1
|
Jayakodi M, Lu Q, Pidon H, Rabanus-Wallace MT, Bayer M, Lux T, Guo Y, Jaegle B, Badea A, Bekele W, Brar GS, Braune K, Bunk B, Chalmers KJ, Chapman B, Jørgensen ME, Feng JW, Feser M, Fiebig A, Gundlach H, Guo W, Haberer G, Hansson M, Himmelbach A, Hoffie I, Hoffie RE, Hu H, Isobe S, König P, Kale SM, Kamal N, Keeble-Gagnère G, Keller B, Knauft M, Koppolu R, Krattinger SG, Kumlehn J, Langridge P, Li C, Marone MP, Maurer A, Mayer KFX, Melzer M, Muehlbauer GJ, Murozuka E, Padmarasu S, Perovic D, Pillen K, Pin PA, Pozniak CJ, Ramsay L, Pedas PR, Rutten T, Sakuma S, Sato K, Schüler D, Schmutzer T, Scholz U, Schreiber M, Shirasawa K, Simpson C, Skadhauge B, Spannagl M, Steffenson BJ, Thomsen HC, Tibbits JF, Nielsen MTS, Trautewig C, Vequaud D, Voss C, Wang P, Waugh R, Westcott S, Rasmussen MW, Zhang R, Zhang XQ, Wicker T, Dockter C, Mascher M, Stein N. Structural variation in the pangenome of wild and domesticated barley. Nature 2024; 636:654-662. [PMID: 39537924 PMCID: PMC11655362 DOI: 10.1038/s41586-024-08187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Pangenomes are collections of annotated genome sequences of multiple individuals of a species1. The structural variants uncovered by these datasets are a major asset to genetic analysis in crop plants2. Here we report a pangenome of barley comprising long-read sequence assemblies of 76 wild and domesticated genomes and short-read sequence data of 1,315 genotypes. An expanded catalogue of sequence variation in the crop includes structurally complex loci that are rich in gene copy number variation. To demonstrate the utility of the pangenome, we focus on four loci involved in disease resistance, plant architecture, nutrient release and trichome development. Novel allelic variation at a powdery mildew resistance locus and population-specific copy number gains in a regulator of vegetative branching were found. Expansion of a family of starch-cleaving enzymes in elite malting barleys was linked to shifts in enzymatic activity in micro-malting trials. Deletion of an enhancer motif is likely to change the developmental trajectory of the hairy appendages on barley grains. Our findings indicate that allelic diversity at structurally complex loci may have helped crop plants to adapt to new selective regimes in agricultural ecosystems.
Collapse
Affiliation(s)
- Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Department of Soil and Crop Sciences, Texas A&M AgriLife Research-Dallas, Dallas, TX, USA
| | - Qiongxian Lu
- Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Hélène Pidon
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | | | - Thomas Lux
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Yu Guo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Benjamin Jaegle
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture et Agri-Food Canada, Brandon, Manitoba, Canada
| | - Wubishet Bekele
- Ottawa Research and Development Centre, Agriculture et Agri-Food Canada, Ottawa, Ontario, Canada
| | - Gurcharn S Brar
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Agricultural, Life and Environmental Sciences (ALES), University of Alberta, Edmonton, Alberta, Canada
| | | | - Boyke Bunk
- DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Kenneth J Chalmers
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| | - Brett Chapman
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | | | - Jia-Wu Feng
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Manuel Feser
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Heidrun Gundlach
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Georg Haberer
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Mats Hansson
- Department of Biology, Lund University, Lund, Sweden
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Iris Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Robert E Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Haifei Hu
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Patrick König
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Sandip M Kale
- Carlsberg Research Laboratory, Copenhagen, Denmark
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Nadia Kamal
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabriel Keeble-Gagnère
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Agribio, La Trobe University, Bundoora, Victoria, Australia
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Manuela Knauft
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Ravi Koppolu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
- Department of Primary Industry and Regional Development, Government of Western Australia, Perth, Western Australia, Australia
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Marina P Marone
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Klaus F X Mayer
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | | | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Curtis J Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Shun Sakuma
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kazuhiro Sato
- Kazusa DNA Research Institute, Kisarazu, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Danuta Schüler
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Thomas Schmutzer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | | | | | | | | | - Manuel Spannagl
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | | | - Josquin F Tibbits
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Agribio, La Trobe University, Bundoora, Victoria, Australia
| | | | - Corinna Trautewig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | | | - Cynthia Voss
- Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Penghao Wang
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | - Robbie Waugh
- The James Hutton Institute, Dundee, UK
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Sharon Westcott
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | | | | | - Xiao-Qi Zhang
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| | | | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
2
|
Liew LC, You Y, Auroux L, Oliva M, Peirats-Llobet M, Ng S, Tamiru-Oli M, Berkowitz O, Hong UVT, Haslem A, Stuart T, Ritchie ME, Bassel GW, Lister R, Whelan J, Gouil Q, Lewsey MG. Establishment of single-cell transcriptional states during seed germination. NATURE PLANTS 2024; 10:1418-1434. [PMID: 39256563 PMCID: PMC11410669 DOI: 10.1038/s41477-024-01771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/25/2024] [Indexed: 09/12/2024]
Abstract
Germination involves highly dynamic transcriptional programs as the cells of seeds reactivate and express the functions necessary for establishment in the environment. Individual cell types have distinct roles within the embryo, so must therefore have cell type-specific gene expression and gene regulatory networks. We can better understand how the functions of different cell types are established and contribute to the embryo by determining how cell type-specific transcription begins and changes through germination. Here we describe a temporal analysis of the germinating Arabidopsis thaliana embryo at single-cell resolution. We define the highly dynamic cell type-specific patterns of gene expression and how these relate to changing cellular function as germination progresses. Underlying these are unique gene regulatory networks and transcription factor activity. We unexpectedly discover that most embryo cells transition through the same initial transcriptional state early in germination, even though cell identity has already been established during embryogenesis. Cells later transition to cell type-specific gene expression patterns. Furthermore, our analyses support previous findings that the earliest events leading to the induction of seed germination take place in the vasculature. Overall, our study constitutes a general framework with which to characterize Arabidopsis cell transcriptional states through seed germination, allowing investigation of different genotypes and other plant species whose seed strategies may differ.
Collapse
Affiliation(s)
- Lim Chee Liew
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Yue You
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lucas Auroux
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Marina Oliva
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marta Peirats-Llobet
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Sophia Ng
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Muluneh Tamiru-Oli
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Oliver Berkowitz
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Uyen Vu Thuy Hong
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Asha Haslem
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Tim Stuart
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - George W Bassel
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - James Whelan
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Centre of Excellence in Plant Energy Biology, AgriBio Building, La Trobe University, Melbourne, Victoria, Australia.
- College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China.
| | - Quentin Gouil
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Mathew G Lewsey
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Centre of Excellence in Plants for Space, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Peirats-Llobet M, Yi C, Liew L, Berkowitz O, Narsai R, Lewsey M, Whelan J. Spatially resolved transcriptomic analysis of the germinating barley grain. Nucleic Acids Res 2023; 51:7798-7819. [PMID: 37351575 PMCID: PMC10450182 DOI: 10.1093/nar/gkad521] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/24/2023] Open
Abstract
Seeds are a vital source of calories for humans and a unique stage in the life cycle of flowering plants. During seed germination, the embryo undergoes major developmental transitions to become a seedling. Studying gene expression in individual seed cell types has been challenging due to the lack of spatial information or low throughput of existing methods. To overcome these limitations, a spatial transcriptomics workflow was developed for germinating barley grain. This approach enabled high-throughput analysis of spatial gene expression, revealing specific spatial expression patterns of various functional gene categories at a sub-tissue level. This study revealed over 14 000 genes differentially regulated during the first 24 h after imbibition. Individual genes, such as the aquaporin gene family, starch degradation, cell wall modification, transport processes, ribosomal proteins and transcription factors, were found to have specific spatial expression patterns over time. Using spatial autocorrelation algorithms, we identified auxin transport genes that had increasingly focused expression within subdomains of the embryo over time, suggesting their role in establishing the embryo axis. Overall, our study provides an unprecedented spatially resolved cellular map for barley germination and identifies specific functional genomics targets to better understand cellular restricted processes during germination. The data can be viewed at https://spatial.latrobe.edu.au/.
