1
|
Chen J, Bartoš J, Boudichevskaia A, Voigt A, Rabanus-Wallace MT, Dreissig S, Tulpová Z, Šimková H, Macas J, Kim G, Buhl J, Bürstenbinder K, Blattner FR, Fuchs J, Schmutzer T, Himmelbach A, Schubert V, Houben A. The genetic mechanism of B chromosome drive in rye illuminated by chromosome-scale assembly. Nat Commun 2024; 15:9686. [PMID: 39516474 PMCID: PMC11549084 DOI: 10.1038/s41467-024-53799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The genomes of many plants, animals, and fungi frequently comprise dispensable B chromosomes that rely upon various chromosomal drive mechanisms to counteract the tendency of non-essential genetic elements to be purged over time. The B chromosome of rye - a model system for nearly a century - undergoes targeted nondisjunction during first pollen mitosis, favouring segregation into the generative nucleus, thus increasing their numbers over generations. However, the genetic mechanisms underlying this process are poorly understood. Here, using a newly-assembled, ~430 Mb-long rye B chromosome pseudomolecule, we identify five candidate genes whose role as trans-acting moderators of the chromosomal drive is supported by karyotyping, chromosome drive analysis and comparative RNA-seq. Among them, we identify DCR28, coding a microtubule-associated protein related to cell division, and detect this gene also in the B chromosome of Aegilops speltoides. The DCR28 gene family is neo-functionalised and serially-duplicated with 15 B chromosome-located copies that are uniquely highly expressed in the first pollen mitosis of rye.
Collapse
Affiliation(s)
- Jianyong Chen
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Anastassia Boudichevskaia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Anna Voigt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Mark Timothy Rabanus-Wallace
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- School of Agriculture, Forestry, and Ecosystem Science (SAFES), The University of Melbourne, Parkville, VIC, Australia
| | - Steven Dreissig
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Zuzana Tulpová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Gihwan Kim
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jonas Buhl
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Institute of Biology, Department of Plant Cell Biology, Philipps University Marburg, Marburg, Germany
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Institute of Biology, Department of Plant Cell Biology, Philipps University Marburg, Marburg, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Thomas Schmutzer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
| |
Collapse
|
2
|
Wu D, Wang F, Chen L, Mao Y, Li Y, Zhu W, Xu L, Zhang Y, Wang Y, Zeng J, Cheng Y, Sha L, Fan X, Zhang H, Zhou Y, Kang H. Characterization of the wheat-tetraploid Thinopyrum elongatum 7E(7D) substitution line with Fusarium head blight resistance. BMC PLANT BIOLOGY 2024; 24:1006. [PMID: 39455993 PMCID: PMC11515827 DOI: 10.1186/s12870-024-05703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Fusarium head blight (FHB), a devastating disease of wheat production, is predominantly elicited by Fusarium graminearum (Fg). The tetraploid Thinopyrum elongatum is a tertiary gene resource of common wheat that possesses high affinity and displays high resistance traits against multiple biotic and abiotic stress. We aim to employ and utilize the novel FHB resistance resources from the wild germplasm of common wheat for breeding. RESULTS Durum wheat-tetraploid Th. elongatum amphiploid 8801 was hybridized with common wheat cultivars SM482 and SM51, and the F5 generation was generated. We conducted cytogenetically in situ hybridization (ISH) technologies to select and confirm a genetically stable 7E(7D) substitution line K17-1069-5, which showed FHB expansion resistance in both field and greenhouse infection experiments and displayed no significant disadvantage in agronomic traits compared to their common wheat parents in the field. The F2 segregation populations (K17-1069-5 × SM830) showed that the 7E chromosome conferred dominant FHB resistance with dosage effect. We developed 19 SSR molecular markers specific to chromosome 7E, which could be conducted for genetic mapping and large breeding populations marker-assisted selection (MAS) during selection procedures in the future. We isolated a novel Fhb7 allele from the tetraploid Th. elongatum chromosome 7E (Chr7E) using homology-based cloning, which was designated as TTE7E-Fhb7. CONCLUSIONS In summary, our study developed a novel wheat-tetraploid Thinopyrum elongatum 7E(7D) K17-1069-5 substitution line which contains stable FHB resistance.
