1
|
Han J, Hu G, Dai Y, Zhang X, Tian J, Zhou J, Xu X, Chen Q, Kou X, Xu L, Wu X, Sun Z, Geng J, Li L, Qiu C, Mehari TG, Wang B, Zhang H, Shen X, Xu Z, Wendel JF, Wang K. Centromere-size reduction and chromatin state dynamics following intergenomic hybridization in cotton. PLoS Genet 2025; 21:e1011689. [PMID: 40315272 PMCID: PMC12068715 DOI: 10.1371/journal.pgen.1011689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 05/12/2025] [Accepted: 04/14/2025] [Indexed: 05/04/2025] Open
Abstract
Centromeres are pivotal for accurate chromosome segregation, yet their regulation and evolutionary dynamics remain poorly understood. Here, we investigate centromeres of the diploid species Gossypium anomalum (Ga, B-genome) that were transferred into tetraploid cotton G. hirsutum (Gh, AD-genome) as either an additional or integrated chromosome, as well as in synthetic allohexaploid (AABBDD) lines. We demonstrate consistent size reduction for all Ga centromeres in the Gh background. Histone modification profiling across 10 marks revealed heightened levels of both active and repressive chromatin marks within the Ga centromeres when transferred into the Gh background, particularly for H3K36me2. The centromeric histone modification perturbation extended into pericentromeric regions, with variable CENH3-binding domains consistently exhibiting a more pronounced increase in histone modification levels compared to stable centromere regions, highlighting the role of histone modification elevation in centromere dynamics. In addition, we observed enhanced chromatin accessibility and the presence of non-B-form DNA motifs, such as A-phased DNA repeats within stable centromere domains that are correlated with centromere stability. Hi-C analysis reveals a reorganized 3D chromatin architecture within the introgression line centromeres, including the formation of new topologically associating domains linked to H3K36me2 dynamics, emphasizing the importance of H3K36me2 in centromere organization. Together, these findings elucidate epigenetic mechanisms underlying centromere composition following intergenomic hybridization and allopolyploid formation, offering insights into centromere evolution in plants and its myriad epigenetic and potentially functional dimensions.
Collapse
Affiliation(s)
- Jinlei Han
- School of Life Sciences, Nantong University, Nantong, China
| | - Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yan Dai
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Jingjing Tian
- School of Life Sciences, Nantong University, Nantong, China
| | - Jialiang Zhou
- School of Life Sciences, Nantong University, Nantong, China
| | - Xinqi Xu
- School of Life Sciences, Nantong University, Nantong, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong, China
| | - Xiaobing Kou
- School of Life Sciences, Nantong University, Nantong, China
| | - Lei Xu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xinyu Wu
- School of Life Sciences, Nantong University, Nantong, China
| | - Ziying Sun
- School of Life Sciences, Nantong University, Nantong, China
| | - Jiahui Geng
- School of Life Sciences, Nantong University, Nantong, China
| | - Lin Li
- School of Life Sciences, Nantong University, Nantong, China
| | - Chenyu Qiu
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
2
|
Hu G, Wang Z, Tian Z, Wang K, Ji G, Wang X, Zhang X, Yang Z, Liu X, Niu R, Zhu D, Zhang Y, Duan L, Ma X, Xiong X, Kong J, Zhao X, Zhang Y, Zhao J, He S, Grover CE, Su J, Feng K, Yu G, Han J, Zang X, Wu Z, Pan W, Wendel JF, Ma X. A telomere-to-telomere genome assembly of cotton provides insights into centromere evolution and short-season adaptation. Nat Genet 2025; 57:1031-1043. [PMID: 40097785 DOI: 10.1038/s41588-025-02130-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Cotton (Gossypium hirsutum L.) is a key allopolyploid crop with global economic importance. Here we present a telomere-to-telomere assembly of the elite variety Zhongmian 113. Leveraging technologies including PacBio HiFi, Oxford Nanopore Technology (ONT) ultralong-read sequencing and Hi-C, our assembly surpasses previous genomes in contiguity and completeness, resolving 26 centromeric and 52 telomeric regions, 5S rDNA clusters and nucleolar organizer regions. A phylogenetically recent centromere repositioning on chromosome D08 was discovered specific to G. hirsutum, involving deactivation of an ancestral centromere and the formation of a unique, satellite repeat-based centromere. Genomic analyses evaluated favorable allele aggregation for key agronomic traits and uncovered an early-maturing haplotype derived from an 11 Mb pericentric inversion that evolved early during G. hirsutum domestication. Our study sheds light on the genomic origins of short-season adaptation, potentially involving introgression of an inversion from primitively domesticated forms, followed by subsequent haplotype differentiation in modern breeding programs.
Collapse
Affiliation(s)
- Guanjing Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhenyu Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zunzhe Tian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Gaoxiang Ji
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xingxing Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xianliang Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, China
| | - Zhaoen Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuan Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ruoyu Niu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - De Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuzhi Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lian Duan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xueyuan Ma
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jiali Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xianjia Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ya Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junjie Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Junji Su
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Keyun Feng
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Guangrun Yu
- School of Life Sciences, Nantong University, Nantong, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, China
| | - Xinshan Zang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Weihua Pan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Xiongfeng Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Yan H, Han J, Jin S, Han Z, Si Z, Yan S, Xuan L, Yu G, Guan X, Fang L, Wang K, Zhang T. Post-polyploidization centromere evolution in cotton. Nat Genet 2025; 57:1021-1030. [PMID: 40033059 DOI: 10.1038/s41588-025-02115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Upland cotton (Gossypium hirsutum) accounts for more than 90% of the world's cotton production and, as an allotetraploid, is a model plant for polyploid crop domestication. In the present study, we reported a complete telomere-to-telomere (T2T) genome assembly of Upland cotton accession Texas Marker-1 (T2T-TM-1), which has a total size of 2,299.6 Mb, and annotated 79,642 genes. Based on T2T-TM-1, interspecific centromere divergence was detected between the A- and D-subgenomes and their corresponding diploid progenitors. Centromere-associated repetitive sequences (CRCs) were found to be enriched for Gypsy-like retroelements. Centromere size expansion, repositioning and structure variations occurred post-polyploidization. It is interesting that CRC homologs were transferred from the diploid D-genome progenitor to the D-subgenome, invaded the A-subgenome and then underwent post-tetraploidization proliferation. This suggests an evolutionary advantage for the CRCs of the D-genome progenitor, presents a D-genome-adopted inheritance of centromere repeats after polyploidization and shapes the dynamic centromeric landscape during polyploidization in polyploid species.
Collapse
Affiliation(s)
- Hu Yan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, China
| | - Shangkun Jin
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Zegang Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Sunyi Yan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Lisha Xuan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Guangrun Yu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
- Hainan Institute of Zhejiang University, Sanya, China.
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, China.
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
- Hainan Institute of Zhejiang University, Sanya, China.
| |
Collapse
|
4
|
Li J, Liu Z, You C, Qi Z, You J, Grover CE, Long Y, Huang X, Lu S, Wang Y, Zhang S, Wang Y, Bai R, Zhang M, Jin S, Nie X, Wendel JF, Zhang X, Wang M. Convergence and divergence of diploid and tetraploid cotton genomes. Nat Genet 2024; 56:2562-2573. [PMID: 39472693 DOI: 10.1038/s41588-024-01964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/27/2024] [Indexed: 11/10/2024]
Abstract
Polyploidy is an important driving force in speciation and evolution; however, the genomic basis for parallel selection of a particular trait between polyploids and ancestral diploids remains unexplored. Here we construct graph-based pan-genomes for diploid (A2) and allotetraploid (AD1) cotton species, enabled by an assembly of 50 genomes of genetically diverse accessions. We delineate a mosaic genome map of tetraploid cultivars that illustrates genomic contributions from semi-wild forms into modern cultivars. Pan-genome comparisons identify syntenic and hyper-divergent regions of continued variation between diploid and tetraploid cottons, and suggest an ongoing process of sequence evolution potentially linked to the contrasting genome size change in two subgenomes. We highlight 43% of genetic regulatory relationships for gene expression in diploid encompassing sequence divergence after polyploidy, and specifically characterize six underexplored convergent genetic loci contributing to parallel selection of fiber quality. This study offers a framework for pan-genomic dissection of genetic regulatory components underlying parallel selection of desirable traits in organisms.
