1
|
Zhao Y, Zhang Y, Zhang K, Tian J, Teng H, Xu Z, Xu J, Shao H, Jia W. Molybdenum Can Regulate the Expression of Molybdase Genes, Affect Molybdase Activity and Metabolites, and Promote the Cell Wall Bio-Synthesis of Tobacco Leaves. BIOLOGY 2025; 14:66. [PMID: 39857296 PMCID: PMC11762813 DOI: 10.3390/biology14010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Molybdenum (Mo) is widely used as a micronutrient fertilizer to improve plant growth and soil quality. However, the interactions between cell wall biosynthesis and molybdenum have not been explored sufficiently. This study thoroughly investigated the regulatory effects of different concentrations of Mo on tobacco cell wall biosynthesis from physiological and metabolomic aspects. The results indicate that Mo treatment increased the Mo content of tobacco variety K326. Moreover, it significantly up-regulated the gene expression levels of molybdases (NR, AO, SO, XDH) and molybdate transporters in tobacco, whereby the gene expression levels of NR were upregulated by 28.48%, 52.51%, 173.05%, and 246.21%, respectively; and MOT1 and MOT2 were upregulated by 21.49/8.67%, 66.05/30.44%, 93.05/93.26%, and 166.11/114.29%, respectively. Additionally, Mo treatment regulated the synthesis of related enzymes, effectively promoted plant growth, and significantly increased biomass and dry matter accumulation, with the biomass in the leaves increasing significantly by 30.73%, 40.72%, 46.34%, and 12.88%, respectively. The FT-NIR spectroscopy results indicate that after Mo was applied to the soil, the quantity of C-O-C, -COOH, C-H, and N-H functional groups increased. Concurrently, the contents of cellulose, hemicellulose, lignin, protopectin, and soluble pectin in the leaves significantly increased, wherein the content of soluble pectin and hemicellulose increased significantly by 31.01/288.82%, 40.69/343.43%, 69.93/241.73%, and 196.88/223.26%, respectively. Furthermore, the cell walls thickened, increasing the ability of the plant to withstand disturbances. The metabolic network diagrams indicate that Mo regulated galactose metabolism, and arginine and proline acid biosynthesis. The contents of carbohydrates, spermidine, proline, quinic acid, IAA, flavonoids, and other substances were increased, increasing the levels of polysaccharides and pectin within the cell wall, controlling lignin production, and successfully enhancing resistance to abiotic stress. These results offer important perspectives for further investigations into the role of trace elements.
Collapse
Affiliation(s)
- Yuan Zhao
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Yu Zhang
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Kai Zhang
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Jiashu Tian
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Huanyu Teng
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Zicheng Xu
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Jiayang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China;
| | - Huifang Shao
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Wei Jia
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| |
Collapse
|
2
|
Yang D, Fan J, Wang L. The functional division of arbuscular mycorrhizal fungi and earthworm to efficient cooperation on phytoremediation in molybdenum (Mo) contaminated soils. ENVIRONMENTAL RESEARCH 2024; 247:118270. [PMID: 38246294 DOI: 10.1016/j.envres.2024.118270] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Single phytoremediation has limited capacity to restore soil contaminated with extreme Mo due to its low metal accumulation. Soil organisms can help compensate for this deficiency in Mo-contaminated soils. However, there is limited information available on the integrated roles of different types of soil organisms, particularly the collaboration between soil microorganisms and soil animals, in phytoremediation. The objective of this study is to investigate the effects of a combination of arbuscular mycorrhizal fungi (AMF) and earthworms on the remediation of Mo-contaminated soils by alfalfa (Medicago sativa L.). The results indicated that in the soil-alfalfa system, earthworms effectively drive soil Mo activation, while AMF significantly improve the contribution of the translocation factor to total Mo removal (TMR) in alfalfas (p < 0.05). Meanwhile, compared to individual treatments, the combination of AMF and earthworm enhanced the expression of alfalfa root specific Mo transporter - MOT1 family genes to increase alfalfa uptake Mo (p < 0.05). This alleviated the competition between P/S nutrients and Mo on non-specific Mo transporters-P/S transporters (p < 0.05). Additionally, the proportion of organelle-bound Mo in the root was reduced to decrease Mo toxicity, while the cell wall-bound Mo proportion in the shoot was increased to securely accumulate Mo. The contributions of inoculants to alfalfa TMR followed the order (maximum increases): AMF + E combination (274.68 %) > alone treatments (130 %). Overall, the "functional division and cooperation" between earthworm and AMF are of great importance to the creation of efficient multi-biological systems in phytoremediation.