Collapse
Affiliation(s)
- Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Fei Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Linfeng Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuanwen Mao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yinghui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
3
|
Macas J, Ávila Robledillo L, Kreplak J, Novák P, Koblížková A, Vrbová I, Burstin J, Neumann P. Assembly of the 81.6 Mb centromere of pea chromosome 6 elucidates the structure and evolution of metapolycentric chromosomes. PLoS Genet 2023; 19:e1010633. [PMID: 36735726 PMCID: PMC10027222 DOI: 10.1371/journal.pgen.1010633] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/20/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Centromeres in the legume genera Pisum and Lathyrus exhibit unique morphological characteristics, including extended primary constrictions and multiple separate domains of centromeric chromatin. These so-called metapolycentromeres resemble an intermediate form between monocentric and holocentric types, and therefore provide a great opportunity for studying the transitions between different types of centromere organizations. However, because of the exceedingly large and highly repetitive nature of metapolycentromeres, highly contiguous assemblies needed for these studies are lacking. Here, we report on the assembly and analysis of a 177.6 Mb region of pea (Pisum sativum) chromosome 6, including the 81.6 Mb centromere region (CEN6) and adjacent chromosome arms. Genes, DNA methylation profiles, and most of the repeats were uniformly distributed within the centromere, and their densities in CEN6 and chromosome arms were similar. The exception was an accumulation of satellite DNA in CEN6, where it formed multiple arrays up to 2 Mb in length. Centromeric chromatin, characterized by the presence of the CENH3 protein, was predominantly associated with arrays of three different satellite repeats; however, five other satellites present in CEN6 lacked CENH3. The presence of CENH3 chromatin was found to determine the spatial distribution of the respective satellites during the cell cycle. Finally, oligo-FISH painting experiments, performed using probes specifically designed to label the genomic regions corresponding to CEN6 in Pisum, Lathyrus, and Vicia species, revealed that metapolycentromeres evolved via the expansion of centromeric chromatin into neighboring chromosomal regions and the accumulation of novel satellite repeats. However, in some of these species, centromere evolution also involved chromosomal translocations and centromere repositioning.
Collapse
Affiliation(s)
- Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, Czech Republic
| | - Laura Ávila Robledillo
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, Czech Republic
| | - Jonathan Kreplak
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, Czech Republic
| | - Andrea Koblížková
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, Czech Republic
| | - Iva Vrbová
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, Czech Republic
| | - Judith Burstin
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, Czech Republic
| |
Collapse
|
4
|
Wu D, Yang N, Xiang Q, Zhu M, Fang Z, Zheng W, Lu J, Sha L, Fan X, Cheng Y, Wang Y, Kang H, Zhang H, Zhou Y. Pseudorogneria libanotica Intraspecific Genetic Polymorphism Revealed by Fluorescence In Situ Hybridization with Newly Identified Tandem Repeats and Wheat Single-Copy Gene Probes. Int J Mol Sci 2022; 23:ijms232314818. [PMID: 36499149 PMCID: PMC9737853 DOI: 10.3390/ijms232314818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
The genus Pseudoroegneria (Nevski) Löve (Triticeae, Poaceae) with its genome abbreviated 'St' accounts for more than 60% of perennial Triticeae species. The diploid species Psudoroegneria libanotica (2n = 14) contains the most ancient St genome. Therefore, investigating its chromosomes could provide some fundamental information required for subsequent studies of St genome evolution. Here, 24 wheat cDNA probes covering seven chromosome groups were mapped in P. libanotica to distinguish homoelogous chromosomes, and newly identified tandem repeats were performed to differentiate seven chromosome pairs. Using these probes, we investigated intraspecific population chromosomal polymorphism of P. libanotica. We found that (i) a duplicated fragment of the 5St long arm was inserted into the short arm of 2St; (ii) asymmetrical fluorescence in situ hybridization (FISH) hybridization signals among 2St, 5St, and 7St homologous chromosome pairs; and (iii) intraspecific population of polymorphism in P. libanotica. These observations established the integrated molecular karyotype of P. libanotica. Moreover, we suggested heterozygosity due to outcrossing habit and adaptation to the local climate of P. libanotica. Specifically, the generated STlib_96 and STlib_98 repeats showed no cross-hybridization signals with wheat chromosomes, suggesting that they are valuable for identifying alien chromosomes or introgressed fragments of wild relatives in wheat.
Collapse
Affiliation(s)
- Dandan Wu
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Namei Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Xiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingkun Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongyan Fang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiale Lu
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lina Sha
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xing Fan
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiran Cheng
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Wang
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Houyang Kang
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (H.Z.); (Y.Z.); Tel./Fax: +86-028-8629-0022 (Y.Z.)
| | - Yonghong Zhou
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (H.Z.); (Y.Z.); Tel./Fax: +86-028-8629-0022 (Y.Z.)