Collapse
Affiliation(s)
- Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Chunyuan You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhengyang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Yuexuan Long
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianhui Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sifan Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuejin Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sainan Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yawen Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruizhe Bai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengke Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
5
|
Huang G, Bao Z, Feng L, Zhai J, Wendel JF, Cao X, Zhu Y. A telomere-to-telomere cotton genome assembly reveals centromere evolution and a Mutator transposon-linked module regulating embryo development. Nat Genet 2024; 56:1953-1963. [PMID: 39147922 DOI: 10.1038/s41588-024-01877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Assembly of complete genomes can reveal functional genetic elements missing from draft sequences. Here we present the near-complete telomere-to-telomere and contiguous genome of the cotton species Gossypium raimondii. Our assembly identified gaps and misoriented or misassembled regions in previous assemblies and produced 13 centromeres, with 25 chromosomal ends having telomeres. In contrast to satellite-rich Arabidopsis and rice centromeres, cotton centromeres lack phased CENH3 nucleosome positioning patterns and probably evolved by invasion from long terminal repeat retrotransposons. In-depth expression profiling of transposable elements revealed a previously unannotated DNA transposon (MuTC01) that interacts with miR2947 to produce trans-acting small interfering RNAs (siRNAs), one of which targets the newly evolved LEC2 (LEC2b) to produce phased siRNAs. Systematic genome editing experiments revealed that this tripartite module, miR2947-MuTC01-LEC2b, controls the morphogenesis of complex folded embryos characteristic of Gossypium and its close relatives in the cotton tribe. Our study reveals a trans-acting siRNA-based tripartite regulatory pathway for embryo development in higher plants.
Collapse
Affiliation(s)
- Gai Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Institute for Advanced Studies, Wuhan University, Wuhan, China.
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Zhigui Bao
- Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Li Feng
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuxian Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Institute for Advanced Studies, Wuhan University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Wang Y, Zhou F, Li Y, Yu X, Wang Y, Zhao Q, Feng X, Chen J, Lou Q. Characterization of the CsCENH3 protein and centromeric DNA profiles reveal the structures of centromeres in cucumber. HORTICULTURE RESEARCH 2024; 11:uhae127. [PMID: 38966863 PMCID: PMC11220175 DOI: 10.1093/hr/uhae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/25/2024] [Indexed: 07/06/2024]
Abstract
Centromeres in eukaryotes mediate the accurate segregation of chromosomes during cell division. They serve as essential functional units of chromosomes and play a core role in the process of genome evolution. Centromeres are composed of satellite repeats and highly repetitive centromeric retrotransposons (CRs), which vary greatly even among closely related species. Cucumber (Cucumis sativus) is a globally cultivated and economically important vegetable and the only species in the Cucumis genus with seven pairs of chromosomes. Therefore, studying the centromeres of the Cucumis subgenus may yield valuable insights into its genome structure and evolution. Using chromatin immunoprecipitation (ChIP) techniques, we isolated centromeric DNA from cucumber reference line 9930. Our investigation into cucumber centromeres uncovered the centromeric satellite sequence, designated as CentCs, and the prevalence of Ty1/Copia long terminal repeat retrotransposons. In addition, active genes were identified in the CsCENH3 nucleosome regions with low transcription levels. To the best of our knowledge, this is the first time that characterization of centromeres has been achieved in cucumber. Meanwhile, our results on the distribution of CentCs and CsCRs in the subgenus Cucumis indicate that the content of centromeric repeats in the wild variants was significantly reduced compared with the cultivated cucumber. The results provide evidence for centromeric DNA amplification that occurred during the domestication process from wild to cultivated cucumber. Furthermore, these findings may offer new information for enhancing our understanding of phylogenetic relationships in the Cucumis genus.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Fang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Yangang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Yuhui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Qinzheng Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Xianbo Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| |
Collapse
|
7
|
Wang B, Jia Y, Dang N, Yu J, Bush SJ, Gao S, He W, Wang S, Guo H, Yang X, Ma W, Ye K. Near telomere-to-telomere genome assemblies of two Chlorella species unveil the composition and evolution of centromeres in green algae. BMC Genomics 2024; 25:356. [PMID: 38600443 PMCID: PMC11005252 DOI: 10.1186/s12864-024-10280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Centromeres play a crucial and conserved role in cell division, although their composition and evolutionary history in green algae, the evolutionary ancestors of land plants, remains largely unknown. RESULTS We constructed near telomere-to-telomere (T2T) assemblies for two Trebouxiophyceae species, Chlorella sorokiniana NS4-2 and Chlorella pyrenoidosa DBH, with chromosome numbers of 12 and 13, and genome sizes of 58.11 Mb and 53.41 Mb, respectively. We identified and validated their centromere sequences using CENH3 ChIP-seq and found that, similar to humans and higher plants, the centromeric CENH3 signals of green algae display a pattern of hypomethylation. Interestingly, the centromeres of both species largely comprised transposable elements, although they differed significantly in their composition. Species within the Chlorella genus display a more diverse centromere composition, with major constituents including members of the LTR/Copia, LINE/L1, and LINE/RTEX families. This is in contrast to green algae including Chlamydomonas reinhardtii, Coccomyxa subellipsoidea, and Chromochloris zofingiensis, in which centromere composition instead has a pronounced single-element composition. Moreover, we observed significant differences in the composition and structure of centromeres among chromosomes with strong collinearity within the Chlorella genus, suggesting that centromeric sequence evolves more rapidly than sequence in non-centromeric regions. CONCLUSIONS This study not only provides high-quality genome data for comparative genomics of green algae but gives insight into the composition and evolutionary history of centromeres in early plants, laying an important foundation for further research on their evolution.
Collapse
Affiliation(s)
- Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yanyan Jia
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Ningxin Dang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Yu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Stephen J Bush
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Shenghan Gao
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wenxi He
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Sirui Wang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Hongtao Guo
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xiaofei Yang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Weimin Ma
- College of Life Sciences, Shanghai Normal University, Shanghai, China.
| | - Kai Ye
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China.
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China.
- Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
- Faculty of Science, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
8
|
Chang X, He X, Li J, Liu Z, Pi R, Luo X, Wang R, Hu X, Lu S, Zhang X, Wang M. High-quality Gossypium hirsutum and Gossypium barbadense genome assemblies reveal the landscape and evolution of centromeres. PLANT COMMUNICATIONS 2024; 5:100722. [PMID: 37742072 PMCID: PMC10873883 DOI: 10.1016/j.xplc.2023.100722] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/16/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Centromere positioning and organization are crucial for genome evolution; however, research on centromere biology is largely influenced by the quality of available genome assemblies. Here, we combined Oxford Nanopore and Pacific Biosciences technologies to de novo assemble two high-quality reference genomes for Gossypium hirsutum (TM-1) and Gossypium barbadense (3-79). Compared with previously published reference genomes, our assemblies show substantial improvements, with the contig N50 improved by 4.6-fold and 5.6-fold, respectively, and thus represent the most complete cotton genomes to date. These high-quality reference genomes enable us to characterize 14 and 5 complete centromeric regions for G. hirsutum and G. barbadense, respectively. Our data revealed that the centromeres of allotetraploid cotton are occupied by members of the centromeric repeat for maize (CRM) and Tekay long terminal repeat families, and the CRM family reshapes the centromere structure of the At subgenome after polyploidization. These two intertwined families have driven the convergent evolution of centromeres between the two subgenomes, ensuring centromere function and genome stability. In addition, the repositioning and high sequence divergence of centromeres between G. hirsutum and G. barbadense have contributed to speciation and centromere diversity. This study sheds light on centromere evolution in a significant crop and provides an alternative approach for exploring the evolution of polyploid plants.
