael Miranda
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
38
|
Cheng S, Gutmann B, Zhong X, Ye Y, Fisher MF, Bai F, Castleden I, Song Y, Song B, Huang J, Liu X, Xu X, Lim BL, Bond CS, Yiu SM, Small I. Redefining the structural motifs that determine RNA binding and RNA editing by pentatricopeptide repeat proteins in land plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:532-47. [PMID: 26764122 DOI: 10.1111/tpj.13121] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 01/05/2016] [Indexed: 05/02/2023]
Abstract
The pentatricopeptide repeat (PPR) proteins form one of the largest protein families in land plants. They are characterised by tandem 30-40 amino acid motifs that form an extended binding surface capable of sequence-specific recognition of RNA strands. Almost all of them are post-translationally targeted to plastids and mitochondria, where they play important roles in post-transcriptional processes including splicing, RNA editing and the initiation of translation. A code describing how PPR proteins recognise their RNA targets promises to accelerate research on these proteins, but making use of this code requires accurate definition and annotation of all of the various nucleotide-binding motifs in each protein. We have used a structural modelling approach to define 10 different variants of the PPR motif found in plant proteins, in addition to the putative deaminase motif that is found at the C-terminus of many RNA-editing factors. We show that the super-helical RNA-binding surface of RNA-editing factors is potentially longer than previously recognised. We used the redefined motifs to develop accurate and consistent annotations of PPR sequences from 109 genomes. We report a high error rate in PPR gene models in many public plant proteomes, due to gene fusions and insertions of spurious introns. These consistently annotated datasets across a wide range of species are valuable resources for future comparative genomics studies, and an essential pre-requisite for accurate large-scale computational predictions of PPR targets. We have created a web portal (http://www.plantppr.com) that provides open access to these resources for the community.
Collapse
Affiliation(s)
- Shifeng Cheng
- HKU-BGI Bioinformatics Algorithms and Core Technology Research Laboratory, Department of Computer Science, The University of Hong Kong, Hong Kong, China
- BGI-Shenzhen, Shenzhen, 518083, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Bernard Gutmann
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, 6009, Australia
| | | | - Yongtao Ye
- HKU-BGI Bioinformatics Algorithms and Core Technology Research Laboratory, Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Mark F Fisher
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | | | - Ian Castleden
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, 6009, Australia
| | - Yue Song
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Bo Song
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Xin Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Boon L Lim
- HKU-BGI Bioinformatics Algorithms and Core Technology Research Laboratory, Department of Computer Science, The University of Hong Kong, Hong Kong, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Charles S Bond
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Siu-Ming Yiu
- HKU-BGI Bioinformatics Algorithms and Core Technology Research Laboratory, Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, 6009, Australia
| |
Collapse
|
39
|
Ramos‐Vega M, Guevara‐García A, Llamas E, Sánchez‐León N, Olmedo‐Monfil V, Vielle‐Calzada JP, León P. Functional analysis of the
Arabidopsis thaliana
CHLOROPLAST BIOGENESIS
19
pentatricopeptide repeat editing protein. NEW PHYTOLOGIST 2015; 208:430-41. [PMID: 25980341 DOI: 10.1111/nph.13468] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/16/2015] [Indexed: 05/27/2023]
Affiliation(s)
- Maricela Ramos‐Vega
- Departamento de Biología Molecular de Plantas Instituto de Biotecnología Universidad Nacional Autónoma de México Av. Universidad 2001 Col. Chamilpa Cuernavaca 62210 México
| | - Arturo Guevara‐García
- Departamento de Biología Molecular de Plantas Instituto de Biotecnología Universidad Nacional Autónoma de México Av. Universidad 2001 Col. Chamilpa Cuernavaca 62210 México
| | - Ernesto Llamas
- Departamento de Biología Molecular de Plantas Instituto de Biotecnología Universidad Nacional Autónoma de México Av. Universidad 2001 Col. Chamilpa Cuernavaca 62210 México
| | - Nidia Sánchez‐León
- Grupo de Desarrollo Reproductivo y Apomixis Laboratorio Nacional de Genómica para la Biodiversidad CINVESTAV Irapuato 36821 México
| | - Vianey Olmedo‐Monfil
- Grupo de Desarrollo Reproductivo y Apomixis Laboratorio Nacional de Genómica para la Biodiversidad CINVESTAV Irapuato 36821 México
| | - Jean Philippe Vielle‐Calzada
- Grupo de Desarrollo Reproductivo y Apomixis Laboratorio Nacional de Genómica para la Biodiversidad CINVESTAV Irapuato 36821 México
| | - Patricia León
- Departamento de Biología Molecular de Plantas Instituto de Biotecnología Universidad Nacional Autónoma de México Av. Universidad 2001 Col. Chamilpa Cuernavaca 62210 México
| |
Collapse
|
40
|