| |
Collapse
|
5
|
Costa L, Marques A, Buddenhagen C, Thomas WW, Huettel B, Schubert V, Dodsworth S, Houben A, Souza G, Pedrosa-Harand A. Aiming off the target: recycling target capture sequencing reads for investigating repetitive DNA. ANNALS OF BOTANY 2021; 128:835-848. [PMID: 34050647 PMCID: PMC8577205 DOI: 10.1093/aob/mcab063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/26/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS With the advance of high-throughput sequencing, reduced-representation methods such as target capture sequencing (TCS) emerged as cost-efficient ways of gathering genomic information, particularly from coding regions. As the off-target reads from such sequencing are expected to be similar to genome skimming (GS), we assessed the quality of repeat characterization in plant genomes using these data. METHODS Repeat composition obtained from TCS datasets of five Rhynchospora (Cyperaceae) species were compared with GS data from the same taxa. In addition, a FISH probe was designed based on the most abundant satellite found in the TCS dataset of Rhynchospora cephalotes. Finally, repeat-based phylogenies of the five Rhynchospora species were constructed based on the GS and TCS datasets and the topologies were compared with a gene-alignment-based phylogenetic tree. KEY RESULTS All the major repetitive DNA families were identified in TCS, including repeats that showed abundances as low as 0.01 % in the GS data. Rank correlations between GS and TCS repeat abundances were moderately high (r = 0.58-0.85), increasing after filtering out the targeted loci from the raw TCS reads (r = 0.66-0.92). Repeat data obtained by TCS were also reliable in developing a cytogenetic probe of a new variant of the holocentromeric satellite Tyba. Repeat-based phylogenies from TCS data were congruent with those obtained from GS data and the gene-alignment tree. CONCLUSIONS Our results show that off-target TCS reads can be recycled to identify repeats for cyto- and phylogenomic investigations. Given the growing availability of TCS reads, driven by global phylogenomic projects, our strategy represents a way to recycle genomic data and contribute to a better characterization of plant biodiversity.
Collapse
Affiliation(s)
- Lucas Costa
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife-PE, Brazil
| | - André Marques
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | | | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Gustavo Souza
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife-PE, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife-PE, Brazil
| |
Collapse
|
6
|
Baez M, Kuo YT, Dias Y, Souza T, Boudichevskaia A, Fuchs J, Schubert V, Vanzela ALL, Pedrosa-Harand A, Houben A. Analysis of the small chromosomal Prionium serratum (Cyperid) demonstrates the importance of reliable methods to differentiate between mono- and holocentricity. Chromosoma 2020; 129:285-297. [PMID: 33165742 PMCID: PMC7665975 DOI: 10.1007/s00412-020-00745-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
For a long time, the Cyperid clade (Thurniceae-Juncaceae-Cyperaceae) was considered a group of species possessing holocentromeres exclusively. The basal phylogenetic position of Prionium serratum (Thunb.) Drège (Thurniceae) within Cyperids makes this species an important specimen to understand the centromere evolution within this clade. In contrast to the expectation, the chromosomal distribution of the centromere-specific histone H3 (CENH3), alpha-tubulin and different centromere-associated post-translational histone modifications (H3S10ph, H3S28ph and H2AT120ph) demonstrate a monocentromeric organisation of P. serratum chromosomes. Analysis of the high-copy repeat composition resulted in the identification of two centromere-localised satellite repeats. Hence, monocentricity was the ancestral condition for the Juncaceae-Cyperaceae-Thurniaceae Cyperid clade, and holocentricity in this clade has independently arisen at least twice after differentiation of the three families, once in Juncaceae and the other one in Cyperaceae. In this context, methods suitable for the identification of holocentromeres are discussed.
Collapse
Affiliation(s)
- M Baez
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany.,Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Y T Kuo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Y Dias
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany.,Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - T Souza
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany.,Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, 86057-970, Brazil
| | - A Boudichevskaia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany.,KWS SAAT SE & Co. KGaA, 37574, Einbeck, Germany
| | - J Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - V Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - A L L Vanzela
- Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, 86057-970, Brazil
| | - A Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - A Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany.
| |
Collapse
|
7
|
Beier S, Ulpinnis C, Schwalbe M, Münch T, Hoffie R, Koeppel I, Hertig C, Budhagatapalli N, Hiekel S, Pathi KM, Hensel G, Grosse M, Chamas S, Gerasimova S, Kumlehn J, Scholz U, Schmutzer T. Kmasker plants - a tool for assessing complex sequence space in plant species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:631-642. [PMID: 31823436 DOI: 10.1111/tpj.14645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Many plant genomes display high levels of repetitive sequences. The assembly of these complex genomes using short high-throughput sequence reads is still a challenging task. Underestimation or disregard of repeat complexity in these datasets can easily misguide downstream analysis. Detection of repetitive regions by k-mer counting methods has proved to be reliable. Easy-to-use applications utilizing k-mer counting are in high demand, especially in the domain of plants. We present Kmasker plants, a tool that uses k-mer count information as an assistant throughout the analytical workflow of genome data that is provided as a command-line and web-based solution. Beside its core competence to screen and mask repetitive sequences, we have integrated features that enable comparative studies between different cultivars or closely related species and methods that estimate target specificity of guide RNAs for application of site-directed mutagenesis using Cas9 endonuclease. In addition, we have set up a web service for Kmasker plants that maintains pre-computed indices for 10 of the economically most important cultivated plants. Source code for Kmasker plants has been made publically available at https://github.com/tschmutzer/kmasker. The web service is accessible at https://kmasker.ipk-gatersleben.de.