Collapse
Affiliation(s)
- Xing Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruizhen Pi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuanxuan Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiubao Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sifan Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
9
|
Zhou Y, Xiong J, Shu Z, Dong C, Gu T, Sun P, He S, Jiang M, Xia Z, Xue J, Khan WU, Chen F, Cheng ZM. The telomere-to-telomere genome of Fragaria vesca reveals the genomic evolution of Fragaria and the origin of cultivated octoploid strawberry. HORTICULTURE RESEARCH 2023; 10:uhad027. [PMID: 37090094 PMCID: PMC10116950 DOI: 10.1093/hr/uhad027] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 05/03/2023]
Abstract
Fragaria vesca, commonly known as wild or woodland strawberry, is the most widely distributed diploid Fragaria species and is native to Europe and Asia. Because of its small plant size, low heterozygosity, and relative ease of genetic transformation, F. vesca has been a model plant for fruit research since the publication of its Illumina-based genome in 2011. However, its genomic contribution to octoploid cultivated strawberry remains a long-standing question. Here, we de novo assembled and annotated a telomere-to-telomere, gap-free genome of F. vesca 'Hawaii 4', with all seven chromosomes assembled into single contigs, providing the highest completeness and assembly quality to date. The gap-free genome is 220 785 082 bp in length and encodes 36 173 protein-coding gene models, including 1153 newly annotated genes. All 14 telomeres and seven centromeres were annotated within the seven chromosomes. Among the three previously recognized wild diploid strawberry ancestors, F. vesca, F. iinumae, and F. viridis, phylogenomic analysis showed that F. vesca and F. viridis are the ancestors of the cultivated octoploid strawberry F. × ananassa, and F. vesca is its closest relative. Three subgenomes of F. × ananassa belong to the F. vesca group, and one is sister to F. viridis. We anticipate that this high-quality, telomere-to-telomere, gap-free F. vesca genome, combined with our phylogenomic inference of the origin of cultivated strawberry, will provide insight into the genomic evolution of Fragaria and facilitate strawberry genetics and molecular breeding.
Collapse
Affiliation(s)
| | | | - Ziqiang Shu
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, Hubei 430021, China
| | - Chao Dong
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China
| | - Tingting Gu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengchuan Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shuang He
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Mian Jiang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, Hubei 430021, China
| | - Zhiqiang Xia
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute from Hainan University, Sanya 572025, China
| | - Jiayu Xue
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wasi Ullah Khan
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Fei Chen
- Corresponding authors. E-mail: ,
| | | |
Collapse
|
10
|
Ding W, Zhu Y, Han J, Zhang H, Xu Z, Khurshid H, Liu F, Hasterok R, Shen X, Wang K. Characterization of centromeric DNA of Gossypium anomalum reveals sequence-independent enrichment dynamics of centromeric repeats. Chromosome Res 2023; 31:12. [PMID: 36971835 DOI: 10.1007/s10577-023-09721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/29/2023]
Abstract
Centromeres in eukaryotes are composed of highly repetitive DNAs, which evolve rapidly and are thought to achieve a favorable structure in mature centromeres. However, how the centromeric repeat evolves into an adaptive structure is largely unknown. We characterized the centromeric sequences of Gossypium anomalum through chromatin immunoprecipitation against CENH3 antibodies. We revealed that the G. anomalum centromeres contained only retrotransposon-like repeats but were depleted in long arrays of satellites. These retrotransposon-like centromeric repeats were present in the African-Asian and Australian lineage species, suggesting that they might have arisen in the common ancestor of these diploid species. Intriguingly, we observed a substantial increase and decrease in copy numbers among African-Asian and Australian lineages, respectively, for the retrotransposon-derived centromeric repeats without apparent structure or sequence variation in cotton. This result indicates that the sequence content is not a decisive aspect of the adaptive evolution of centromeric repeats or at least retrotransposon-like centromeric repeats. In addition, two active genes with potential roles in gametogenesis or flowering were identified in CENH3 nucleosome-binding regions. Our results provide new insights into the constitution of centromeric repetitive DNA and the adaptive evolution of centromeric repeats in plants.
Collapse
Affiliation(s)
- Wenjie Ding
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Yuanbin Zhu
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haris Khurshid
- Oilseeds Research Program, National Agricultural Research Centre, Islamabad, 44500, Pakistan
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland.
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, 226019, China.
| |
Collapse
|
11
|
Wang Y, Li Y, Zhou F, Zhang L, Gong J, Cheng C, Chen J, Lou Q. Genome-wide characterization, phylogenetic and expression analysis of Histone gene family in cucumber (Cucumis sativus L.). Int J Biol Macromol 2023; 230:123401. [PMID: 36702227 DOI: 10.1016/j.ijbiomac.2023.123401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
Histones are essential components of chromatin and play an important role in regulating gene transcription and participating in DNA replication. Here, we performed a comprehensive analysis of this gene family. In this study, we identified 37 CsHistones that were classified into five groups (H1, H2A, H2B, H3 and H4). The closely linked subfamilies exhibited more similarity in terms of motifs and intron/exon numbers. Segmental duplication (SD) is the main driving force of cucumber CsHistones expansion. Analysis of cis-regulatory elements in the promoter region of CsHistones showed that CsHistones can respond to a variety of stresses. RNA-Seq analysis indicated that the expression of most CsHistones was associated with different stresses, including downy mildew, powdery mildew, wilt, heat, cold, salt stress, and waterlogging. Expression analysis showed that several genes of H3 group were highly expressed in different reproductive organs. Notably, CsCENH3 (CsHistone30) has the characteristics of a variant histone, and we demonstrated that CsCENH3 was localized on the nucleus and its proteins were expressed in centromere region. These findings provide valuable information for the identification and potential functions of Histone genes and ideas for the cultivation of CENH3-mediated haploid induction lines in cucumber.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianlei Gong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Wang M, Li J, Qi Z, Long Y, Pei L, Huang X, Grover CE, Du X, Xia C, Wang P, Liu Z, You J, Tian X, Ma Y, Wang R, Chen X, He X, Fang DD, Sun Y, Tu L, Jin S, Zhu L, Wendel JF, Zhang X. Genomic innovation and regulatory rewiring during evolution of the cotton genus Gossypium. Nat Genet 2022; 54:1959-1971. [PMID: 36474047 DOI: 10.1038/s41588-022-01237-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/20/2022] [Indexed: 12/13/2022]
Abstract
Phenotypic diversity and evolutionary innovation ultimately trace to variation in genomic sequence and rewiring of regulatory networks. Here, we constructed a pan-genome of the Gossypium genus using ten representative diploid genomes. We document the genomic evolutionary history and the impact of lineage-specific transposon amplification on differential genome composition. The pan-3D genome reveals evolutionary connections between transposon-driven genome size variation and both higher-order chromatin structure reorganization and the rewiring of chromatin interactome. We linked changes in chromatin structures to phenotypic differences in cotton fiber and identified regulatory variations that decode the genetic basis of fiber length, the latter enabled by sequencing 1,005 transcriptomes during fiber development. We showcase how pan-genomic, pan-3D genomic and genetic regulatory data serve as a resource for delineating the evolutionary basis of spinnable cotton fiber. Our work provides insights into the evolution of genome organization and regulation and will inform cotton improvement by enabling regulome-based approaches.