Collapse
Affiliation(s)
- Marta Peirats-Llobet
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Changyu Yi
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Lim Chee Liew
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Mathew G Lewsey
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Research Centre for Engineering Biology, College of Life Science, Zhejiang University, 718 East Haizhou Road, Haining, Jiaxing, Zhejiang 314400, China
| |
Collapse
|
4
|
Liu H, Micic N, Miller S, Crocoll C, Bjarnholt N. Species-specific dynamics of specialized metabolism in germinating sorghum grain revealed by temporal and tissue-resolved transcriptomics and metabolomics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:807-820. [PMID: 36863218 DOI: 10.1016/j.plaphy.2023.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
Seed germination is crucial for plant productivity, and the biochemical changes during germination affect seedling survival, plant health and yield. While the general metabolism of germination is extensively studied, the role of specialized metabolism is less investigated. We therefore analyzed the metabolism of the defense compound dhurrin during sorghum (Sorghum bicolor) grain germination and early seedling development. Dhurrin is a cyanogenic glucoside, which is catabolized into different bioactive compounds at other stages of plant development, but its fate and role during germination is unknown. We dissected sorghum grain into three different tissues and investigated dhurrin biosynthesis and catabolism at the transcriptomic, metabolomic and biochemical level. We further analyzed transcriptional signature differences of cyanogenic glucoside metabolism between sorghum and barley (Hordeum vulgare), which produces similar specialized metabolites. We found that dhurrin is de novo biosynthesized and catabolized in the growing embryonic axis as well as the scutellum and aleurone layer, two tissues otherwise mainly acknowledged for their involvement in release and transport of general metabolites from the endosperm to the embryonic axis. In contrast, genes encoding cyanogenic glucoside biosynthesis in barley are exclusively expressed in the embryonic axis. Glutathione transferase enzymes (GSTs) are involved in dhurrin catabolism and the tissue-resolved analysis of GST expression identified new pathway candidate genes and conserved GSTs as potentially important in cereal germination. Our study demonstrates a highly dynamic tissue- and species-specific specialized metabolism during cereal grain germination, highlighting the importance of tissue-resolved analyses and identification of specific roles of specialized metabolites in fundamental plant processes.
Collapse
Affiliation(s)
- Huijun Liu
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark; Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| | - Nikola Micic
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark; Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| | - Sara Miller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark; Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| | - Nanna Bjarnholt
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark; Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| |
Collapse
|
5
|
Yue W, Cai K, Xia X, Liu L, Wang J. Genome-wide identification, expression pattern and genetic variation analysis of SWEET gene family in barley reveal the artificial selection of HvSWEET1a during domestication and improvement. FRONTIERS IN PLANT SCIENCE 2023; 14:1137434. [PMID: 36860904 PMCID: PMC9968841 DOI: 10.3389/fpls.2023.1137434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
SWEET (Sugars Will Eventually be Exported Transporter) proteins, an essential class of sugar transporters, are involved in vital biological processes of plant growth and development. To date, systematical analysis of SWEET family in barley (Hordeum vulgare) has not been reported. In this study, we genome-wide identified 23 HvSWEET genes in barley, which were further clustered into four clades by phylogenetic tree. The members belonging to the same clade showed relatively similar gene structures and conserved protein motifs. Synteny analysis confirmed the tandem and segmental duplications among HvSWEET genes during evolution. Expression profile analysis demonstrated that the patterns of HvSWEET genes varied and the gene neofunctionalization occurred after duplications. Yeast complementary assay and subcellular localization in tobacco leaves suggested that HvSWEET1a and HvSWEET4, highly expressed in seed aleurone and scutellum during germination, respectively, functioned as plasma membrane hexose sugar transporters. Furthermore, genetic variation detection indicated that HvSWEET1a was under artificial selection pressure during barley domestication and improvement. The obtained results facilitate our comprehensive understanding and further functional investigations of barley HvSWEET gene family, and also provide a potential candidate gene for de novo domestication breeding of barley.