Collapse
Affiliation(s)
- Sebastian Beier
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Chris Ulpinnis
- Leibniz Institute of Plant Biochemistry, Bioinformatics and Scientific Data, 06120, Halle, Germany
| | - Markus Schwalbe
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Thomas Münch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Robert Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Iris Koeppel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Christian Hertig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Nagaveni Budhagatapalli
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Stefan Hiekel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Krishna M Pathi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Goetz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Martin Grosse
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Sindy Chamas
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Sophia Gerasimova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Thomas Schmutzer
- Department of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| |
Collapse
|
8
|
Potlapalli BP, Schubert V, Metje-Sprink J, Liehr T, Houben A. Application of Tris-HCl Allows the Specific Labeling of Regularly Prepared Chromosomes by CRISPR-FISH. Cytogenet Genome Res 2020; 160:156-165. [PMID: 32200382 DOI: 10.1159/000506720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2020] [Indexed: 11/19/2022] Open
Abstract
Visualizing the spatiotemporal organization of the genome will improve our understanding of how chromatin structure and function are intertwined. Here, we describe the further development of the RNA-guided endonuclease-in situ labeling (RGEN-ISL) method CRISPR-FISH. Using soybean and mouse chromosomes, we demonstrate that the treatment of conventionally fixed chromosomes (in ethanol or methanol:acetic acid) with 40 mM Tris-HCl (pH 9.0) for 30 minutes at 37°C prior to CRISPR-FISH allows the application of this method for the detection of high-copy sequences. Wheat, rye, maize, and Nicotiana benthamiana were used to confirm the applicability of the identified CRISPR-FISH conditions also in other species.
Collapse
|
9
|
Dreissig S, Mascher M, Heckmann S. Variation in Recombination Rate Is Shaped by Domestication and Environmental Conditions in Barley. Mol Biol Evol 2020; 36:2029-2039. [PMID: 31209472 PMCID: PMC6736446 DOI: 10.1093/molbev/msz141] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Meiotic recombination generates genetic diversity upon which selection can act. Recombination rates are highly variable between species, populations, individuals, sexes, chromosomes, and chromosomal regions. The underlying mechanisms are controlled at the genetic and epigenetic level and show plasticity toward the environment. Environmental plasticity may be divided into short- and long-term responses. We estimated recombination rates in natural populations of wild barley and domesticated landraces using a population genetics approach. We analyzed recombination landscapes in wild barley and domesticated landraces at high resolution. In wild barley, high recombination rates are found in more interstitial chromosome regions in contrast to distal chromosome regions in domesticated barley. Among subpopulations of wild barley, natural variation in effective recombination rate is correlated with temperature, isothermality, and solar radiation in a nonlinear manner. A positive linear correlation was found between effective recombination rate and annual precipitation. We discuss our findings with respect to how the environment might shape effective recombination rates in natural populations. Higher recombination rates in wild barley populations subjected to specific environmental conditions could be a means to maintain fitness in a strictly inbreeding species.
Collapse
Affiliation(s)
- Steven Dreissig
- Meiosis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Seeland, Germany
| | - Martin Mascher
- Domestication Genomics Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Seeland, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Stefan Heckmann
- Meiosis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Seeland, Germany
| |
Collapse
|
10
|
Quantification of Recombination Rate and Segregation Distortion by Genotyping and Sequencing of Single Pollen Nuclei. Methods Mol Biol 2019. [PMID: 31583667 DOI: 10.1007/978-1-4939-9818-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Meiosis is a specialized cell division during which homologous chromosomes can exchange genetic material through recombination. This mechanism generates novel allelic combinations, which can be exploited by plant breeders to achieve crop improvement. Pollen grains are the haploid products of meiosis required in fertilization. Here, we describe two approaches to measure meiotic recombination in single haploid pollen nuclei. Pollen nuclei are first separated by fluorescence-activated cell-sorting. Afterwards, the DNA of single pollen nuclei can be amplified by multiple-displacement-amplification using Phi29 DNA polymerase and meiotic recombination events can be measured using KASP markers. Alternatively, the PicoPLEX DNA-seq kit can be used to amplify the DNA of single pollen nuclei followed by library preparation for whole-genome sequencing and subsequent bioinformatic analysis.