Collapse
Affiliation(s)
- Dongguang Yang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jiazhi Fan
- Yichun Luming Mining Co., Ltd, Tieli, 152500, China
| | - Li Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
3
|
Oliphant KD, Rabenow M, Hohtanz L, Mendel RR. The Neurospora crassa molybdate transporter: Characterizing a novel transporter homologous to the plant MOT1 family. Fungal Genet Biol 2022; 163:103745. [PMID: 36240974 DOI: 10.1016/j.fgb.2022.103745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 01/06/2023]
Abstract
Molybdenum (Mo) is an essential element for animals, plants, and fungi. To achieve biological activity in eukaryotes, Mo must be complexed into the molybdenum cofactor (Moco). Cells are known to take up Mo in the form of the oxyanion molybdate. However, molybdate transporters are scarcely characterized in the fungal kingdom. In plants and algae, molybdate is imported into the cell via two families of molybdate transporters (MOT), MOT1 and MOT2. For the filamentous fungus Neurospora crassa, a sequence homologous to the MOT1 family was previously annotated. Here we report a characterization of this molybdate-related transporter, encoded by the ncmot-1 gene. We found that the deletion of ncmot-1 leads to an accumulation of total Mo within the mycelium and a roughly 51 % higher tolerance against high molybdate levels when grown on ammonium medium. The localization of a GFP tagged NcMOT-1 was identified among the vacuolar membrane. Thereby, we propose NcMOT-1 as an exporter, transporting molybdate out of the vacuole into the cytoplasm. Lastly, the heterologous expression of NcMOT-1 in Saccharomyces cerevisiae verifies the functionality of this protein as a MOT. Our results open the way towards understanding molybdate transport as part of Mo homeostasis and Moco-biosynthesis in fungi.
Collapse
Affiliation(s)
- Kevin D Oliphant
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany
| | - Miriam Rabenow
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany
| | - Lena Hohtanz
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany
| | - Ralf R Mendel
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany.
| |
Collapse
|
4
|
Huang XY, Hu DW, Zhao FJ. Molybdenum: More than an essential element. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1766-1774. [PMID: 34864981 DOI: 10.1093/jxb/erab534] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Molybdenum (Mo) is an essential element for almost all living organisms. After being taken up into the cells as molybdate, it is incorporated into the molybdenum cofactor, which functions as the active site of several molybdenum-requiring enzymes and thus plays crucial roles in multiple biological processes. The uptake and transport of molybdate is mainly mediated by two types of molybdate transporters. The homeostasis of Mo in plant cells is tightly controlled, and such homeostasis likely plays vital roles in plant adaptation to local environments. Recent evidence suggests that Mo is more than an essential element required for plant growth and development; it is also involved in local adaptation to coastal salinity. In this review, we summarize recent research progress on molybdate uptake and transport, molybdenum homeostasis network in plants, and discuss the potential roles of the molybdate transporter in plant adaptation to their local environment.