Collapse
Affiliation(s)
- Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhengyang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuexuan Long
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Liuling Pei
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianhui Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Chunjiao Xia
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuehan Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xinyuan Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA, USA
| | - Yuqiang Sun
- Zhejiang Sci-Tech University College of Life Sciences, Zhejiang, Hangzhou, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
13
|
Genome-wide chromatin accessibility analysis unveils open chromatin convergent evolution during polyploidization in cotton. Proc Natl Acad Sci U S A 2022; 119:e2209743119. [PMID: 36279429 PMCID: PMC9636936 DOI: 10.1073/pnas.2209743119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Allopolyploidization, resulting in divergent genomes in the same cell, is believed to trigger a “genome shock”, leading to broad genetic and epigenetic changes. However, little is understood about chromatin and gene-expression dynamics as underlying driving forces during allopolyploidization. Here, we examined the genome-wide DNase I-hypersensitive site (DHS) and its variations in domesticated allotetraploid cotton (
Gossypium hirsutum
and
Gossypium barbadense
, AADD) and its extant AA (
Gossypium arboreum
) and DD (
Gossypium raimondii
) progenitors. We observed distinct DHS distributions between
G. arboreum
and
G. raimondii
. In contrast, the DHSs of the two subgenomes of
G. hirsutum
and
G. barbadense
showed a convergent distribution. This convergent distribution of DHS was also present in the wild allotetraploids
Gossypium darwinii
and
G. hirsutum
var.
yucatanense
, but absent from a resynthesized hybrid of
G. arboreum
and
G. raimondii
, suggesting that it may be a common feature in polyploids, and not a consequence of domestication after polyploidization. We revealed that putative
cis
-regulatory elements (CREs) derived from polyploidization-related DHSs were dominated by several families, including Dof, ERF48, and BPC1. Strikingly, 56.6% of polyploidization-related DHSs were derived from transposable elements (TEs). Moreover, we observed positive correlations between DHS accessibility and the histone marks H3K4me3, H3K27me3, H3K36me3, H3K27ac, and H3K9ac, indicating that coordinated interplay among histone modifications, TEs, and CREs drives the DHS landscape dynamics under polyploidization. Collectively, these findings advance our understanding of the regulatory architecture in plants and underscore the complexity of regulome evolution during polyploidization.
Collapse
|
14
|
Wang K, Xiang D, Xia K, Sun B, Khurshid H, Esh AMH, Zhang H. Characterization of Repetitive DNA in Saccharum officinarum and Saccharum spontaneum by Genome Sequencing and Cytological Assays. FRONTIERS IN PLANT SCIENCE 2022; 13:814620. [PMID: 35273624 PMCID: PMC8902033 DOI: 10.3389/fpls.2022.814620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In most plant species, DNA repeated elements such as satellites and retrotransposons are composing the majority of their genomes. Saccharum officinarum (2n = 8x = 80) and S. spontaneum (2n = 40-128) are the two fundamental donors of modern sugarcane cultivars. These two species are polyploids with large genome sizes and are enriched in repetitive elements. In this work, we adopted a de novo strategy to isolate highly repetitive and abundant sequences in S. officinarum LA Purple and S. spontaneum SES208. The findings obtained from alignment to the genome assemblies revealed that the vast majority of the repeats (97.9% in LA Purple and 96.5% in SES208) were dispersed in the respective genomes. Fluorescence in situ hybridization assays were performed on 27 representative repeats to investigate their distributions and abundances. The results showed that the copies of some highly repeated sequences, including rDNA and centromeric or telomeric repeats, were underestimated in current genome assemblies. The analysis of the raw read mapping strategy showed more copy numbers for all studied repeats, suggesting that copy number underestimation is common for highly repeated sequences in current genome assemblies of LA Purple and SES208. In addition, the data showed that the centromeric retrotransposons in all SES208 centromeres were absent in certain S. spontaneum clones with different ploidies. This rapid turnover of centromeric DNA in sugarcane provides new clues regarding the pattern of centromeric retrotransposon formation and accumulation.
Collapse
Affiliation(s)
- Kai Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Dong Xiang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Xia
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bo Sun
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haris Khurshid
- Oilseeds Research Program, National Agricultural Research Centre, Islamabad, Pakistan
| | - Ayman M. H. Esh
- Sugar Crops Research Institute, Agriculture Research Center, Giza, Egypt
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
15
|
Fominaya A, Loarce Y, González JM, Ferrer E. Cytogenetic evidence supports Avena insularis being closely related to hexaploid oats. PLoS One 2021; 16:e0257100. [PMID: 34653181 PMCID: PMC8519437 DOI: 10.1371/journal.pone.0257100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 11/19/2022] Open
Abstract
Cytogenetic observations, phylogenetic studies and genome analysis using high-density genetic markers have suggested a tetraploid Avena species carrying the C and D genomes (formerly C and A) to be the donor of all hexaploid oats (AACCDD). However, controversy surrounds which of the three extant CCDD tetraploid species—A. insularis, A. magna and A. murphyi—is most closely related to hexaploid oats. The present work describes a comparative karyotype analysis of these three CCDD tetraploid species and two hexaploid species, A. sativa and A. byzantina. This involved the use of FISH with six simple sequence repeats (SSRs) with the motifs CT, AAC, AAG, ACG, ATC and ACT, two repeated ribosomal sequences, and C genome-specific repetitive DNA. The hybridization pattern of A. insularis with oligonucleotide (AC)10 was also determined and compared with those previously published for A. sativa and A. byzantina. Significant differences in the 5S sites and SSR hybridization patterns of A. murphyi compared to the other CCDD species rule out its being directly involved in the origin of the hexaploids. In contrast, the repetitive and SSR hybridization patterns shown by the D genome chromosomes, and by most of the C genome chromosomes of A. magna and A. insularis, can be equated with the corresponding chromosomes of the hexaploids. Several chromosome hybridization signals seen for A. insularis, but not for A. magna, were shared with the hexaploid oats species, especially with A. byzantina. These diagnostic signals add weight to the idea that the extant A. insularis, or a direct ancestor of it, is the most closely related progenitor of hexaploid oats. The similarity of the chromosome hybridization patterns of the hexaploids and CCDD tetraploids was taken as being indicative of homology. A common chromosome nomenclature for CCDD species based on that of the hexaploid species is proposed.