Collapse
|
11
|
Jiang J. Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res 2019; 27:153-165. [PMID: 30852707 DOI: 10.1007/s10577-019-09607-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 01/20/2023]
Abstract
Fluorescence in situ hybridization (FISH) was developed more than 30 years ago and has been the most paradigm-changing technique in cytogenetic research. FISH has been used to answer questions related to structure, mutation, and evolution of not only individual chromosomes but also entire genomes. FISH has served as an important tool for chromosome identification in many plant species. This review intends to summarize and discuss key technical development and applications of FISH in plants since 2006. The most significant recent advance of FISH is the development and application of probes based on synthetic oligonucleotides (oligos). Oligos specific to a repetitive DNA sequence, to a specific chromosomal region, or to an entire chromosome can be computationally identified, synthesized in parallel, and fluorescently labeled. Oligo probes designed from conserved DNA sequences from one species can be used among genetically related species, allowing comparative cytogenetic mapping of these species. The advances with synthetic oligo probes will significantly expand the applications of FISH especially in non-model plant species. Recent achievements and future applications of FISH and oligo-FISH are discussed.
Collapse
Affiliation(s)
- Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
12
|
Tulpová Z, Luo MC, Toegelová H, Visendi P, Hayashi S, Vojta P, Paux E, Kilian A, Abrouk M, Bartoš J, Hajdúch M, Batley J, Edwards D, Doležel J, Šimková H. Integrated physical map of bread wheat chromosome arm 7DS to facilitate gene cloning and comparative studies. N Biotechnol 2019. [DOI: 10.1016/j.nbt.2018.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Himmelbach A, Ruban A, Walde I, Šimková H, Doležel J, Hastie A, Stein N, Mascher M. Discovery of multi-megabase polymorphic inversions by chromosome conformation capture sequencing in large-genome plant species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1309-1316. [PMID: 30256471 DOI: 10.1111/tpj.14109] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/14/2018] [Indexed: 05/02/2023]
Abstract
Chromosomal inversions occur in natural populations of many species, and may underlie reproductive isolation and local adaptation. Traditional methods of inversion discovery are labor-intensive and lack sensitivity. Here, we report the use of three-dimensional contact probabilities between genomic loci as assayed by chromosome-conformation capture sequencing (Hi-C) to detect multi-megabase polymorphic inversions in four barley genotypes. Inversions are validated by fluorescence in situ hybridization and Bionano optical mapping. We propose Hi-C as a generally applicable method for inversion discovery in natural populations.
Collapse
Affiliation(s)
- Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Alevtina Ruban
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Ines Walde
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Alex Hastie
- BioNano Genomics Inc., 9640 Towne Centre Drive, San Diego, CA, 92121, USA
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
14
|
Abstract
Understanding how crop plants evolved from their wild relatives and spread around the world can inform about the origins of agriculture. Here, we review how the rapid development of genomic resources and tools has made it possible to conduct genetic mapping and population genetic studies to unravel the molecular underpinnings of domestication and crop evolution in diverse crop species. We propose three future avenues for the study of crop evolution: establishment of high-quality reference genomes for crops and their wild relatives; genomic characterization of germplasm collections; and the adoption of novel methodologies such as archaeogenetics, epigenomics, and genome editing.
Collapse
Affiliation(s)
- Mona Schreiber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
| |
Collapse
|
15
|
Bačovský V, Hobza R, Vyskot B. Technical Review: Cytogenetic Tools for Studying Mitotic Chromosomes. Methods Mol Biol 2018; 1675:509-535. [PMID: 29052211 DOI: 10.1007/978-1-4939-7318-7_30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Significant advances in chromosome preparation and other techniques have greatly increased the potential of plant cytogenetics in recent years. Increase in longitudinal resolution using DNA extended fibers as well as new developments in imaging and signal amplification technologies have enhanced the ability of FISH to detect small gene targets. The combination of fluorescence in situ hybridization with immunocytochemistry allows the investigation of cell events, chromosomal rearrangements and chromatin features typical for plant nuclei. Chromosome manipulation techniques using microdissection and flow sorting have accelerated the analysis of complex plant genomes. Together, the different cytogenetic approaches are invaluable for the unravelling of detailed structures of plant chromosomes, which are of utmost importance for the study of genome properties, DNA replication and gene regulation. In this technical review, different cytogenetic approaches are discussed for the analysis of plant chromosomes, with a focus on mitotic chromosomes.