Collapse
Affiliation(s)
- Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Da-Wei Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Hu D, Li M, Zhao FJ, Huang XY. The Vacuolar Molybdate Transporter OsMOT1;2 Controls Molybdenum Remobilization in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:863816. [PMID: 35356108 PMCID: PMC8959823 DOI: 10.3389/fpls.2022.863816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Molybdenum (Mo) is an essential micronutrient for almost all living organisms. The Mo uptake process in plants has been well investigated. However, the mechanisms controlling Mo translocation and remobilization among different plant tissues are largely unknown, especially the allocation of Mo to rice grains that are the major dietary source of Mo for humans. In this study, we characterized the functions of a molybdate transporter, OsMOT1;2, in the interorgan allocation of Mo in rice. Heterologous expression in yeast established the molybdate transport activity of OsMOT1;2. OsMOT1;2 was highly expressed in the blades of the flag leaf and the second leaf during the grain filling stage. Subcellular localization revealed that OsMOT1;2 localizes to the tonoplast. Knockout of OsMOT1;2 led to more Mo accumulation in roots and less Mo translocation to shoots at the seedling stage and to grains at the maturity stage. The remobilization of Mo from older leaves to young leaves under molybdate-depleted condition was also decreased in the osmot1;2 knockout mutant. In contrast, overexpression of OsMOT1;2 enhanced the translocation of Mo from roots to shoots at the seedling stage. The remobilization of Mo from upper leaves to grains was also enhanced in the overexpression lines during grain filling. Our results suggest that OsMOT1;2 may function as a vacuolar molybdate exporter facilitating the efflux of Mo from the vacuole into the cytoplasm, and thus, it plays an important role in the root-to-shoot translocation of Mo and the remobilization of Mo from leaves to grains.
Collapse
|
6
|
Jin X, Zou Z, Wu Z, Liu C, Yan S, Peng Y, Lei Z, Zhou Z. Genome-Wide Association Study Reveals Genomic Regions Associated With Molybdenum Accumulation in Wheat Grains. FRONTIERS IN PLANT SCIENCE 2022; 13:854966. [PMID: 35310638 PMCID: PMC8924584 DOI: 10.3389/fpls.2022.854966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Molybdenum (Mo) is an essential micronutrient for almost all organisms. Wheat, a major staple crop worldwide, is one of the main dietary sources of Mo. However, the genetic basis for the variation of Mo content in wheat grains remains largely unknown. Here, a genome-wide association study (GWAS) was performed on the Mo concentration in the grains of 207 wheat accessions to dissect the genetic basis of Mo accumulation in wheat grains. As a result, 77 SNPs were found to be significantly associated with Mo concentration in wheat grains, among which 52 were detected in at least two sets of data and distributed on chromosome 2A, 7B, and 7D. Moreover, 48 out of the 52 common SNPs were distributed in the 726,761,412-728,132,521 bp genomic region of chromosome 2A. Three putative candidate genes, including molybdate transporter 1;2 (TraesCS2A02G496200), molybdate transporter 1;1 (TraesCS2A02G496700), and molybdopterin biosynthesis protein CNX1 (TraesCS2A02G497200), were identified in this region. These findings provide new insights into the genetic basis for Mo accumulation in wheat grains and important information for further functional characterization and breeding to improve wheat grain quality.
Collapse
Affiliation(s)
- Xiaojie Jin
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhaojun Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Congcong Liu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Songxian Yan
- Department of Resources and Environment, Moutai Institute, Renhuai, China
| | - Yanchun Peng
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
7
|
Ali S, Gill RA, Shafique MS, Ahmar S, Kamran M, Zhang N, Riaz M, Nawaz M, Fang R, Ali B, Zhou W. Role of phytomelatonin responsive to metal stresses: An omics perspective and future scenario. FRONTIERS IN PLANT SCIENCE 2022; 13:936747. [PMID: 36147242 PMCID: PMC9486320 DOI: 10.3389/fpls.2022.936747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 05/03/2023]
Abstract
A pervasive melatonin (N-acetyl-5-methoxytryptamine) reveals a crucial role in stress tolerance and plant development. Melatonin (MT) is a unique molecule with multiple phenotypic expressions and numerous actions within the plants. It has been extensively studied in crop plants under different abiotic stresses such as drought, salinity, heat, cold, and heavy metals. Mainly, MT role is appraised as an antioxidant molecule that deals with oxidative stress by scavenging reactive oxygen species (ROS) and modulating stress related genes. It improves the contents of different antioxidant enzyme activities and thus, regulates the redox hemostasis in crop plants. In this comprehensive review, regulatory effects of melatonin in plants as melatonin biosynthesis, signaling pathway, modulation of stress related genes and physiological role of melatonin under different heavy metal stress have been reviewed in detail. Further, this review has discussed how MT regulates different genes/enzymes to mediate defense responses and overviewed the context of transcriptomics and phenomics followed by the metabolomics pathways in crop plants.