Collapse
Affiliation(s)
- Araceli Fominaya
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Yolanda Loarce
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Juan M. González
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Esther Ferrer
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
- * E-mail:
| |
Collapse
|
16
|
Yang Z, Ge X, Li W, Jin Y, Liu L, Hu W, Liu F, Chen Y, Peng S, Li F. Cotton D genome assemblies built with long-read data unveil mechanisms of centromere evolution and stress tolerance divergence. BMC Biol 2021; 19:115. [PMID: 34082735 PMCID: PMC8176745 DOI: 10.1186/s12915-021-01041-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many of genome features which could help unravel the often complex post-speciation evolution of closely related species are obscured because of their location in chromosomal regions difficult to accurately characterize using standard genome analysis methods, including centromeres and repeat regions. RESULTS Here, we analyze the genome evolution and diversification of two recently diverged sister cotton species based on nanopore long-read sequence assemblies and Hi-C 3D genome data. Although D genomes are conserved in gene content, they have diversified in gene order, gene structure, gene family diversification, 3D chromatin structure, long-range regulation, and stress-related traits. Inversions predominate among D genome rearrangements. Our results support roles for 5mC and 6mA in gene activation, and 3D chromatin analysis showed that diversification in proximal-vs-distal regulatory-region interactions shape the regulation of defense-related-gene expression. Using a newly developed method, we accurately positioned cotton centromeres and found that these regions have undergone obviously more rapid evolution relative to chromosome arms. We also discovered a cotton-specific LTR class that clarifies evolutionary trajectories among diverse cotton species and identified genetic networks underlying the Verticillium tolerance of Gossypium thurberi (e.g., SA signaling) and salt-stress tolerance of Gossypium davidsonii (e.g., ethylene biosynthesis). Finally, overexpression of G. thurberi genes in upland cotton demonstrated how wild cottons can be exploited for crop improvement. CONCLUSIONS Our study substantially deepens understanding about how centromeres have developed and evolutionarily impacted the divergence among closely related cotton species and reveals genes and 3D genome structures which can guide basic investigations and applied efforts to improve crops.
Collapse
Affiliation(s)
- Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyang Ge
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Weinan Li
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Yuying Jin
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lisen Liu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Hu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fuyan Liu
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Yanli Chen
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China. .,School of Computer Science, National University of Defense Technology, Changsha, 410073, China. .,Peng Cheng Lab, Shenzhen, 518000, China.
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China. .,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
17
|
Miller WB, Enguita FJ, Leitão AL. Non-Random Genome Editing and Natural Cellular Engineering in Cognition-Based Evolution. Cells 2021; 10:1125. [PMID: 34066959 PMCID: PMC8148535 DOI: 10.3390/cells10051125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Neo-Darwinism presumes that biological variation is a product of random genetic replication errors and natural selection. Cognition-Based Evolution (CBE) asserts a comprehensive alternative approach to phenotypic variation and the generation of biological novelty. In CBE, evolutionary variation is the product of natural cellular engineering that permits purposive genetic adjustments as cellular problem-solving. CBE upholds that the cornerstone of biology is the intelligent measuring cell. Since all biological information that is available to cells is ambiguous, multicellularity arises from the cellular requirement to maximize the validity of available environmental information. This is best accomplished through collective measurement purposed towards maintaining and optimizing individual cellular states of homeorhesis as dynamic flux that sustains cellular equipoise. The collective action of the multicellular measurement and assessment of information and its collaborative communication is natural cellular engineering. Its yield is linked cellular ecologies and mutualized niche constructions that comprise biofilms and holobionts. In this context, biological variation is the product of collective differential assessment of ambiguous environmental cues by networking intelligent cells. Such concerted action is enabled by non-random natural genomic editing in response to epigenetic impacts and environmental stresses. Random genetic activity can be either constrained or deployed as a 'harnessing of stochasticity'. Therefore, genes are cellular tools. Selection filters cellular solutions to environmental stresses to assure continuous cellular-organismal-environmental complementarity. Since all multicellular eukaryotes are holobionts as vast assemblages of participants of each of the three cellular domains (Prokaryota, Archaea, Eukaryota) and the virome, multicellular variation is necessarily a product of co-engineering among them.
Collapse
Affiliation(s)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal;
| | - Ana Lúcia Leitão
- MEtRICs, Department of Sciences and Technology of Biomass, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| |
Collapse
|
18
|
Huang Y, Ding W, Zhang M, Han J, Jing Y, Yao W, Hasterok R, Wang Z, Wang K. The formation and evolution of centromeric satellite repeats in Saccharum species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:616-629. [PMID: 33547688 DOI: 10.1111/tpj.15186] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 05/04/2023]
Abstract
Centromeres in eukaryotes are composed of tandem DNAs and retrotransposons. However, centromeric repeats exhibit considerable diversity, even among closely related species, and their origin and evolution are largely unknown. We conducted a genome-wide characterization of the centromeric sequences in sugarcane (Saccharum officinarum). Four centromeric tandem repeat sequences, So1, So103, So137 and So119, were isolated. So1 has a monomeric length of 137 bp, typical of a centromeric satellite, and has evolved four variants. However, these So1 variants had distinct centromere distributions and some were unique to an individual centromere. The distributions of the So1 variants were unexpectedly consistent among the Saccharum species that had different basic chromosome numbers or ploidy levels, thus suggesting evolutionary stability for approximately 7 million years in sugarcane. So103, So137 and So119 had unusually longer monomeric lengths that ranged from 327 to 1371 bp and lacked translational phasing on the CENH3 nucleosomes. Moreover, So103, So137 and So119 seemed to be highly similar to retrotransposons, which suggests that they originated from these mobile elements. Notably, all three repeats were flanked by direct repeats, and formed extrachromosomal circular DNAs (eccDNAs). The presence of circular molecules for these retrotransposon-derived centromeric satellites suggests an eccDNA-mediated centromeric satellite formation pathway in sugarcane.
Collapse
Affiliation(s)
- Yongji Huang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Wenjie Ding
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muqing Zhang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro- Bioresources, Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Jinlei Han
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanfen Jing
- Ruili Breeding Station, Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Ruili, 678600, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro- Bioresources, Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Zonghua Wang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Kai Wang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
19
|
Mustafin RN, Khusnutdinova EK. Involvement of transposable elements in neurogenesis. Vavilovskii Zhurnal Genet Selektsii 2021; 24:209-218. [PMID: 33659801 PMCID: PMC7893149 DOI: 10.18699/vj20.613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The article is about the role of transposons in the regulation of functioning of neuronal stem cells and mature neurons of the human brain. Starting from the first division of the zygote, embryonic development is governed by regular activations of transposable elements, which are necessary for the sequential regulation of the expression of genes specific for each cell type. These processes include differentiation of neuronal stem cells, which requires the finest tuning of expression of neuron genes in various regions of the brain. Therefore, in the hippocampus, the center of human neurogenesis, the highest transposon activity has been identified, which causes somatic mosaicism of cells during the formation of specific brain structures. Similar data were obtained in studies on experimental animals. Mobile genetic elements are the most important sources of long non-coding RNAs that are coexpressed with important brain protein-coding genes. Significant activity of long non-coding RNA was detected in the hippocampus, which confirms the role of transposons in the regulation of brain function. MicroRNAs, many of which arise from transposon transcripts, also play an important role in regulating the differentiation of neuronal stem cells. Therefore, transposons, through their own processed transcripts, take an active part in the epigenetic regulation of differentiation of neurons. The global regulatory role of transposons in the human brain is due to the emergence of protein-coding genes in evolution by their exonization, duplication and domestication. These genes are involved in an epigenetic regulatory network with the participation of transposons, since they contain nucleotide sequences complementary to miRNA and long non-coding RNA formed from transposons. In the memory formation, the role of the exchange of virus-like mRNA with the help of the Arc protein of endogenous retroviruses HERV between neurons has been revealed. A possible mechanism for the implementation of this mechanism may be reverse transcription of mRNA and site-specific insertion into the genome with a regulatory effect on the genes involved in the memory.