Collapse
Affiliation(s)
- Wenhao Yue
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Center, Hangzhou, China
| | - Kangfeng Cai
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Center, Hangzhou, China
| | - Xue Xia
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Center, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Lei Liu
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Center, Hangzhou, China
| | - Junmei Wang
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Center, Hangzhou, China
| |
Collapse
|
6
|
Knudsen S, Wendt T, Dockter C, Thomsen HC, Rasmussen M, Egevang Jørgensen M, Lu Q, Voss C, Murozuka E, Østerberg JT, Harholt J, Braumann I, Cuesta-Seijo JA, Kale SM, Bodevin S, Tang Petersen L, Carciofi M, Pedas PR, Opstrup Husum J, Nielsen MTS, Nielsen K, Jensen MK, Møller LA, Gojkovic Z, Striebeck A, Lengeler K, Fennessy RT, Katz M, Garcia Sanchez R, Solodovnikova N, Förster J, Olsen O, Møller BL, Fincher GB, Skadhauge B. FIND-IT: Accelerated trait development for a green evolution. SCIENCE ADVANCES 2022; 8:eabq2266. [PMID: 36001660 PMCID: PMC9401622 DOI: 10.1126/sciadv.abq2266] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Improved agricultural and industrial production organisms are required to meet the future global food demands and minimize the effects of climate change. A new resource for crop and microbe improvement, designated FIND-IT (Fast Identification of Nucleotide variants by droplet DigITal PCR), provides ultrafast identification and isolation of predetermined, targeted genetic variants in a screening cycle of less than 10 days. Using large-scale sample pooling in combination with droplet digital PCR (ddPCR) greatly increases the size of low-mutation density and screenable variant libraries and the probability of identifying the variant of interest. The method is validated by screening variant libraries totaling 500,000 barley (Hordeum vulgare) individuals and isolating more than 125 targeted barley gene knockout lines and miRNA or promoter variants enabling functional gene analysis. FIND-IT variants are directly applicable to elite breeding pipelines and minimize time-consuming technical steps to accelerate the evolution of germplasm.
Collapse
Affiliation(s)
- Søren Knudsen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Toni Wendt
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Magnus Rasmussen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Qiongxian Lu
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Cynthia Voss
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Emiko Murozuka
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Jesper Harholt
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Ilka Braumann
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Jose A. Cuesta-Seijo
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Sandip M. Kale
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Sabrina Bodevin
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Lise Tang Petersen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Pai Rosager Pedas
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Jeppe Opstrup Husum
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Kasper Nielsen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Mikkel K. Jensen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Lillian Ambus Møller
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Zoran Gojkovic
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Alexander Striebeck
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Klaus Lengeler
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Ross T. Fennessy
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Michael Katz
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Rosa Garcia Sanchez
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Jochen Förster
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Ole Olsen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Centre for Synthetic Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Geoffrey B. Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Birgitte Skadhauge
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| |
Collapse
|
7
|
Phillips AL, Ferguson S, Watson-Haigh NS, Jones AW, Borevitz JO, Burton RA, Atwell BJ. The first long-read nuclear genome assembly of Oryza australiensis, a wild rice from northern Australia. Sci Rep 2022; 12:10823. [PMID: 35752642 PMCID: PMC9233661 DOI: 10.1038/s41598-022-14893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Oryza australiensis is a wild rice native to monsoonal northern Australia. The International Oryza Map Alignment Project emphasises its significance as the sole representative of the EE genome clade. Assembly of the O. australiensis genome has previously been challenging due to its high Long Terminal Repeat (LTR) retrotransposon (RT) content. Oxford Nanopore long reads were combined with Illumina short reads to generate a high-quality ~ 858 Mbp genome assembly within 850 contigs with 46× long read coverage. Reference-guided scaffolding increased genome contiguity, placing 88.2% of contigs into 12 pseudomolecules. After alignment to the Oryza sativa cv. Nipponbare genome, we observed several structural variations. PacBio Iso-Seq data were generated for five distinct tissues to improve the functional annotation of 34,587 protein-coding genes and 42,329 transcripts. We also report SNV numbers for three additional O. australiensis genotypes based on Illumina re-sequencing. Although genetic similarity reflected geographical separation, the density of SNVs also correlated with our previous report on variations in salinity tolerance. This genome re-confirms the genetic remoteness of the O. australiensis lineage within the O. officinalis genome complex. Assembly of a high-quality genome for O. australiensis provides an important resource for the discovery of critical genes involved in development and stress tolerance.