Collapse
Affiliation(s)
- Skhawat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | - Sunny Ahmar
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Na Zhang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Muhammad Riaz
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Rouyi Fang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
- Basharat Ali,
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
- *Correspondence: Weijun Zhou,
| |
Collapse
|
8
|
Ishikawa S, Hayashi S, Tanikawa H, Iino M, Abe T, Kuramata M, Feng Z, Fujiwara T, Kamiya T. Tonoplast-Localized OsMOT1;2 Participates in Interorgan Molybdate Distribution in Rice. PLANT & CELL PHYSIOLOGY 2021; 62:913-921. [PMID: 33826734 DOI: 10.1093/pcp/pcab050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/18/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Molybdenum (Mo) is an essential element for plant growth and is utilized by several key enzymes in biological redox processes. Rice assimilates molybdate ions via OsMOT1;1, a transporter with a high affinity for molybdate. However, other systems involved in the molecular transport of molybdate in rice remain unclear. Here, we characterized OsMOT1;2, which shares amino acid sequence similarity with AtMOT1;2 and functions in vacuolar molybdate export. We isolated a rice mutant harboring a complete deletion of OsMOT1;2. This mutant exhibited a significantly lower grain Mo concentration than the wild type (WT), but its growth was not inhibited. The Mo concentration in grains was restored by the introduction of WT OsMOT1;2. The OsMOT1;2-GFP protein was localized to the vacuolar membrane when transiently expressed in rice protoplasts. At the reproductive growth stage of the WT plant, OsMOT1;2 was highly expressed in the 2nd and lower leaf blades and nodes. The deletion of OsMOT1;2 impaired interorgan Mo allocation in aerial parts: relative to the WT, the mutant exhibited decreased Mo levels in the 1st and 2nd leaf blades and grains but increased Mo levels in the 2nd and lower leaf sheaths, nodes and internodes. When the seedlings were exposed to a solution with a high KNO3 concentration in the absence of Mo, the mutant exhibited significantly lower nitrate reductase activity in the shoots than the WT. Our results suggest that OsMOT1;2 plays an essential role in interorgan Mo distribution and molybdoenzyme activity in rice.
Collapse
Affiliation(s)
- Satoru Ishikawa
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8604 Japan
| | - Shimpei Hayashi
- Institute of Agrobiological Sciences, NARO, Tsukuba, 305-8604 Japan
| | - Hachidai Tanikawa
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8604 Japan
| | - Manaka Iino
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8604 Japan
| | - Tadashi Abe
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8604 Japan
| | - Masato Kuramata
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8604 Japan
| | - Zhihang Feng
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
9
|
Cobb JN, Chen C, Shi Y, Maron LG, Liu D, Rutzke M, Greenberg A, Craft E, Shaff J, Paul E, Akther K, Wang S, Kochian LV, Zhang D, Zhang M, McCouch SR. Genetic architecture of root and shoot ionomes in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2613-2637. [PMID: 34018019 PMCID: PMC8277617 DOI: 10.1007/s00122-021-03848-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/29/2021] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE Association analysis for ionomic concentrations of 20 elements identified independent genetic factors underlying the root and shoot ionomes of rice, providing a platform for selecting and dissecting causal genetic variants. Understanding the genetic basis of mineral nutrient acquisition is key to fully describing how terrestrial organisms interact with the non-living environment. Rice (Oryza sativa L.) serves both as a model organism for genetic studies and as an important component of the global food system. Studies in rice ionomics have primarily focused on above ground tissues evaluated from field-grown plants. Here, we describe a comprehensive study of the genetic basis of the rice ionome in both roots and shoots of 6-week-old rice plants for 20 elements using a controlled hydroponics growth system. Building on the wealth of publicly available rice genomic resources, including a panel of 373 diverse rice lines, 4.8 M genome-wide single-nucleotide polymorphisms, single- and multi-marker analysis pipelines, an extensive tome of 321 candidate genes and legacy QTLs from across 15 years of rice genetics literature, we used genome-wide association analysis and biparental QTL analysis to identify 114 genomic regions associated with ionomic variation. The genetic basis for root and shoot ionomes was highly distinct; 78 loci were associated with roots and 36 loci with shoots, with no overlapping genomic regions for the same element across tissues. We further describe the distribution of phenotypic variation across haplotypes and identify candidate genes within highly significant regions associated with sulfur, manganese, cadmium, and molybdenum. Our analysis provides critical insight into the genetic basis of natural phenotypic variation for both root and shoot ionomes in rice and provides a comprehensive resource for dissecting and testing causal genetic variants.
