1
|
Wong GY, Millar AA. TRUEE; a bioinformatic pipeline to define the functional microRNA targetome of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1476-1492. [PMID: 35352405 PMCID: PMC9324967 DOI: 10.1111/tpj.15751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Central to plant microRNA (miRNA) biology is the identification of functional miRNA-target interactions (MTIs). However, the complementarity basis of bioinformatic target prediction results in mostly false positives, and the degree of complementarity does not equate with regulation. Here, we develop a bioinformatic workflow named TRUEE (Targets Ranked Using Experimental Evidence) that ranks MTIs on the extent to which they are subjected to miRNA-mediated cleavage. It sorts predicted targets into high (HE) and low evidence (LE) groupings based on the frequency and strength of miRNA-guided cleavage degradome signals across multiple degradome experiments. From this, each target is assigned a numerical value, termed a Category Score, ranking the extent to which it is subjected to miRNA-mediated cleavage. As a proof-of-concept, the 428 Arabidopsis miRNAs annotated in miRBase were processed through the TRUEE pipeline to determine the miRNA 'targetome'. The majority of high-ranking Category Score targets corresponded to highly conserved MTIs, validating the workflow. Very few Arabidopsis-specific, Brassicaceae-specific, or Conserved-passenger miRNAs had HE targets with high Category Scores. In total, only several hundred MTIs were found to have Category Scores characteristic of currently known physiologically significance MTIs. Although non-exhaustive, clearly the number of functional MTIs is much narrower than many studies claim. Therefore, using TRUEE to numerically rank targets directly on experimental evidence has given insights into the scope of the functional miRNA targetome of Arabidopsis.
Collapse
Affiliation(s)
- Gigi Y. Wong
- Division of Plant Science, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Anthony A. Millar
- Division of Plant Science, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| |
Collapse
|
2
|
Xu P, Zhu Y, Zhang Y, Jiang J, Yang L, Mu J, Yu X, He Y. Global Analysis of the Genetic Variations in miRNA-Targeted Sites and Their Correlations With Agronomic Traits in Rapeseed. Front Genet 2021; 12:741858. [PMID: 34594365 PMCID: PMC8476912 DOI: 10.3389/fgene.2021.741858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) and their target genes play vital roles in crops. However, the genetic variations in miRNA-targeted sites that affect miRNA cleavage efficiency and their correlations with agronomic traits in crops remain unexplored. On the basis of a genome-wide DNA re-sequencing of 210 elite rapeseed (Brassica napus) accessions, we identified the single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs) in miRNA-targeted sites complementary to miRNAs. Variant calling revealed 7.14 million SNPs and 2.89 million INDELs throughout the genomes of 210 rapeseed accessions. Furthermore, we detected 330 SNPs and 79 INDELs in 357 miRNA target sites, of which 33.50% were rare variants. We also analyzed the correlation between the genetic variations in miRNA target sites and 12 rapeseed agronomic traits. Eleven SNPs in miRNA target sites were significantly correlated with phenotypes in three consecutive years. More specifically, three correlated SNPs within the miRNA-binding regions of BnSPL9-3, BnSPL13-2, and BnCUC1-2 were in the loci associated with the branch angle, seed weight, and silique number, respectively; expression profiling suggested that the variation at these 3 miRNA target sites significantly affected the expression level of the corresponding target genes. Taken together, the results of this study provide researchers and breeders with a global view of the genetic variations in miRNA-targeted sites in rapeseed and reveal the potential effects of these genetic variations on elite agronomic traits.