Shi X, Hanson MR, Bentolila S. Two RNA recognition motif-containing proteins are plant mitochondrial editing factors. Nucleic Acids Res 2015; 43:3814-25. [PMID: 25800738 PMCID: PMC4402546 DOI: 10.1093/nar/gkv245] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/10/2015] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional C-to-U RNA editing occurs in plant plastid and mitochondrial transcripts. Members of the Arabidopsis RNA-editing factor interacting protein (RIP) family and ORRM1 (Organelle RNA Recognition Motif-containing protein 1) have been recently characterized as essential components of the chloroplast RNA editing apparatus. ORRM1 belongs to a distinct clade of RNA Recognition Motif (RRM)-containing proteins, most of which are predicted to be organelle-targeted. Here we report the identification of two proteins, ORRM2 (organelle RRM protein 2) and ORRM3 (organelle RRM protein 3), as the first members of the ORRM clade to be identified as mitochondrial editing factors. Transient silencing of ORRM2 and ORRM3 resulted in reduced editing efficiency at ∼6% of the mitochondrial C targets. In addition to an RRM domain at the N terminus, ORRM3 carries a glycine-rich domain at the C terminus. The N-terminal RRM domain by itself provides the editing activity of ORRM3. In yeast-two hybrid assays, ORRM3 interacts with RIP1, ORRM2 and with itself. Transient silencing of ORRM2 in the orrm3 mutant further impairs the editing activity at sites controlled by both ORRM2 and ORRM3. Identification of the effect of ORRM2 and ORRM3 on RNA editing reveals a previously undescribed role of RRM-containing proteins as mitochondrial RNA editing factors.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Stéphane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
41
|
Hayes ML, Dang KN, Diaz MF, Mulligan RM. A conserved glutamate residue in the C-terminal deaminase domain of pentatricopeptide repeat proteins is required for RNA editing activity. J Biol Chem 2015; 290:10136-42. [PMID: 25739442 DOI: 10.1074/jbc.m114.631630] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Indexed: 11/06/2022] Open
Abstract
Many transcripts expressed from plant organelle genomes are modified by C-to-U RNA editing. Nuclear encoded pentatricopeptide repeat (PPR) proteins include an RNA binding domain that provides site specificity. In addition, many PPR proteins include a C-terminal DYW deaminase domain with characteristic zinc binding motifs (CXXC, HXE) and has recently been shown to bind zinc ions. The glutamate residue of the HXE motif is catalytically required in the reaction catalyzed by cytidine deaminase. In this work, we examine the activity of the DYW deaminase domain through truncation or mutagenesis of the HXE motif. OTP84 is required for editing three chloroplast sites, and transgenes expressing OTP84 with C-terminal truncations were capable of editing only one of the three cognate sites at high efficiency. These results suggest that the deaminase domain of OTP84 is required for editing two of the sites, but another deaminase is able to supply the deamination activity for the third site. OTP84 and CREF7 transgenes were mutagenized to replace the glutamate residue of the HXE motif, and transgenic plants expressing OTP84-E824A and CREF7-E554A were unable to efficiently edit the cognate editing sites for these genes. In addition, plants expressing CREF7-E554A exhibited substantially reduced capacity to edit a non-cognate site, rpoA C200. These results indicate that the DYW deaminase domains of PPR proteins are involved in editing their cognate editing sites, and in some cases may participate in editing additional sites in the chloroplast.
Collapse
Affiliation(s)
- Michael L Hayes
- From the Developmental and Cell Biology, University of California, Irvine, California 92697
| | - Kim N Dang
- From the Developmental and Cell Biology, University of California, Irvine, California 92697
| | - Michael F Diaz
- From the Developmental and Cell Biology, University of California, Irvine, California 92697
| | - R Michael Mulligan
- From the Developmental and Cell Biology, University of California, Irvine, California 92697
| |
Collapse
|
42
|
Shikanai T. RNA editing in plants: Machinery and flexibility of site recognition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:779-85. [PMID: 25585161 DOI: 10.1016/j.bbabio.2014.12.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 11/20/2022]
Abstract
In plants, RNA editing is a process that deaminates specific cytidines (C) to uridines (U). PLS subfamily members of PPR proteins function in site recognition of the target C. In silico analysis has predicted the code used for PPR motif-nucleotide interaction, and the crystal structure of a protein-RNA complex supports this model. Despite progress in understanding the RNA-binding mechanism of PPR proteins, some of the flexibility of RNA recognition observed in trans-factors of RNA editing has not been fully explained. It is probably necessary to consider another unknown mechanism, and this consideration is related to the question of how PPR proteins have managed the creation of RNA editing sites during evolution. This question may be related to the mystery of the biological function of RNA editing in plants. MORF/RIP family members are required for RNA editing at multiple editing sites and are components of the RNA editosome in plants. The DYW domain has been a strong candidate for the C deaminase activity required for C-to-U conversion in RNA editing. So far, the activity of this enzyme has not been detected in recombinant DYW proteins, and several puzzling experimental results need to be explained to support the model. It is still difficult to resolve the entire image of the editosome in RNA editing in plants. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502 Japan; CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan.
| |
Collapse
|