Collapse
Affiliation(s)
- Joshua N Cobb
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
- RiceTec Inc, Alvin, TX, 77511, USA
| | - Chen Chen
- Department of Statistics, Purdue University, West Lafayette, IN, 47907-2054, USA
- Ausy Consulting, Esperantolaan 8, 3001, Heverlee, Belgium
| | - Yuxin Shi
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
| | - Lyza G Maron
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
| | - Danni Liu
- Department of Statistics, Purdue University, West Lafayette, IN, 47907-2054, USA
| | - Mike Rutzke
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
| | - Anthony Greenberg
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
- Bayesic Research, LLC, 452 Sheffield Rd, Ithaca, NY, 14850, USA
| | - Eric Craft
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
| | - Jon Shaff
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, 14853-1901, USA
| | - Edyth Paul
- GeneFlow, Inc, Centreville, VA, 20120, USA
| | - Kazi Akther
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
| | - Shaokui Wang
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
- Department of Plant Breeding, South China Agriculture University, Guangdong, 510642, China
| | - Leon V Kochian
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, 14853-1901, USA
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Dabao Zhang
- Department of Statistics, Purdue University, West Lafayette, IN, 47907-2054, USA
| | - Min Zhang
- Department of Statistics, Purdue University, West Lafayette, IN, 47907-2054, USA.
| | - Susan R McCouch
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA.
| |
Collapse
|
10
|
Root hairs: the villi of plants. Biochem Soc Trans 2021; 49:1133-1146. [PMID: 34013353 DOI: 10.1042/bst20200716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023]
Abstract
Strikingly, evolution shaped similar tubular structures at the µm to mm scale in roots of sessile plants and in small intestines of mobile mammals to ensure an efficient transfer of essential nutrients from 'dead matter' into biota. These structures, named root hairs (RHs) in plants and villi in mammals, numerously stretch into the environment, and extremely enlarge root and intestine surfaces. They are believed to forage for nutrients, and mediate their uptake. While the conceptional understanding of plant RH function in hydromineral nutrition seems clear, experimental evidence presented in textbooks is restricted to a very limited number of reference-nutrients. Here, we make an element-by-element journey through the periodic table and link individual nutrient availabilities to the development, structure/shape and function of RHs. Based on recent developments in molecular biology and the identification of mutants differing in number, length or other shape-related characteristics of RHs in various plant species, we present comprehensive advances in (i) the physiological role of RHs for the uptake of specific nutrients, (ii) the developmental and morphological responses of RHs to element availability and (iii) RH-localized nutrient transport proteins. Our update identifies crucial roles of RHs for hydromineral nutrition, mostly under nutrient and/or water limiting conditions, and highlights the influence of certain mineral availabilities on early stages of RH development, suggesting that nutritional stimuli, as deficiencies in P, Mn or B, can even dominate over intrinsic developmental programs underlying RH differentiation.
Collapse
|
11
|
Watanabe T, Azuma T. Ionomic variation in leaves of 819 plant species growing in the botanical garden of Hokkaido University, Japan. JOURNAL OF PLANT RESEARCH 2021; 134:291-304. [PMID: 33511523 DOI: 10.1007/s10265-021-01254-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Ionomics is the measurement of total metal, metalloid, and nonmetal accumulation in living organisms. Plant ionomics has been applied to various types of research in the last decade. It has been reported that the ionome of a plant is strongly affected by its evolution and by environmental factors. In this study, we analyzed the concentration of 23 elements in leaves of 819 plant species (175 families) growing in the Botanic Garden of Hokkaido University, Japan. Relative variation estimated by the coefficient of variation in foliar concentrations of essential elements among various plant species tended to be low, whereas nickel concentration showed exceptionally large relative variation. By contrast, the relative variation in nonessential elements was high, particularly in sodium, aluminum, and arsenic. The higher relative variations in these element concentrations can be explained by the occurrence of plants that are hyperaccumulators for these elements. Differences in life forms such as herbaceous/woody species, deciduous/evergreen woody species and annual/perennial herbaceous species affected the concentration of several elements in the leaves. These differences were considered to be due to the combined factors including differences in lifespan, growth rate, and cell wall thickness of the leaves. Results of principal component analyses (based on concentration data of essential and nonessential elements in leaf samples) indicated phylogenetic influences on plant ionomes at the family level in Polypodiales, Pinales, Poales, and Ericales. Furthermore, when analyzing correlations among concentrations of all elements in each order and comparing among different orders, the results also suggested that Polypodiales, Pinales, and Poales each had a specific ion homeostasis network.