Collapse
Affiliation(s)
- Pengfei Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yantao Zhu
- Hybrid Rape Research Center of Shaanxi Province, Yangling, China
| | - Yanfeng Zhang
- Hybrid Rape Research Center of Shaanxi Province, Yangling, China
| | - Jianxia Jiang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Liyong Yang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jianxin Mu
- Hybrid Rape Research Center of Shaanxi Province, Yangling, China
| | - Xiang Yu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Qiao Y, Xia R, Zhai J, Hou Y, Feng L, Zhai Y, Ma W. Small RNAs in Plant Immunity and Virulence of Filamentous Pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:265-288. [PMID: 34077241 DOI: 10.1146/annurev-phyto-121520-023514] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gene silencing guided by small RNAs governs a broad range of cellular processes in eukaryotes. Small RNAs are important components of plant immunity because they contribute to pathogen-triggered transcription reprogramming and directly target pathogen RNAs. Recent research suggests that silencing of pathogen genes by plant small RNAs occurs not only during viral infection but also in nonviral pathogens through a process termed host-induced gene silencing, which involves trans-species small RNA trafficking. Similarly, small RNAs are also produced by eukaryotic pathogens and regulate virulence. This review summarizes the small RNA pathways in both plants and filamentous pathogens, including fungi and oomycetes, and discusses their role in host-pathogen interactions. We highlight secondarysmall interfering RNAs of plants as regulators of immune receptor gene expression and executors of host-induced gene silencing in invading pathogens. The current status and prospects of trans-species gene silencing at the host-pathogen interface are discussed.
Collapse
Affiliation(s)
- Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510640, China
| | - Jixian Zhai
- School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yingnan Hou
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
| | - Li Feng
- School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Zhai
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK;
| |
Collapse
|
4
|
Praher D, Zimmermann B, Dnyansagar R, Miller DJ, Moya A, Modepalli V, Fridrich A, Sher D, Friis-Møller L, Sundberg P, Fôret S, Ashby R, Moran Y, Technau U. Conservation and turnover of miRNAs and their highly complementary targets in early branching animals. Proc Biol Sci 2021; 288:20203169. [PMID: 33622129 PMCID: PMC7935066 DOI: 10.1098/rspb.2020.3169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are crucial post-transcriptional regulators that have been extensively studied in Bilateria, a group comprising the majority of extant animals, where more than 30 conserved miRNA families have been identified. By contrast, bilaterian miRNA targets are largely not conserved. Cnidaria is the sister group to Bilateria and thus provides a unique opportunity for comparative studies. Strikingly, like their plant counterparts, cnidarian miRNAs have been shown to predominantly have highly complementary targets leading to transcript cleavage by Argonaute proteins. Here, we assess the conservation of miRNAs and their targets by small RNA sequencing followed by miRNA target prediction in eight species of Anthozoa (sea anemones and corals), the earliest-branching cnidarian class. We uncover dozens of novel miRNAs but only a few conserved ones. Further, given their high complementarity, we were able to computationally identify miRNA targets in each species. Besides evidence for conservation of specific miRNA target sites, which are maintained between sea anemones and stony corals across 500 Myr of evolution, we also find indications for convergent evolution of target regulation by different miRNAs. Our data indicate that cnidarians have only few conserved miRNAs and corresponding targets, despite their high complementarity, suggesting a high evolutionary turnover.
Collapse
Affiliation(s)
- Daniela Praher
- Department of Neurosciences and Developmental Biology; Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology; Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Rohit Dnyansagar
- Department of Neurosciences and Developmental Biology; Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - David J. Miller
- Department of Molecular and Cell Biology, Comparative Genomics Centre, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Aurelie Moya
- Department of Molecular and Cell Biology, Comparative Genomics Centre, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, UK
| | - Arie Fridrich
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Lene Friis-Møller
- Danish Shellfish Centre, DTU Aqua, Technical University of Denmark, Lyngby, Denmark
| | - Per Sundberg
- Department of Zoology, University of Gothenburg, Gothenburg, Sweden