Collapse
Affiliation(s)
| | - E K Khusnutdinova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| |
Collapse
|
20
|
Burns R, Mandáková T, Gunis J, Soto-Jiménez LM, Liu C, Lysak MA, Novikova PY, Nordborg M. Gradual evolution of allopolyploidy in Arabidopsis suecica. Nat Ecol Evol 2021; 5:1367-1381. [PMID: 34413506 PMCID: PMC8484011 DOI: 10.1038/s41559-021-01525-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
Most diploid organisms have polyploid ancestors. The evolutionary process of polyploidization is poorly understood but has frequently been conjectured to involve some form of 'genome shock', such as genome reorganization and subgenome expression dominance. Here we study polyploidization in Arabidopsis suecica, a post-glacial allopolyploid species formed via hybridization of Arabidopsis thaliana and Arabidopsis arenosa. We generated a chromosome-level genome assembly of A. suecica and complemented it with polymorphism and transcriptome data from all species. Despite a divergence around 6 million years ago (Ma) between the ancestral species and differences in their genome composition, we see no evidence of a genome shock: the A. suecica genome is colinear with the ancestral genomes; there is no subgenome dominance in expression; and transposon dynamics appear stable. However, we find changes suggesting gradual adaptation to polyploidy. In particular, the A. thaliana subgenome shows upregulation of meiosis-related genes, possibly to prevent aneuploidy and undesirable homeologous exchanges that are observed in synthetic A. suecica, and the A. arenosa subgenome shows upregulation of cyto-nuclear processes, possibly in response to the new cytoplasmic environment of A. suecica, with plastids maternally inherited from A. thaliana. These changes are not seen in synthetic hybrids, and thus are likely to represent subsequent evolution.
Collapse
Affiliation(s)
- Robin Burns
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Terezie Mandáková
- grid.10267.320000 0001 2194 0956CEITEC - Central European Institute of Technology, and Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Joanna Gunis
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Luz Mayela Soto-Jiménez
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Chang Liu
- grid.9464.f0000 0001 2290 1502Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Martin A. Lysak
- grid.10267.320000 0001 2194 0956CEITEC - Central European Institute of Technology, and Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Polina Yu. Novikova
- grid.511033.5VIB-UGent Center for Plant Systems Biology, Ghent, Belgium ,grid.419498.90000 0001 0660 6765Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Magnus Nordborg
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
21
|
Setiawan AB, Teo CH, Kikuchi S, Sassa H, Kato K, Koba T. Chromosomal Locations of a Non-LTR Retrotransposon, Menolird18, in Cucumis melo and Cucumis sativus, and Its Implication on Genome Evolution of Cucumis Species. Cytogenet Genome Res 2020; 160:554-564. [DOI: 10.1159/000511119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022] Open
Abstract
Mobile elements are major regulators of genome evolution through their effects on genome size and chromosome structure in higher organisms. Non-long terminal repeat (non-LTR) retrotransposons, one of the subclasses of transposons, are specifically inserted into repetitive DNA sequences. While studies on the insertion of non-LTR retrotransposons into ribosomal RNA genes and other repetitive DNA sequences have been reported in the animal kingdom, studies in the plant kingdom are limited. Here, using FISH, we confirmed that <i>Menolird18</i>, a member of LINE (long interspersed nuclear element) in non-LTR retrotransposons and found in <i>Cucumis melo</i>, was inserted into ITS and ETS (internal and external transcribed spacers) regions of 18S rDNA in melon and cucumber. Beside the 18S rDNA regions, <i>Menolird18</i> was also detected in all centromeric regions of melon, while it was located at pericentromeric and sub-telomeric regions in cucumber. The fact that FISH signals of <i>Menolird18</i> were found in centromeric and rDNA regions of mitotic chromosomes suggests that <i>Menolird18</i> is a rDNA and centromere-specific non-LTR retrotransposon in melon. Our findings are the first report on a non-LTR retrotransposon that is highly conserved in 2 different plant species, melon and cucumber. The clear distinction of chromosomal localization of <i>Menolird18</i> in melon and cucumber implies that it might have been involved in the evolutionary processes of the melon (<i>C. melo</i>) and cucumber (<i>C. sativus</i>) genomes.
Collapse
|
22
|
Han M, Yang Y, Zhang M, Wang K. Considerations regarding centromere assembly in plant whole-genome sequencing. Methods 2020; 187:54-56. [PMID: 32920129 DOI: 10.1016/j.ymeth.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/19/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
The assembly of centromeric regions has become one of the most intractable tasks in whole-genome sequencing due to the enrichment of highly repetitive DNA sequences in most eukaryotic centromeres. Here, we describe a method used to identify centromeric DNAs through chromatin immunoprecipitation and sequencing (ChIP-seq). By mapping ChIP-seq reads, centromeric regions can be indicated in genome assemblies. We demonstrated that the assembly quality of centromeres obtained using ChIP-seq mapping can reflect and indicate the quality of a whole-genome assembly. We discuss an expected 'high-quality' centromere assembly obtained via centromere ChIP-seq mapping.
Collapse
Affiliation(s)
- Miaomiao Han
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yae Yang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muqing Zhang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps (MOE), Fujian Agriculture and Forestry University, Fuzhou, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Kai Wang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps (MOE), Fujian Agriculture and Forestry University, Fuzhou, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
23
|
Species-specific abundant retrotransposons elucidate the genomic composition of modern sugarcane cultivars. Chromosoma 2019; 129:45-55. [PMID: 31848693 DOI: 10.1007/s00412-019-00729-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
Modern sugarcane cultivars are highly polyploid and derived from the hybridization of Saccharum officinarum and S. spontaneum, thus leading to singularly complex genomes. The complex genome has hindered the study of genomic structures. Here, we adopted a computational strategy to isolate highly repetitive and abundant sequences in either S. officinarum or S. spontaneum and isolated four S. spontaneum-enriched retrotransposons. Fluorescence in situ hybridization (FISH) assays with these repetitive DNA sequences generated whole-genome painting signals for S. spontaneum but not for S. officinarum. We demonstrated that these repetitive sequence-based probes distinguish the parental S. spontaneum genome in hybrids derived from crosses between it and S. officinarum. A cytological analysis of 14 modern sugarcane cultivars revealed that the percentages of chromosomes with introgressive S. spontaneum fragments ranged from 11.9 to 40.9% and substantially exceeded those determined for previously investigated cultivars (5-13%). The comparatively higher percentages of introgressive S. spontaneum fragments detected in the aforementioned cultivars indicate frequent recombination between parental genomes. Here, we present the application of our strategy to isolate species-specific cytological markers. This information may help to elucidate complex plant genomic structures and trace their evolutionary histories.
Collapse
|
24
|
Wang GX, He QY, Zhao H, Cai ZX, Guo N, Zong M, Han S, Liu F, Jin WW. ChIP-cloning analysis uncovers centromere-specific retrotransposons in Brassica nigra and reveals their rapid diversification in Brassica allotetraploids. Chromosoma 2019; 128:119-131. [PMID: 30993455 DOI: 10.1007/s00412-019-00701-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 01/12/2023]
Abstract
Centromeres are indispensable functional units of chromosomes. The evolutionary mechanisms underlying the rapid evolution of centromeric repeats, especially those following polyploidy, remain unknown. In this study, we isolated centromeric sequences of Brassica nigra, a model diploid progenitor (B genome) of the allopolyploid species B. juncea (AB genome) and B. carinata (BC genome) by chromatin immunoprecipitation of nucleosomes containing the centromere-specific histone CENH3. Sequence analysis detected no centromeric satellite DNAs, and most B. nigra centromeric repeats were found to originate from Tyl/copia-class retrotransposons. In cytological analyses, six of the seven analyzed repeat clusters had no FISH signals in A or C genomes of the related diploid species B. rapa and B. oleracea. Notably, five repeat clusters had FISH signals in both A and B subgenomes in the tetraploid B. juncea. In the tetraploid B. carinata, only CL23 displayed three pairs of signals in terminal or interstitial regions of the C-derived chromosome, and no evidence of colonization of CLs onto C-subgenome centromeres was found in B. carinata. This observation suggests that centromeric repeats spread and proliferated between genomes after polyploidization. CL3 and CRB are likely ancient centromeric sequences arising prior to the divergence of diploid Brassica which have detected signals across the genus. And in allotetraploids B. juncea and B. carinata, the FISH signal intensity of CL3 and CRB differed among subgenomes. We discussed possible mechanisms for centromeric repeat divergence during Brassica speciation and polyploid evolution, thus providing insights into centromeric repeat establishment and targeting.