Collapse
Affiliation(s)
- Toshihiro Watanabe
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, Sapporo, 0608589, Japan.
| | - Takayuki Azuma
- Field Science Center for Northern Biosphere, Botanic Garden, Hokkaido University, Kita-3, Nishi-8, Chuoku, Sapporo, 0600003, Japan
| |
Collapse
|
12
|
Liu L, Shi H, Li S, Sun M, Zhang R, Wang Y, Ren F. Integrated Analysis of Molybdenum Nutrition and Nitrate Metabolism in Strawberry. FRONTIERS IN PLANT SCIENCE 2020; 11:1117. [PMID: 32849687 PMCID: PMC7399381 DOI: 10.3389/fpls.2020.01117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 07/06/2020] [Indexed: 06/02/2023]
Abstract
Molybdenum (Mo) is a component of the Mo cofactor (Moco) of nitrate reductase (NR) and is therefore essential for nitrate metabolism. However, little is known about Mo deficiency phenotypes or about how physiological and molecular mechanisms of Mo uptake and transport influence nitrate uptake and utilization in strawberry. Here, we used physiological and cytological techniques to identify Mo deficiency phenotypes in strawberry. Seedlings cultured with MoO4 2- grew well and exhibited normal microstructure and ultrastructure of leaves and roots. By contrast, seedlings cultivated under Mo-deficient conditions showed yellow leaf blades and ultrastructural changes such as irregular chloroplasts and unclear membrane structures that were similar to the symptoms of nitrogen deficiency. We cloned and analyzed a putative molybdate transporter, FaMOT1, which may encode a molybdate transporter involved in the uptake and translocation of molybdate. Interestingly, the addition of the molybdate analog tungstate led to lower tissue Mo concentrations, reduced the translocation of Mo from roots to shoots, and increased the plants' sensitivity to Mo deficiency. Seedlings cultivated with MoO4 2- altered expression of genes in Moco biosynthesis. As expected, NR activity was higher under sufficient MoO4 2- levels. Furthermore, seedlings grown on Mo-deficient medium exhibited decreased 15NO3 - translocation and lower 15NO3 - use efficiency. These findings represent an important step towards understanding how molybdate transport, concentration, and deficiency symptoms influence nitrate uptake and utilization in strawberry.