| | - Sylvain Fôret
- Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, Australia
| | - Regan Ashby
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology; Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Balyan S, Joseph SV, Jain R, Mutum RD, Raghuvanshi S. Investigation into the miRNA/5' isomiRNAs function and drought-mediated miRNA processing in rice. Funct Integr Genomics 2020; 20:509-522. [DOI: 10.1007/s10142-020-00731-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/04/2019] [Accepted: 01/02/2020] [Indexed: 11/28/2022]
|
6
|
Ravichandran S, Ragupathy R, Edwards T, Domaratzki M, Cloutier S. MicroRNA-guided regulation of heat stress response in wheat. BMC Genomics 2019; 20:488. [PMID: 31195958 PMCID: PMC6567507 DOI: 10.1186/s12864-019-5799-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Background With rising global temperature, understanding plants’ adaptation to heat stress has implications in plant breeding. MicroRNAs (miRNAs) are small, non-coding, regulatory RNAs guiding gene expression at the post-transcriptional level. In this study, small RNAs and the degradome (parallel analysis of RNA ends) of leaf tissues collected from control and heat-stressed wheat plants immediately at the end of the stress period and 1 and 4 days later were analysed. Results Sequencing of 24 small RNA libraries produced 55.2 M reads while 404 M reads were obtained from the corresponding 24 PARE libraries. From these, 202 miRNAs were ascertained, of which mature miRNA evidence was obtained for 104 and 36 were found to be differentially expressed after heat stress. The PARE analysis identified 589 transcripts targeted by 84 of the ascertained miRNAs. PARE sequencing validated the targets of the conserved members of miRNA156, miR166 and miR393 families as squamosa promoter-binding-like, homeobox leucine-zipper and transport inhibitor responsive proteins, respectively. Heat stress responsive miRNA targeted superoxide dismutases and an array of homeobox leucine-zipper proteins, F-box proteins and protein kinases. Query of miRNA targets to interactome databases revealed a predominant association of stress responses such as signalling, antioxidant activity and ubiquitination to superoxide dismutases, F-box proteins, pentatricopeptide repeat-containing proteins and mitochondrial transcription termination factor-like proteins. Conclusion The interlaced data set generated in this study identified and validated heat stress regulated miRNAs and their target genes associated with thermotolerance. Such accurate identification and validation of miRNAs and their target genes are essential to develop novel regulatory gene-based breeding strategies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5799-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sridhar Ravichandran
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Raja Ragupathy
- Plant Science Department, University of Manitoba, Winnipeg, Manitoba, Canada.,Present address: Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Tara Edwards
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Michael Domaratzki
- Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sylvie Cloutier
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada.
| |
Collapse
|
7
|
Wang C, Wang Q, Zhu X, Cui M, Jia H, Zhang W, Tang W, Leng X, Shen W. Characterization on the conservation and diversification of miRNA156 gene family from lower to higher plant species based on phylogenetic analysis at the whole genomic level. Funct Integr Genomics 2019; 19:933-952. [PMID: 31172301 DOI: 10.1007/s10142-019-00679-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 04/06/2019] [Accepted: 04/15/2019] [Indexed: 01/18/2023]
Abstract
miRNA156 family members (miR156s) participate in regulating the transition of plant vegetative and reproductive growth, flower development, and formation of berry skin color by negatively modulating their target gene SPLs. However, the evolution and functional diversification of miR156s in plants remain elusive. Phylogenetic analysis on 310 miR156s from 51 plant species on miRBase 21.0 showed that only miR156a could be conserved in the 51 plant species, but their sequences exhibited variation; another set of miR156s, such as miR156m/n/o/p/q/r/s/t/u/v/w/x/y/z, was identified only in certain special plant species (Glycine max and Malus); also, all base variations in the sequences of 310 miR156s occurred within one miR156 seed sequence, "TGACAGAAGAGAGTGAGCAC," and the changed base sites were mainly located at the 11th and 14th bases from the 5' end of the miR156 seed sequence, in which some base variations of miR156s resulted in a difference in miR156 targeting modes; by contrast, miR156 precursor sequences are highly divergent across diverse species. Similarly, cis-regulatory motifs on the promoter sequence of MIR156s in various plants also exhibited significant discrepancy. The intragenic MIR156 genes overlapped their target SBP genes, thereby suggesting that some microRNAs (miRNAs) originate from duplication of target genes. These traits might be the reasons of the conservation and diversification of miR156 gene family. This study identified the conserved seed sequence "TGACAGAAGAGAGTGAGCAC," and the sequence variation characterization, of miR156 family evolution, also investigated the varied traits of their promoters, precursors, and mature sequences in sequence evolutions and found some miRNAs might originate from duplication of target genes. Our findings will contribute to our understanding of the functional diversification of miRNAs and the interactions of miRNA/target pairs based on the evolutionary history of miRNA genes.