Collapse
Affiliation(s)
- Aaron L Phillips
- Department of Food Science, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy Biology, Adelaide, SA, Australia
| | - Scott Ferguson
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Plant Energy Biology, Canberra, ACT, Australia
| | - Nathan S Watson-Haigh
- South Australian Genomics Centre, University of Adelaide, Adelaide, SA, Australia
- Australian Genome Research Facility, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Ashley W Jones
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Plant Energy Biology, Canberra, ACT, Australia
| | - Justin O Borevitz
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Plant Energy Biology, Canberra, ACT, Australia
| | - Rachel A Burton
- Department of Food Science, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy Biology, Adelaide, SA, Australia
| | - Brian J Atwell
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Wani UM, Wani ZA, Koul AM, Amin A, Shah BA, Farooq F, Qadri RA. Isolation of high-quality RNA for high throughput applications from secondary metabolite-rich Crocus sativus L. BMC Res Notes 2022; 15:214. [PMID: 35725612 PMCID: PMC9208216 DOI: 10.1186/s13104-022-06095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Objective Isolating high-quality RNA is a basic requirement while performing high throughput sequencing, microarray, and various other molecular investigations. However, it has been quite challenging to isolate RNA with absolute purity from plants like Crocus sativus that are rich in secondary metabolites, polysaccharides, and other interfering compounds which often irreversibly co-precipitate with the RNA. While many methods have been proposed for RNA extraction including CTAB, TriZol, and SDS-based methods, which invariably yield less and poor quality RNA and hence it necessitated the isolation of high-quality RNA suitable for high throughput applications. Results In the present study we made certain adjustments to the available protocols including modifications in the extraction buffer itself and the procedure employed. Our method led to the isolation of clear and non-dispersive total RNA with an RNA Integrity Number (RIN) value greater than 7.5. The quality of the RNA was further assessed by qPCR-based amplification of mRNA and mature miRNAs such as Cs-MIR166c and Cs-MIR396a. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-06095-z.
Collapse
Affiliation(s)
- Umer Majeed Wani
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, 190 006, Jammu and Kashmir, India
| | - Zubair Ahmad Wani
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, 190 006, Jammu and Kashmir, India
| | - Aabid M Koul
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, 190 006, Jammu and Kashmir, India
| | - Asif Amin
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, 190 006, Jammu and Kashmir, India
| | - Basit Amin Shah
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, 190 006, Jammu and Kashmir, India
| | - Faizah Farooq
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, 190 006, Jammu and Kashmir, India
| | - Raies A Qadri
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, 190 006, Jammu and Kashmir, India.
| |
Collapse
|
9
|
Cueff G, Rajjou L, Hoang HH, Bailly C, Corbineau F, Leymarie J. In-Depth Proteomic Analysis of the Secondary Dormancy Induction by Hypoxia or High Temperature in Barley Grains. PLANT & CELL PHYSIOLOGY 2022; 63:550-564. [PMID: 35139224 DOI: 10.1093/pcp/pcac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
In barley, incubation of primary dormant (D1) grains on water under conditions that do not allow germination, i.e. 30°C in air and 15°C or 30°C in 5% O2, induces a secondary dormancy (D2) expressed as a loss of the ability to germinate at 15°C in air. The aim of this study was to compare the proteome of barley embryos isolated from D1 grains and D2 ones after induction of D2 at 30°C or in hypoxia at 15°C or 30°C. Total soluble proteins were analyzed by 2DE gel-based proteomics, allowing the selection of 130 differentially accumulated proteins (DAPs) among 1,575 detected spots. According to the protein abundance profiles, the DAPs were grouped into six abundance-based similarity clusters. Induction of D2 is mainly characterized by a down-accumulation of proteins belonging to cluster 3 (storage proteins, proteases, alpha-amylase inhibitors and histone deacetylase HD2) and an up-accumulation of proteins belonging to cluster 4 (1-Cys peroxiredoxin, lipoxygenase2 and caleosin). The correlation-based network analysis for each cluster highlighted central protein hub. In addition, most of genes encoding DAPs display high co-expression degree with 19 transcription factors. Finally, this work points out that similar molecular events accompany the modulation of dormancy cycling by both temperature and oxygen, including post-translational, transcriptional and epigenetic regulation.