Collapse
Affiliation(s)
- Li Liu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongmei Shi
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shaoxuan Li
- Fruit & Tea Institute, Qingdao Academy of Agricultural Sciences, Qingdao, China
| | - Mingyue Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | - Rui Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yongmei Wang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fengshan Ren
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
13
|
Takahashi H. Sulfate transport systems in plants: functional diversity and molecular mechanisms underlying regulatory coordination. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4075-4087. [PMID: 30907420 DOI: 10.1093/jxb/erz132] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Sulfate transporters are integral membrane proteins controlling the flux of sulfate (SO42-) entering the cells and subcellular compartments across the membrane lipid bilayers. Sulfate uptake is a dynamic biological process that occurs in multiple cell layers and organs in plants. In vascular plants, sulfate ions are taken up from the soil environment to the outermost cell layers of roots and horizontally transferred to the vascular tissues for further distribution to distant organs. The amount of sulfate ions being metabolized in the cytosol and chloroplast/plastid or temporarily stored in the vacuole depends on expression levels and functionalities of sulfate transporters bound specifically to the plasma membrane, chloroplast/plastid envelopes, and tonoplast membrane. The entire system for sulfate homeostasis, therefore, requires different types of sulfate transporters to be expressed and coordinately regulated in specific organs, cell types, and subcellular compartments. Transcriptional and post-transcriptional regulatory mechanisms control the expression levels and functions of sulfate transporters to optimize sulfate uptake and internal distribution in response to sulfate availability and demands for synthesis of organic sulfur metabolites. This review article provides an overview of sulfate transport systems and discusses their regulatory aspects investigated in the model plant species Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
14
|
Huang XY, Liu H, Zhu YF, Pinson SRM, Lin HX, Guerinot ML, Zhao FJ, Salt DE. Natural variation in a molybdate transporter controls grain molybdenum concentration in rice. THE NEW PHYTOLOGIST 2019; 221:1983-1997. [PMID: 30339276 DOI: 10.1111/nph.15546] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/07/2018] [Indexed: 05/07/2023]
Abstract
Molybdenum (Mo) is an essential micronutrient for most living organisms, including humans. Cereals such as rice (Oryza sativa) are the major dietary source of Mo. However, little is known about the genetic basis of the variation in Mo content in rice grain. We mapped a quantitative trait locus (QTL) qGMo8 that controls Mo accumulation in rice grain by using a recombinant inbred line population and a backcross introgression line population. We identified a molybdate transporter, OsMOT1;1, as the causal gene for this QTL. OsMOT1;1 exhibits transport activity for molybdate, but not sulfate, when heterogeneously expressed in yeast cells. OsMOT1;1 is mainly expressed in roots and is involved in the uptake and translocation of molybdate under molybdate-limited condition. Knockdown of OsMOT1;1 results in less Mo being translocated to shoots, lower Mo concentration in grains and higher sensitivity to Mo deficiency. We reveal that the natural variation of Mo concentration in rice grains is attributed to the variable expression of OsMOT1;1 due to sequence variation in its promoter. Identification of natural allelic variation in OsMOT1;1 may facilitate the development of rice varieties with Mo-enriched grain for dietary needs and improve Mo nutrition of rice on Mo-deficient soils.
Collapse
Affiliation(s)
- Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu-Fei Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shannon R M Pinson
- USDA-ARS Dale Bumpers National Rice Research Center, Stuttgart, AR, 72160, USA
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai, 200032, China
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - David E Salt
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
15
|
Gil-Díez P, Tejada-Jiménez M, León-Mediavilla J, Wen J, Mysore KS, Imperial J, González-Guerrero M. MtMOT1.2 is responsible for molybdate supply to Medicago truncatula nodules. PLANT, CELL & ENVIRONMENT 2019; 42:310-320. [PMID: 29940074 DOI: 10.1111/pce.13388] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/17/2018] [Indexed: 05/11/2023]
Abstract
Symbiotic nitrogen fixation in legume root nodules requires a steady supply of molybdenum for synthesis of the iron-molybdenum cofactor of nitrogenase. This nutrient has to be provided by the host plant from the soil, crossing several symplastically disconnected compartments through molybdate transporters, including members of the MOT1 family. Medicago truncatula Molybdate Transporter (MtMOT) 1.2 is a Medicago truncatula MOT1 family member located in the endodermal cells in roots and nodules. Immunolocalization of a tagged MtMOT1.2 indicates that it is associated to the plasma membrane and to intracellular membrane systems, where it would be transporting molybdate towards the cytosol, as indicated in yeast transport assays. Loss-of-function mot1.2-1 mutant showed reduced growth compared with wild-type plants when nitrogen fixation was required but not when nitrogen was provided as nitrate. While no effect on molybdenum-dependent nitrate reductase activity was observed, nitrogenase activity was severely affected, explaining the observed difference of growth depending on nitrogen source. This phenotype was the result of molybdate not reaching the nitrogen-fixing nodules, since genetic complementation with a wild-type MtMOT1.2 gene or molybdate-fortification of the nutrient solution, both restored wild-type levels of growth and nitrogenase activity. These results support a model in which MtMOT1.2 would mediate molybdate delivery by the vasculature into the nodules.