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qinglian Wang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Menjie Cui
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenying Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Tang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangpeng Leng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbiao Shen
- College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Kusumi J, Ichinose M, Iizuka M. Effects of gene duplication, epistasis, recombination and gene conversion on the fixation time of compensatory mutations. J Theor Biol 2019; 467:134-141. [PMID: 30738048 DOI: 10.1016/j.jtbi.2019.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 11/16/2022]
Abstract
Gene duplication is one of the major mechanisms of molecular evolution. Gene duplication enables copies of a gene to accumulate mutations through functional redundancy. If a gene encodes a specific protein that interacts with other proteins, RNA, or DNA, the relaxation of selective constraints caused by gene duplication might contribute to the fixation of compensatory mutations that occur at the interacting sites. In this study, we investigate the effect of gene duplication, epistasis among the duplicated copies and gene conversion on the fixation time of compensatory mutations by extending the original model of compensatory evolution proposed by Kimura in 1985. Our simulation results reveal that the time to fixation of compensatory mutations can be decreased remarkably by gene duplication if one of the duplicated loci can completely mask the deleterious effects of a mutation that occurs at the other locus. Conversely, the fixation time can be increased by gene duplication if such functional compensation is weak. We also show that the combination of the degree of functional compensation and the rate of gene conversion between duplicate loci have contrasting effects on the time to fixation of compensatory mutations.
Collapse
Affiliation(s)
- Junko Kusumi
- Department of Environmental Changes, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Motoshi Ichinose
- Department of Contemporary Social Studies, Chikushi Jogakuen University, Dazaifu, Japan
| | - Masaru Iizuka
- Professor Emeritus, Kyushu Dental University, Kitakyushu, Japan
| |
Collapse
|
9
|
Horvath R, Slotte T. The Role of Small RNA-Based Epigenetic Silencing for Purifying Selection on Transposable Elements in Capsella grandiflora. Genome Biol Evol 2018; 9:2911-2920. [PMID: 29036316 PMCID: PMC5737465 DOI: 10.1093/gbe/evx206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 12/13/2022] Open
Abstract
To avoid negative effects of transposable element (TE) proliferation, plants epigenetically silence TEs using a number of mechanisms, including RNA-directed DNA methylation. These epigenetic modifications can extend outside the boundaries of TE insertions and lead to silencing of nearby genes, resulting in a trade-off between TE silencing and interference with nearby gene regulation. Therefore, purifying selection is expected to remove silenced TE insertions near genes more efficiently and prevent their accumulation within a population. To explore how effects of TE silencing on gene regulation shapes purifying selection on TEs, we analyzed whole genome sequencing data from 166 individuals of a large population of the outcrossing species Capsella grandiflora. We found that most TEs are rare, and in chromosome arms, silenced TEs are exposed to stronger purifying selection than those that are not silenced by 24-nucleotide small RNAs, especially with increasing proximity to genes. An age-of-allele test of neutrality on a subset of TEs supports our inference of purifying selection on silenced TEs, suggesting that our results are robust to varying transposition rates. Our results provide new insights into the processes affecting the accumulation of TEs in an outcrossing species and support the view that epigenetic silencing of TEs results in a trade-off between preventing TE proliferation and interference with nearby gene regulation. We also suggest that in the centromeric and pericentromeric regions, the negative aspects of epigenetic TE silencing are missing.