Collapse
Affiliation(s)
- Gui-Xiang Wang
- Beijing Vegetable Research Center, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Qun-Yan He
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Hong Zhao
- Beijing Vegetable Research Center, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ze-Xi Cai
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Ning Guo
- Beijing Vegetable Research Center, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Mei Zong
- Beijing Vegetable Research Center, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuo Han
- Beijing Vegetable Research Center, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Fan Liu
- Beijing Vegetable Research Center, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wei-Wei Jin
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
25
|
Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 2019; 51:739-748. [PMID: 30886425 DOI: 10.1038/s41588-019-0371-5] [Citation(s) in RCA: 526] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 02/11/2019] [Indexed: 11/08/2022]
Abstract
Allotetraploid cotton is an economically important natural-fiber-producing crop worldwide. After polyploidization, Gossypium hirsutum L. evolved to produce a higher fiber yield and to better survive harsh environments than Gossypium barbadense, which produces superior-quality fibers. The global genetic and molecular bases for these interspecies divergences were unknown. Here we report high-quality de novo-assembled genomes for these two cultivated allotetraploid species with pronounced improvement in repetitive-DNA-enriched centromeric regions. Whole-genome comparative analyses revealed that species-specific alterations in gene expression, structural variations and expanded gene families were responsible for speciation and the evolutionary history of these species. These findings help to elucidate the evolution of cotton genomes and their domestication history. The information generated not only should enable breeders to improve fiber quality and resilience to ever-changing environmental conditions but also can be translated to other crops for better understanding of their domestication history and use in improvement.
Collapse
|
26
|
Centromere Repeats: Hidden Gems of the Genome. Genes (Basel) 2019; 10:genes10030223. [PMID: 30884847 PMCID: PMC6471113 DOI: 10.3390/genes10030223] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 01/08/2023] Open
Abstract
Satellite DNAs are now regarded as powerful and active contributors to genomic and chromosomal evolution. Paired with mobile transposable elements, these repetitive sequences provide a dynamic mechanism through which novel karyotypic modifications and chromosomal rearrangements may occur. In this review, we discuss the regulatory activity of satellite DNA and their neighboring transposable elements in a chromosomal context with a particular emphasis on the integral role of both in centromere function. In addition, we discuss the varied mechanisms by which centromeric repeats have endured evolutionary processes, producing a novel, species-specific centromeric landscape despite sharing a ubiquitously conserved function. Finally, we highlight the role these repetitive elements play in the establishment and functionality of de novo centromeres and chromosomal breakpoints that underpin karyotypic variation. By emphasizing these unique activities of satellite DNAs and transposable elements, we hope to disparage the conventional exemplification of repetitive DNA in the historically-associated context of ‘junk’.
Collapse
|
27
|
Jiang J. Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res 2019; 27:153-165. [PMID: 30852707 DOI: 10.1007/s10577-019-09607-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 01/20/2023]
Abstract
Fluorescence in situ hybridization (FISH) was developed more than 30 years ago and has been the most paradigm-changing technique in cytogenetic research. FISH has been used to answer questions related to structure, mutation, and evolution of not only individual chromosomes but also entire genomes. FISH has served as an important tool for chromosome identification in many plant species. This review intends to summarize and discuss key technical development and applications of FISH in plants since 2006. The most significant recent advance of FISH is the development and application of probes based on synthetic oligonucleotides (oligos). Oligos specific to a repetitive DNA sequence, to a specific chromosomal region, or to an entire chromosome can be computationally identified, synthesized in parallel, and fluorescently labeled. Oligo probes designed from conserved DNA sequences from one species can be used among genetically related species, allowing comparative cytogenetic mapping of these species. The advances with synthetic oligo probes will significantly expand the applications of FISH especially in non-model plant species. Recent achievements and future applications of FISH and oligo-FISH are discussed.
Collapse
Affiliation(s)
- Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
28
|
Wang S, Jin W, Wang K. Centromere histone H3- and phospholipase-mediated haploid induction in plants. PLANT METHODS 2019; 15:42. [PMID: 31057661 PMCID: PMC6485145 DOI: 10.1186/s13007-019-0429-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/24/2019] [Indexed: 05/14/2023]
Abstract
Simple and consistent production of haploid is always an appealing pursuit for both crop breeders and researchers. Although diverse strategies have been developed to produce haploids over the past decades, most of them are applicable in only a limited number of plant species. In 2010, Ravi and Chan reported that haploid Arabidopsis thaliana plants can be efficiently induced through the introduction of a single genetic alteration in centromere histone H3 (CENH3). Subsequent studies demonstrated that haploids can be efficiently induced either through genetic engineering of CENH3 N-terminal tail or histone fold domain or by replacing CENH3 with an ortholog. The mutation of a pollen-specific phospholipase gene, MATRILINEAL (MTL) has been revealed to trigger the haploid induction (HI) in maize, which present another promising HI approach by the editing of MTL in plant. Here, we review the progress of the CENH3-medialed HI and propose a revised centromere-size model by suggesting a competitive loading process between wild-type and mutant CENH3 during HI. This model can explain both the findings of HI failure when wild-type and mutant CENH3 genes are coexpressed and the alien centromere loading of CENH3 in stable hybrids. In addition, we review the current understanding of MTL-mediated HI in plant. The conservation of CENH3 and MTL in plants indicates wide potential application for HI. We discuss the utility and potential of these two methods in crops by comparing their mechanisms and applications to date in plants. This review will promote the study and application of both CENH3- and MTL-mediated haploid induction in plants.
Collapse
Affiliation(s)
- Song Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Weiwei Jin
- College of Agriculture, China Agricultural University, No. 2, Yuan Ming Yuan West Road, Haidian District, Beijing, 100193 China
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
29
|
Morata J, Tormo M, Alexiou KG, Vives C, Ramos-Onsins SE, Garcia-Mas J, Casacuberta JM. The Evolutionary Consequences of Transposon-Related Pericentromer Expansion in Melon. Genome Biol Evol 2018; 10:1584-1595. [PMID: 29901717 PMCID: PMC6009578 DOI: 10.1093/gbe/evy115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) are a major driver of plant genome evolution. A part from being a rich source of new genes and regulatory sequences, TEs can also affect plant genome evolution by modifying genome size and shaping chromosome structure. TEs tend to concentrate in heterochromatic pericentromeric regions and their proliferation may expand these regions. Here, we show that after the split of melon and cucumber, TEs have expanded the pericentromeric regions of melon chromosomes that, probably as a consequence, show a very low recombination frequency. In contrast, TEs have not proliferated to a high extent in cucumber, which has small TE-dense pericentromeric regions and shows a relatively constant recombination rate along chromosomes. These differences in chromosome structure also translate in differences in gene nucleotide diversity. Although gene nucleotide diversity is essentially constant along cucumber chromosomes, melon chromosomes show a bimodal pattern of genetic variability, with a gene-poor region where variability is negatively correlated with gene density. Interestingly, genes are not homogeneously distributed in melon, and the high variable low-recombining pericentromeric regions show a higher concentration of melon-specific genes whereas genes shared with cucumber and other plants are essentially found in gene-rich chromosomal arms. The results presented here suggest that melon pericentromeric regions may allow gene sequences to evolve more freely than in other chromosomal compartments which may allow new ORFs to arise and eventually be selected. These results show that TEs can drastically change the structure of chromosomes creating different chromosomal compartments imposing different constraints for gene evolution.