Collapse
Affiliation(s)
- Václaclav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
16
|
Barley Genome Sequencing and Assembly—A First Version Reference Sequence. COMPENDIUM OF PLANT GENOMES 2018. [DOI: 10.1007/978-3-319-92528-8_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Ruban A, Schmutzer T, Scholz U, Houben A. How Next-Generation Sequencing Has Aided Our Understanding of the Sequence Composition and Origin of B Chromosomes. Genes (Basel) 2017; 8:E294. [PMID: 29068386 PMCID: PMC5704207 DOI: 10.3390/genes8110294] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
Accessory, supernumerary, or-most simply-B chromosomes, are found in many eukaryotic karyotypes. These small chromosomes do not follow the usual pattern of segregation, but rather are transmitted in a higher than expected frequency. As increasingly being demonstrated by next-generation sequencing (NGS), their structure comprises fragments of standard (A) chromosomes, although in some plant species, their sequence also includes contributions from organellar genomes. Transcriptomic analyses of various animal and plant species have revealed that, contrary to what used to be the common belief, some of the B chromosome DNA is protein-encoding. This review summarizes the progress in understanding B chromosome biology enabled by the application of next-generation sequencing technology and state-of-the-art bioinformatics. In particular, a contrast is drawn between a direct sequencing approach and a strategy based on a comparative genomics as alternative routes that can be taken towards the identification of B chromosome sequences.
Collapse
Affiliation(s)
- Alevtina Ruban
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Seeland, Germany.
| | - Thomas Schmutzer
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Seeland, Germany.
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Seeland, Germany.
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Seeland, Germany.
| |
Collapse
|
18
|
Holušová K, Vrána J, Šafář J, Šimková H, Balcárková B, Frenkel Z, Darrier B, Paux E, Cattonaro F, Berges H, Letellier T, Alaux M, Doležel J, Bartoš J. Physical Map of the Short Arm of Bread Wheat Chromosome 3D. THE PLANT GENOME 2017; 10. [PMID: 28724077 DOI: 10.3835/plantgenome2017.03.0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bread wheat ( L.) is one of the most important crops worldwide. Although a reference genome sequence would represent a valuable resource for wheat improvement through genomics-assisted breeding and gene cloning, its generation has long been hampered by its allohexaploidy, high repeat content, and large size. As a part of a project coordinated by the International Wheat Genome Sequencing Consortium (IWGSC), a physical map of the short arm of wheat chromosome 3D (3DS) was prepared to facilitate reference genome assembly and positional gene cloning. It comprises 869 contigs with a cumulative length of 274.5 Mbp and represents 85.5% of the estimated chromosome arm size. Eighty-six Mbp of survey sequences from chromosome arm 3DS were assigned in silico to physical map contigs via next-generation sequencing of bacterial artificial chromosome pools, thus providing a high-density framework for physical map ordering along the chromosome arm. About 60% of the physical map was anchored in this single experiment. Finally, 1393 high-confidence genes were anchored to the physical map. Comparisons of gene space of the chromosome arm 3DS with genomes of closely related species [ (L.) P.Beauv., rice ( L.), and sorghum [ (L.) Moench] and homeologous wheat chromosomes provided information about gene movement on the chromosome arm.
Collapse
|
19
|
High-Resolution Mapping of Crossover Events in the Hexaploid Wheat Genome Suggests a Universal Recombination Mechanism. Genetics 2017; 206:1373-1388. [PMID: 28533438 DOI: 10.1534/genetics.116.196014] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 05/12/2017] [Indexed: 11/18/2022] Open
Abstract
During meiosis, crossovers (COs) create new allele associations by reciprocal exchange of DNA. In bread wheat (Triticum aestivum L.), COs are mostly limited to subtelomeric regions of chromosomes, resulting in a substantial loss of breeding efficiency in the proximal regions, though these regions carry ∼60-70% of the genes. Identifying sequence and/or chromosome features affecting recombination occurrence is thus relevant to improve and drive recombination. Using the recent release of a reference sequence of chromosome 3B and of the draft assemblies of the 20 other wheat chromosomes, we performed fine-scale mapping of COs and revealed that 82% of COs located in the distal ends of chromosome 3B representing 19% of the chromosome length. We used 774 SNPs to genotype 180 varieties representative of the Asian and European genetic pools and a segregating population of 1270 F6 lines. We observed a common location for ancestral COs (predicted through linkage disequilibrium) and the COs derived from the segregating population. We delineated 73 small intervals (<26 kb) on chromosome 3B that contained 252 COs. We observed a significant association of COs with genic features (73 and 54% in recombinant and nonrecombinant intervals, respectively) and with those expressed during meiosis (67% in recombinant intervals and 48% in nonrecombinant intervals). Moreover, while the recombinant intervals contained similar amounts of retrotransposons and DNA transposons (42 and 53%), nonrecombinant intervals had a higher level of retrotransposons (63%) and lower levels of DNA transposons (28%). Consistent with this, we observed a higher frequency of a DNA motif specific to the TIR-Mariner DNA transposon in recombinant intervals.