Collapse
Affiliation(s)
- Robert Horvath
- Science for Life Laboratory, Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden
| | - Tanja Slotte
- Science for Life Laboratory, Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden
| |
Collapse
|
10
|
Lin WY, Lin YY, Chiang SF, Syu C, Hsieh LC, Chiou TJ. Evolution of microRNA827 targeting in the plant kingdom. THE NEW PHYTOLOGIST 2018; 217:1712-1725. [PMID: 29214636 DOI: 10.1111/nph.14938] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/26/2017] [Indexed: 05/08/2023]
Abstract
Unlike most ancient microRNAs, which conservatively target homologous genes across species, microRNA827 (miR827) targets two different types of SPX (SYG1/PHO81/XPR1)-domain-containing genes, NITROGEN LIMITATION ADAPTATION (NLA) and PHOSPHATE TRANSPORTER 5 (PHT5), in Arabidopsis thaliana and Oryza sativa to regulate phosphate (Pi) transport and storage, respectively. However, how miR827 shifted its target preference and its evolutionary history are unknown. Based on target prediction analysis, we found that in most angiosperms, miR827 conservatively targets PHT5 homologs, but in Brassicaceae and Cleomaceae it preferentially targets NLA homologs, and we provide evidence for the transition of target preference during Brassicales evolution. Intriguingly, we found a lineage-specific loss of the miR827-regulatory module in legumes. Analysis of miR827-mediated cleavage efficiency and the expression of PHT5 in A. thaliana indicated that accumulation of mutations in the target site and the exclusion of the target site by alternative transcriptional initiation eliminated PHT5 targeting by miR827. Here, we identified a transition of miR827 target preference during plant evolution and revealed the uniqueness of miR827-mediated regulation among conserved plant miRNAs. Despite the change in its target preference, upregulation of miR827 by Pi starvation and its role in regulating cellular Pi homeostasis were retained.
Collapse
Affiliation(s)
- Wei-Yi Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Department of Agronomy, National Taiwan University, Taipei, 106, Taiwan
| | - Yen-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Su-Fen Chiang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Cueihuan Syu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402, Taiwan
| | - Li-Ching Hsieh
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| |
Collapse
|
11
|
Liu Y, El-Kassaby YA. Landscape of Fluid Sets of Hairpin-Derived 21-/24-nt-Long Small RNAs at Seed Set Uncovers Special Epigenetic Features in Picea glauca. Genome Biol Evol 2017; 9:82-92. [PMID: 28082604 PMCID: PMC5381586 DOI: 10.1093/gbe/evw283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/23/2022] Open
Abstract
Conifers’ exceptionally large genome (20–30 Gb) is scattered with 60% retrotransposon (RT) components and we have little knowledge on their origin and evolutionary implications. RTs may impede the expression of flanking genes and provide sources of the formation of novel small RNA (sRNAs) populations to constrain events of transposon (TE) proliferation/transposition. Here we show a declining expression of 24-nt-long sRNAs and low expression levels of their key processing gene, pgRTL2 (RNASE THREE LIKE 2) at seed set in Picea glauca. The sRNAs in 24-nt size class are significantly less enriched in type and read number than 21-nt sRNAs and have not been documented in other species. The architecture of MIR loci generating highly expressed 24-/21-nt sRNAs is featured by long terminal repeat—retrotransposons (LTR-RTs) in families of Ty3/Gypsy and Ty1/Copia elements. This implies that the production of sRNAs may be predominantly originated from TE fragments on chromosomes. Furthermore, a large proportion of highly expressed 24-nt sRNAs does not have predictable targets against unique genes in Picea, suggestive of their potential pathway in DNA methylation modifications on, for instance, TEs. Additionally, the classification of computationally predicted sRNAs suggests that 24-nt sRNA targets may bear particular functions in metabolic processes while 21-nt sRNAs target genes involved in many different biological processes. This study, therefore, directs our attention to a possible extrapolation that lacking of 24-nt sRNAs at the late conifer seed developmental phase may result in less constraints in TE activities, thus contributing to the massive expansion of genome size.