Collapse
Affiliation(s)
- Jordi Morata
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Marc Tormo
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Konstantinos G Alexiou
- Institut de Recerca i Tecnologia Agroalimentàries, Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Cristina Vives
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Sebastián E Ramos-Onsins
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Jordi Garcia-Mas
- Institut de Recerca i Tecnologia Agroalimentàries, Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Josep M Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
30
|
Li Y, Zuo S, Zhang Z, Li Z, Han J, Chu Z, Hasterok R, Wang K. Centromeric DNA characterization in the model grass Brachypodium distachyon provides insights on the evolution of the genus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:1088-1101. [PMID: 29381236 DOI: 10.1111/tpj.13832] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 05/21/2023]
Abstract
Brachypodium distachyon is a well-established model monocot plant, and its small and compact genome has been used as an accurate reference for the much larger and often polyploid genomes of cereals such as Avena sativa (oats), Hordeum vulgare (barley) and Triticum aestivum (wheat). Centromeres are indispensable functional units of chromosomes and they play a core role in genome polyploidization events during evolution. As the Brachypodium genus contains about 20 species that differ significantly in terms of their basic chromosome numbers, genome size, ploidy levels and life strategies, studying their centromeres may provide important insight into the structure and evolution of the genome in this interesting and important genus. In this study, we isolated the centromeric DNA of the B. distachyon reference line Bd21 and characterized its composition via the chromatin immunoprecipitation of the nucleosomes that contain the centromere-specific histone CENH3. We revealed that the centromeres of Bd21 have the features of typical multicellular eukaryotic centromeres. Strikingly, these centromeres contain relatively few centromeric satellite DNAs; in particular, the centromere of chromosome 5 (Bd5) consists of only ~40 kb. Moreover, the centromeric retrotransposons in B. distachyon (CRBds) are evolutionarily young. These transposable elements are located both within and adjacent to the CENH3 binding domains, and have similar compositions. Moreover, based on the presence of CRBds in the centromeres, the species in this study can be grouped into two distinct lineages. This may provide new evidence regarding the phylogenetic relationships within the Brachypodium genus.
Collapse
Affiliation(s)
- Yinjia Li
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Sheng Zuo
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhiliang Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhanjie Li
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jinlei Han
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhaoqing Chu
- Shanghai Chenshan Plant Science Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai Chenshan Botanical Garden, 3888 Chenhua Road, Songjiang, Shanghai, 201602, China
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032, Katowice, Poland
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
31
|
Chromosome Evolution in Connection with Repetitive Sequences and Epigenetics in Plants. Genes (Basel) 2017; 8:genes8100290. [PMID: 29064432 PMCID: PMC5664140 DOI: 10.3390/genes8100290] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 01/18/2023] Open
Abstract
Chromosome evolution is a fundamental aspect of evolutionary biology. The evolution of chromosome size, structure and shape, number, and the change in DNA composition suggest the high plasticity of nuclear genomes at the chromosomal level. Repetitive DNA sequences, which represent a conspicuous fraction of every eukaryotic genome, particularly in plants, are found to be tightly linked with plant chromosome evolution. Different classes of repetitive sequences have distinct distribution patterns on the chromosomes. Mounting evidence shows that repetitive sequences may play multiple generative roles in shaping the chromosome karyotypes in plants. Furthermore, recent development in our understanding of the repetitive sequences and plant chromosome evolution has elucidated the involvement of a spectrum of epigenetic modification. In this review, we focused on the recent evidence relating to the distribution pattern of repetitive sequences in plant chromosomes and highlighted their potential relevance to chromosome evolution in plants. We also discussed the possible connections between evolution and epigenetic alterations in chromosome structure and repatterning, such as heterochromatin formation, centromere function, and epigenetic-associated transposable element inactivation.
Collapse
|
32
|
Vicient CM, Casacuberta JM. Impact of transposable elements on polyploid plant genomes. ANNALS OF BOTANY 2017; 120:195-207. [PMID: 28854566 PMCID: PMC5737689 DOI: 10.1093/aob/mcx078] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND The growing wealth of knowledge on whole-plant genome sequences is highlighting the key role of transposable elements (TEs) in plant evolution, as a driver of drastic changes in genome size and as a source of an important number of new coding and regulatory sequences. Together with polyploidization events, TEs should thus be considered the major players in evolution of plants. SCOPE This review outlines the major mechanisms by which TEs impact plant genome evolution and how polyploidy events can affect these impacts, and vice versa. These include direct effects on genes, by providing them with new coding or regulatory sequences, an effect on the epigenetic status of the chromatin close to genes, and more subtle effects by imposing diverse evolutionary constraints to different chromosomal regions. These effects are particularly relevant after polyploidization events. Polyploidization often induces bursts of transposition probably due to a relaxation in their epigenetic control, and, in the short term, this can increase the rate of gene mutations and changes in gene regulation due to the insertion of TEs next to or into genes. Over longer times, TE bursts may induce global changes in genome structure due to inter-element recombination including losses of large genome regions and chromosomal rearrangements that reduce the genome size and the chromosome number as part of a process called diploidization. CONCLUSIONS TEs play an essential role in genome and gene evolution, in particular after polyploidization events. Polyploidization can induce TE activity that may explain part of the new phenotypes observed. TEs may also play a role in the diploidization that follows polyploidization events. However, the extent to which TEs contribute to diploidization and fractionation bias remains unclear. Investigating the multiple factors controlling TE dynamics and the nature of ancient and recent polyploid genomes may shed light on these processes.
Collapse
Affiliation(s)
- Carlos M. Vicient
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
- For correspondence. E-mail
| | - Josep M. Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
33
|
Isolation and characterization of centromeric repetitive DNA sequences in Saccharum spontaneum. Sci Rep 2017; 7:41659. [PMID: 28134354 PMCID: PMC5278356 DOI: 10.1038/srep41659] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/21/2016] [Indexed: 01/05/2023] Open
Abstract
Sugarcane (Saccharum hybrids spp.) is the most important sugar crop that accounts for ~75% of the world’s sugar production. Recently, a whole-genome sequencing project was launched on the wild species S. spontaneum. To obtain information on the DNA composition of the repeat-enriched region of the centromere, we conducted a genome-wide analysis of the DNA sequences associated with CenH3 (a mutant of histone H3 located in eukaryote centromeres) using chromatin immunoprecipitation followed by sequencing (ChIP-seq) method. We demonstrate that the centromeres contain mainly SCEN-like single satellite repeat (Ss1) and several Ty3/gypsy retrotransposon-related repeats (Ss166, Ss51, and Ss68). Ss1 dominates in the centromeric regions and spans up to 500 kb. In contrast, the Ty3/gypsy retrotransposon-related repeats are either clustered spanning over a short range, or dispersed in the centromere regions. Interestingly, Ss1 exhibits a chromosome-specific enrichment in the wild species S. spontaneum and S. robustum, but not in the domesticated species S. officinarum and modern sugarcane cultivars. This finding suggests an autopolyploid genome identity of S. spontaneum with a high level of homology among its eight sub-genomes. We also conducted a genome-wide survey of the repetitive DNAs in S. spontaneum following a similarity-based sequence clustering strategy. These results provide insight into the composition of sugarcane genome as well as the genome assembly of S. spontaneum.
Collapse
|