Collapse
|
20
|
Beier S, Himmelbach A, Colmsee C, Zhang XQ, Barrero RA, Zhang Q, Li L, Bayer M, Bolser D, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Sampath D, Heavens D, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Houben A, Doležel J, Ayling S, Lonardi S, Langridge P, Muehlbauer GJ, Kersey P, Clark MD, Caccamo M, Schulman AH, Platzer M, Close TJ, Hansson M, Zhang G, Braumann I, Li C, Waugh R, Scholz U, Stein N, Mascher M. Construction of a map-based reference genome sequence for barley, Hordeum vulgare L. Sci Data 2017; 4:170044. [PMID: 28448065 PMCID: PMC5407242 DOI: 10.1038/sdata.2017.44] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/09/2017] [Indexed: 12/30/2022] Open
Abstract
Barley (Hordeum vulgare L.) is a cereal grass mainly used as animal fodder and raw material for the malting industry. The map-based reference genome sequence of barley cv. ‘Morex’ was constructed by the International Barley Genome Sequencing Consortium (IBSC) using hierarchical shotgun sequencing. Here, we report the experimental and computational procedures to (i) sequence and assemble more than 80,000 bacterial artificial chromosome (BAC) clones along the minimum tiling path of a genome-wide physical map, (ii) find and validate overlaps between adjacent BACs, (iii) construct 4,265 non-redundant sequence scaffolds representing clusters of overlapping BACs, and (iv) order and orient these BAC clusters along the seven barley chromosomes using positional information provided by dense genetic maps, an optical map and chromosome conformation capture sequencing (Hi-C). Integrative access to these sequence and mapping resources is provided by the barley genome explorer (BARLEX).
Collapse
Affiliation(s)
- Sebastian Beier
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Christian Colmsee
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Xiao-Qi Zhang
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Roberto A Barrero
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Qisen Zhang
- Australian Export Grains Innovation Centre, South Perth, Western Australia 6151, Australia
| | - Lin Li
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Micha Bayer
- The James Hutton Institute, Dundee DD2 5DA, UK
| | - Daniel Bolser
- European Molecular Biology Laboratory-The European Bioinformatics Institute, Hinxton CB10 1SD, UK
| | - Stefan Taudien
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Marius Felder
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Alex Hastie
- BioNano Genomics Inc., San Diego, California 92121, USA
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, 78371 Olomouc, Czech Republic
| | - Helena Staňková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, 78371 Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, 78371 Olomouc, Czech Republic
| | - Saki Chan
- BioNano Genomics Inc., San Diego, California 92121, USA
| | - María Muñoz-Amatriaín
- Department of Botany &Plant Sciences, University of California, Riverside, Riverside, California 92521, USA
| | - Rachid Ounit
- Department of Computer Science and Engineering, University of California, Riverside, Riverside, California 92521, USA
| | - Steve Wanamaker
- Department of Botany &Plant Sciences, University of California, Riverside, Riverside, California 92521, USA
| | - Thomas Schmutzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Lala Aliyeva-Schnorr
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Stefano Grasso
- Department of Agricultural and Environmental Sciences, University of Udine, 33100 Udine, Italy
| | - Jaakko Tanskanen
- Green Technology, Natural Resources Institute (Luke), Viikki Plant Science Centre, and Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | | | - Sujie Cao
- BGI-Shenzhen, Shenzhen 518083, China
| | - Brett Chapman
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Fei Dai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yong Han
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xuan Li
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - John K McCooke
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Cong Tan
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia 6150, Australia
| | | | - Shuya Yin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Gaofeng Zhou
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Jesse A Poland
- Kansas State University, Wheat Genetics Resource Center, Department of Plant Pathology and Department of Agronomy, Manhattan, Kansas 66506, USA
| | - Matthew I Bellgard
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, 78371 Olomouc, Czech Republic
| | | | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, Riverside, California 92521, USA
| | - Peter Langridge
- School of Agriculture, University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, Minnesota 55108, USA.,Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Paul Kersey
- European Molecular Biology Laboratory-The European Bioinformatics Institute, Hinxton CB10 1SD, UK
| | - Matthew D Clark
- Earlham Institute, Norwich NR4 7UH, UK.,School of Environmental Sciences, University of East Anglia, Norwich NR4 7UH, UK
| | - Mario Caccamo
- Earlham Institute, Norwich NR4 7UH, UK.,National Institute of Agricultural Botany, Cambridge CB3 0LE, UK
| | - Alan H Schulman
- Green Technology, Natural Resources Institute (Luke), Viikki Plant Science Centre, and Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Matthias Platzer
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Timothy J Close