Collapse
Affiliation(s)
- Yang Liu
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Huang D, Feurtado JA, Smith MA, Flatman LK, Koh C, Cutler AJ. Long noncoding miRNA gene represses wheat β-diketone waxes. Proc Natl Acad Sci U S A 2017; 114:E3149-E3158. [PMID: 28351975 PMCID: PMC5393243 DOI: 10.1073/pnas.1617483114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The cuticle of terrestrial plants functions as a protective barrier against many biotic and abiotic stresses. In wheat and other Triticeae, β-diketone waxes are major components of the epicuticular layer leading to the bluish-white glaucous trait in reproductive-age plants. Glaucousness in durum wheat is controlled by a metabolic gene cluster at the WAX1 (W1) locus and a dominant suppressor INHIBITOR of WAX1 (Iw1) on chromosome 2B. The wheat D subgenome from progenitor Aegilops tauschii contains W2 and Iw2 paralogs on chromosome 2D. Here we identify the Iw1 gene from durum wheat and demonstrate the unique regulatory mechanism by which Iw1 acts to suppress a carboxylesterase-like protein gene, W1-COE, within the W1 multigene locus. Iw1 is a long noncoding RNA (lncRNA) containing an inverted repeat (IR) with >80% identity to W1-COE The Iw1 transcript forms a miRNA precursor-like long hairpin producing a 21-nt predominant miRNA, miRW1, and smaller numbers of related sRNAs associated with the nonglaucous phenotype. When Iw1 was introduced into glaucous bread wheat, miRW1 accumulated, W1-COE and its paralog W2-COE were down-regulated, and the phenotype was nonglaucous and β-diketone-depleted. The IR region of Iw1 has >94% identity to an IR region on chromosome 2 in Ae. tauschii that also produces miRW1 and lies within the marker-based location of Iw2 We propose the Iw loci arose from an inverted duplication of W1-COE and/or W2-COE in ancestral wheat to form evolutionarily young miRNA genes that act to repress the glaucous trait.
Collapse
Affiliation(s)
- Daiqing Huang
- Wheat Improvement Flagship Program, National Research Council of Canada, Saskatoon, Saskatchewan, SK S7N 0W9, Canada
| | - J Allan Feurtado
- Wheat Improvement Flagship Program, National Research Council of Canada, Saskatoon, Saskatchewan, SK S7N 0W9, Canada
| | - Mark A Smith
- Wheat Improvement Flagship Program, National Research Council of Canada, Saskatoon, Saskatchewan, SK S7N 0W9, Canada
| | - Leah K Flatman
- Wheat Improvement Flagship Program, National Research Council of Canada, Saskatoon, Saskatchewan, SK S7N 0W9, Canada
| | - Chushin Koh
- Wheat Improvement Flagship Program, National Research Council of Canada, Saskatoon, Saskatchewan, SK S7N 0W9, Canada
| | - Adrian J Cutler
- Wheat Improvement Flagship Program, National Research Council of Canada, Saskatoon, Saskatchewan, SK S7N 0W9, Canada
| |
Collapse
|
13
|
Nikolov LA, Tsiantis M. Using mustard genomes to explore the genetic basis of evolutionary change. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:119-128. [PMID: 28285128 DOI: 10.1016/j.pbi.2017.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Recent advances in sequencing technologies and gene manipulation tools have driven mustard species into the spotlight of comparative research and have offered powerful insight how phenotypic space is explored during evolution. Evidence emerged for genome-wide signal of transcription factors and gene duplication contributing to trait divergence, e.g., PLETHORA5/7 in leaf complexity. Trait divergence is often manifested in differential expression due to cis-regulatory divergence, as in KNOX genes and REDUCED COMPLEXITY, and can be coupled with protein divergence. Fruit shape in Capsella rubella results from anisotropic growth during three distinct phases. Brassicaceae exhibit novel fruit dispersal strategy, explosive pod shatter, where the rapid movement depends on slow build-up of tension and its rapid release facilitated by asymmetric cell wall thickenings.
Collapse
Affiliation(s)
- Lachezar A Nikolov
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany.
| |
Collapse
|
14
|
Cui J, You C, Chen X. The evolution of microRNAs in plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:61-67. [PMID: 27886593 PMCID: PMC5342909 DOI: 10.1016/j.pbi.2016.11.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) are a central player in post-transcriptional regulation of gene expression and are involved in numerous biological processes in eukaryotes. Knowledge of the origins and divergence of miRNAs paves the way for a better understanding of the complexity of the regulatory networks that they participate in. The biogenesis, degradation, and regulatory activities of miRNAs are relatively better understood, but the evolutionary history of miRNAs still needs more exploration. Inverted duplication of target genes, random hairpin sequences and small transposable elements constitute three main models that explain the origination of miRNA genes (MIR). Both inter-species and intra-species divergence of miRNAs exhibits functional adaptation and adaptation to changing environments in evolution. Here we summarize recent progress in studies on the evolution of MIR and related genes.