Collapse
Affiliation(s)
- Patricia Gil-Díez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Tejada-Jiménez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Campus de Rabanales, Córdoba, Spain
| | - Javier León-Mediavilla
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Jiangqi Wen
- Noble Research Institute, LCC, Ardmore, Oklahoma, 73401, USA
| | | | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencias Agrarias, Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
16
|
From the Eukaryotic Molybdenum Cofactor Biosynthesis to the Moonlighting Enzyme mARC. Molecules 2018; 23:molecules23123287. [PMID: 30545001 PMCID: PMC6321594 DOI: 10.3390/molecules23123287] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/23/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
All eukaryotic molybdenum (Mo) enzymes contain in their active site a Mo Cofactor (Moco), which is formed by a tricyclic pyranopterin with a dithiolene chelating the Mo atom. Here, the eukaryotic Moco biosynthetic pathway and the eukaryotic Moco enzymes are overviewed, including nitrate reductase (NR), sulfite oxidase, xanthine oxidoreductase, aldehyde oxidase, and the last one discovered, the moonlighting enzyme mitochondrial Amidoxime Reducing Component (mARC). The mARC enzymes catalyze the reduction of hydroxylated compounds, mostly N-hydroxylated (NHC), but as well of nitrite to nitric oxide, a second messenger. mARC shows a broad spectrum of NHC as substrates, some are prodrugs containing an amidoxime structure, some are mutagens, such as 6-hydroxylaminepurine and some others, which most probably will be discovered soon. Interestingly, all known mARC need the reducing power supplied by different partners. For the NHC reduction, mARC uses cytochrome b5 and cytochrome b5 reductase, however for the nitrite reduction, plant mARC uses NR. Despite the functional importance of mARC enzymatic reactions, the structural mechanism of its Moco-mediated catalysis is starting to be revealed. We propose and compare the mARC catalytic mechanism of nitrite versus NHC reduction. By using the recently resolved structure of a prokaryotic MOSC enzyme, from the mARC protein family, we have modeled an in silico three-dimensional structure of a eukaryotic homologue.
Collapse
|
17
|
Tejada-Jiménez M, Gil-Díez P, León-Mediavilla J, Wen J, Mysore KS, Imperial J, González-Guerrero M. Medicago truncatula Molybdate Transporter type 1 (MtMOT1.3) is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules under molybdenum deficiency. THE NEW PHYTOLOGIST 2017; 216:1223-1235. [PMID: 28805962 DOI: 10.1111/nph.14739] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/10/2017] [Indexed: 05/17/2023]
Abstract
Molybdenum, as a component of the iron-molybdenum cofactor of nitrogenase, is essential for symbiotic nitrogen fixation. This nutrient has to be provided by the host plant through molybdate transporters. Members of the molybdate transporter family Molybdate Transporter type 1 (MOT1) were identified in the model legume Medicago truncatula and their expression in nodules was determined. Yeast toxicity assays, confocal microscopy, and phenotypical characterization of a Transposable Element from Nicotiana tabacum (Tnt1) insertional mutant line were carried out in the one M. truncatula MOT1 family member specifically expressed in nodules. Among the five MOT1 members present in the M. truncatula genome, MtMOT1.3 is the only one uniquely expressed in nodules. MtMOT1.3 shows molybdate transport capabilities when expressed in yeast. Immunolocalization studies revealed that MtMOT1.3 is located in the plasma membrane of nodule cells. A mot1.3-1 knockout mutant showed impaired growth concomitant with a reduction of nitrogenase activity. This phenotype was rescued by increasing molybdate concentrations in the nutritive solution, or upon addition of an assimilable nitrogen source. Furthermore, mot1.3-1 plants transformed with a functional copy of MtMOT1.3 showed a wild-type-like phenotype. These data are consistent with a model in which MtMOT1.3 is responsible for introducing molybdate into nodule cells, which is later used to synthesize functional nitrogenase.
Collapse
Affiliation(s)
- Manuel Tejada-Jiménez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Patricia Gil-Díez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Javier León-Mediavilla
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Jiangqi Wen
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223, Pozuelo de Alarcón (Madrid), Spain
- Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223, Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|