- Department of Botany &Plant Sciences, University of California, Riverside, Riverside, California 92521, USA
| | - Mats Hansson
- Department of Biology, Lund University, 22362 Lund, Sweden
| | - Guoping Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ilka Braumann
- Carlsberg Research Laboratory, 1799 Copenhagen, Denmark
| | - Chengdao Li
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia.,Department of Agriculture and Food, Government of Western Australia, South Perth, Western Australia 6150, Australia.,Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei 434025, China
| | - Robbie Waugh
- The James Hutton Institute, Dundee DD2 5DA, UK.,School of Life Sciences, University of Dundee, Dundee DD2 5DA, UK
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany.,School of Plant Biology, University of Western Australia, Crawley 6009, Australia
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
21
|
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang XQ, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N. A chromosome conformation capture ordered sequence of the barley genome. Nature 2017; 544:427-433. [DOI: 10.1038/nature22043] [Citation(s) in RCA: 889] [Impact Index Per Article: 111.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 03/03/2017] [Indexed: 02/06/2023]
|
22
|
Badaeva ED, Ruban AS, Aliyeva-Schnorr L, Municio C, Hesse S, Houben A. In Situ Hybridization to Plant Chromosomes. SPRINGER PROTOCOLS HANDBOOKS 2017. [DOI: 10.1007/978-3-662-52959-1_49] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Dreissig S, Fuchs J, Himmelbach A, Mascher M, Houben A. Sequencing of Single Pollen Nuclei Reveals Meiotic Recombination Events at Megabase Resolution and Circumvents Segregation Distortion Caused by Postmeiotic Processes. FRONTIERS IN PLANT SCIENCE 2017; 8:1620. [PMID: 29018459 PMCID: PMC5623100 DOI: 10.3389/fpls.2017.01620] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/04/2017] [Indexed: 05/21/2023]
Abstract
Meiotic recombination is a fundamental mechanism to generate novel allelic combinations which can be harnessed by breeders to achieve crop improvement. The recombination landscape of many crop species, including the major crop barley, is characterized by a dearth of recombination in 65% of the genome. In addition, segregation distortion caused by selection on genetically linked loci is a frequent and undesirable phenomenon in double haploid populations which hampers genetic mapping and breeding. Here, we present an approach to directly investigate recombination at the DNA sequence level by combining flow-sorting of haploid pollen nuclei of barley with single-cell genome sequencing. We confirm the skewed distribution of recombination events toward distal chromosomal regions at megabase resolution and show that segregation distortion is almost absent if directly measured in pollen. Furthermore, we show a bimodal distribution of inter-crossover distances, which supports the existence of two classes of crossovers which are sensitive or less sensitive to physical interference. We conclude that single pollen nuclei sequencing is an approach capable of revealing recombination patterns in the absence of segregation distortion.
Collapse
Affiliation(s)
- Steven Dreissig
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jörg Fuchs
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Axel Himmelbach
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Martin Mascher
- Domestication Genomics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- *Correspondence: Martin Mascher
| | - Andreas Houben
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Andreas Houben
| |
Collapse
|
24
|
Collinearity of homoeologous group 3 chromosomes in the genus Hordeum and Secale cereale as revealed by 3H-derived FISH analysis. Chromosome Res 2016; 24:231-42. [DOI: 10.1007/s10577-016-9518-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 01/05/2023]
|
25
|
Aliyeva-Schnorr L, Ma L, Houben A. A Fast Air-dry Dropping Chromosome Preparation Method Suitable for FISH in Plants. J Vis Exp 2015:e53470. [PMID: 26709593 DOI: 10.3791/53470] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Preparation of chromosome spreads is a prerequisite for the successful performance of fluorescence in situ hybridization (FISH). Preparation of high quality plant chromosome spreads is challenging due to the rigid cell wall. One of the approved methods for the preparation of plant chromosomes is a so-called drop preparation, also known as drop-spreading or air-drying technique. Here, we present a protocol for the fast preparation of mitotic chromosome spreads suitable for the FISH detection of single and high copy DNA probes. This method is an improved variant of the air-dry drop method performed under a relative humidity of 50%-55%. This protocol comprises a reduced number of washing steps making its application easy, efficient and reproducible. Obvious benefits of this approach are well-spread, undamaged and numerous metaphase chromosomes serving as a perfect prerequisite for successful FISH analysis. Using this protocol we obtained high-quality chromosome spreads and reproducible FISH results for Hordeum vulgare, H. bulbosum, H. marinum, H. murinum, H. pubiflorum and Secale cereale.
Collapse
Affiliation(s)
| | - Lu Ma
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK); School of Biological and Chemical Sciences, Queen Mary University of London
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK);
| |
Collapse
|