Collapse
Affiliation(s)
- Jie Cui
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Chenjiang You
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Xuemei Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA; Howard Hughes Medical Institute, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
15
|
Liu WW, Meng J, Cui J, Luan YS. Characterization and Function of MicroRNA ∗s in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:2200. [PMID: 29312425 PMCID: PMC5744440 DOI: 10.3389/fpls.2017.02200] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/14/2017] [Indexed: 05/20/2023]
Abstract
MicroRNAs, a group of non-coding RNA molecules, play essential roles in a wide range of cellular processes in different molecules, cells, and organisms. In plants, microRNAs are a class of 20- to 24-nucleotides endogenous small RNAs that repress gene expression. The microRNA guide strand (miRNA) and its complementary strand (miRNA∗) both originate from the miRNA/miRNA∗ duplex. Generally, the guide strands act as post-transcriptional regulators that suppress gene expression by cleaving their target mRNA transcripts, whereas the complementary strands were thought to be degraded as 'passenger strands.' However, the complementary strand has been confirmed to possess significant biological functionality in recent reports. In this review, we summarized the binding characteristics of the miRNA∗ strands with ARGONAUTE proteins, their tissue-specific accumulations and their biological functions, illustrating the essential roles of miRNA∗s in biological processes and therefore providing directions for further exploration.
Collapse
Affiliation(s)
- Wei-wei Liu
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, China
- *Correspondence: Jun Meng, Yu-shi Luan,
| | - Jun Cui
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yu-shi Luan
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, China
- *Correspondence: Jun Meng, Yu-shi Luan,
| |
Collapse
|
16
|
Chen J, Xie J, Chen B, Quan M, Li Y, Li B, Zhang D. Genetic variations and miRNA-target interactions contribute to natural phenotypic variations in Populus. THE NEW PHYTOLOGIST 2016; 212:150-60. [PMID: 27265357 DOI: 10.1111/nph.14040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/28/2016] [Indexed: 05/22/2023]
Abstract
Variation in regulatory factors, including microRNAs (miRNAs), contributes to variation in quantitative and complex traits. However, in plants, variants in miRNAs and their target genes that contribute to natural phenotypic variation, and the underlying regulatory networks, remain poorly characterized. We investigated the associations and interactions of single-nucleotide polymorphisms (SNPs) in miRNAs and their target genes with phenotypes in 435 individuals from a natural population of Populus. We used RNA-seq to identify 217 miRNAs differentially expressed in a tension wood system, and identified 1196 candidate target genes; degradome sequencing confirmed 60 of the target sites. In addition, 72 miRNA-target pairs showed significant co-expression. Gene ontology (GO) term analysis showed that most of the genes in the co-regulated pairs participate in biological regulation. Genome resequencing found 5383 common SNPs (frequency ≥ 0.05) in 139 miRNAs and 31 037 SNPs in 819 target genes. Single-SNP association analyses identified 232 significant associations between wood traits (P ≤ 0.05) and SNPs in 102 miRNAs and 1387 associations with 478 target genes. Among these, 102 miRNA-target pairs associated with the same traits. Multi-SNP associations found 102 epistatic pairs associated with traits. Furthermore, a reconstructed regulatory network contained 12 significantly co-expressed pairs, including eight miRNAs and nine targets associated with traits. Lastly, both expression and genetic association showed that miR156i, miR156j, miR396a and miR6445b were involved in the formation of tension wood. This study shows that variants in miRNAs and target genes contribute to natural phenotypic variation and annotated roles and interactions of miRNAs and their target genes by genetic association analysis.
Collapse
Affiliation(s)
- Jinhui Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Beibei Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Ying Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Bailian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Department of Forestry, North Carolina State University, Raleigh, NC, 27695-8203, USA
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
17
|
Yin H, Fan Z, Li X, Wang J, Liu W, Wu B, Ying Z, Liu L, Liu Z, Li J. Phylogenetic tree-informed microRNAome analysis uncovers conserved and lineage-specific miRNAs in Camellia during floral organ development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2641-53. [PMID: 26951373 DOI: 10.1093/jxb/erw095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In plants, miRNAs are endogenous small RNAs derived from single-stranded precursors with hairpin structures. The evolution of miRNAs and their targets represents one of the most dynamic circuits directing gene expression, which may play fundamental roles in shaping the development of distinct plant organs. Here we performed high-throughput small RNA sequencing in five organ types of Camellia azalea to capture the spatial profile of small non-coding RNA. In total we obtained >227 million high-quality reads and identified 175 miRNAs with mature and precursor sequences. We aligned the miRNAs to known miRNA databases and revealed some conserved as well as 'newly evolved' miRNA genes. Twelve miRNAs were identified to be specific in the genus Camellia, supporting the lineage-specific manner of expansion of 'young' miRNAs. Through differential expression analysis, we showed that many miRNAs were preferentially abundant in certain organ types. Moreover, hierarchical clustering analysis revealed distinctive expression patterns of tissue-specific miRNAs. Gene Ontology enrichment analysis of targets of stamen- and carpel-specific miRNA subclusters showed that miRNA-target regulatory circuits were involved in many important biological processes, enabling their proper specification and organogenesis, such as 'DNA integration' and 'fruit development'. Further, quantitative PCR of key miRNAs and their target genes revealed anti-correlated patterns, and uncovered the functions of key miRNA-target pairs in different floral organs. Taken together, this work yielded valuable information on miRNA-target regulation in the control of floral organ development and sheds light on the evolution of lineage-specific miRNAs in Camellia.
Collapse
Affiliation(s)
- Hengfu Yin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China Key Laboratory of Forest genetics and breeding, Zhejiang Province 311400, China
| | - Zhengqi Fan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China Key Laboratory of Forest genetics and breeding, Zhejiang Province 311400, China
| | - Xinlei Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China Key Laboratory of Forest genetics and breeding, Zhejiang Province 311400, China
| | - Jiangying Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Weixin Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Bin Wu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China Key Laboratory of Forest genetics and breeding, Zhejiang Province 311400, China
| | - Zhen Ying
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Liping Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Jiyuan Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China Key Laboratory of Forest genetics and breeding, Zhejiang Province 311400, China
| |
Collapse
|
18
|
Liu T, Fang C, Ma Y, Shen Y, Li C, Li Q, Wang M, Liu S, Zhang J, Zhou Z, Yang R, Wang Z, Tian Z. Global investigation of the co-evolution of MIRNA genes and microRNA targets during soybean domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:396-409. [PMID: 26714457 DOI: 10.1111/tpj.13113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/26/2015] [Accepted: 12/21/2015] [Indexed: 05/24/2023]
Abstract
Although the selection of coding genes during plant domestication has been well studied, the evolution of MIRNA genes (MIRs) and the interaction between microRNAs (miRNAs) and their targets in this process are poorly understood. Here, we present a genome-wide survey of the selection of MIRs and miRNA targets during soybean domestication and improvement. Our results suggest that, overall, MIRs have higher evolutionary rates than miRNA targets. Nonetheless, they do demonstrate certain similar evolutionary patterns during soybean domestication: MIRs and miRNA targets with high expression and duplication status, and with greater numbers of partners, exhibit lower nucleotide divergence than their counterparts without these characteristics, suggesting that expression level, duplication status, and miRNA-target interaction are essential for evolution of MIRs and miRNA targets. Further investigation revealed that miRNA-target pairs that are subjected to strong purifying selection have greater similarities than those that exhibited genetic diversity. Moreover, mediated by domestication and improvement, the similarities of a large number of miRNA-target pairs in cultivated soybean populations were increased compared to those in wild soybeans, whereas a small number of miRNA-target pairs exhibited decreased similarity, which may be associated with the adoption of particular domestication traits. Taken together, our results shed light on the co-evolution of MIRs and miRNA targets during soybean domestication.
Collapse
Affiliation(s)
- Tengfei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Fang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanming Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Beijing University of Agriculture, Beijing, China
| | - Yanting Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Congcong Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jixiang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhengkui Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Rui Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zheng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|