Collapse
Affiliation(s)
- Gwendal Cueff
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Route de Saint-Cyr, Versailles 78000, France
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Route de Saint-Cyr, Versailles 78000, France
| | - Hai Ha Hoang
- UMR7622 CNRS-UPMC Biologie du Développement, Biologie des semences, Sorbonne Université, boîte 24, 4 place Jussieu, Paris 75005, France
| | - Christophe Bailly
- UMR7622 CNRS-UPMC Biologie du Développement, Biologie des semences, Sorbonne Université, boîte 24, 4 place Jussieu, Paris 75005, France
| | - Françoise Corbineau
- UMR7622 CNRS-UPMC Biologie du Développement, Biologie des semences, Sorbonne Université, boîte 24, 4 place Jussieu, Paris 75005, France
| | - Juliette Leymarie
- UMR7622 CNRS-UPMC Biologie du Développement, Biologie des semences, Sorbonne Université, boîte 24, 4 place Jussieu, Paris 75005, France
- Univ Paris Est Creteil, CNRS, INRAE, IRD, IEES Paris-Institut d'Ecologie et des Sciences de l'Environnement de Paris, 61 avenue du Général de Gaulle, Créteil 94010, France
| |
Collapse
|
10
|
Liao D, An R, Wei J, Wang D, Li X, Qi J. Transcriptome profiles revealed molecular mechanisms of alternating temperatures in breaking the epicotyl morphophysiological dormancy of Polygonatum sibiricum seeds. BMC PLANT BIOLOGY 2021; 21:370. [PMID: 34384392 PMCID: PMC8359049 DOI: 10.1186/s12870-021-03147-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/27/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND To adapt seasonal climate changes under natural environments, Polygonatum sibiricum seeds have a long period of epicotyl morphophysiological dormancy, which limits their wide-utilization in the large-scale plant progeny propagation. It has been proven that the controlled consecutive warm and cold temperature treatments can effectively break and shorten this seed dormancy status to promote its successful underdeveloped embryo growth, radicle emergence and shoot emergence. To uncover the molecular basis of seed dormancy release and seedling establishment, a SMRT full-length sequencing analysis and an Illumina sequencing-based comparison of P. sibiricum seed transcriptomes were combined to investigate transcriptional changes during warm and cold stratifications. RESULTS A total of 87,251 unigenes, including 46,255 complete sequences, were obtained and 77,148 unigenes (88.42%) were annotated. Gene expression analyses at four stratification stages identified a total of 27,059 DEGs in six pairwise comparisons and revealed that more differentially expressed genes were altered at the Corm stage than at the other stages, especially Str_S and Eme. The expression of 475 hormone metabolism genes and 510 hormone signaling genes was modulated during P. sibiricum seed dormancy release and seedling emergence. One thousand eighteen transcription factors and five hundred nineteen transcription regulators were detected differentially expressed during stratification and germination especially at Corm and Str_S stages. Of 1246 seed dormancy/germination known DEGs, 378, 790, and 199 DEGs were associated with P. sibiricum MD release (Corm vs Seed), epicotyl dormancy release (Str_S vs Corm), and the seedling establishment after the MPD release (Eme vs Str_S). CONCLUSIONS A comparison with dormancy- and germination-related genes in Arabidopsis thaliana seeds revealed that genes related to multiple plant hormones, chromatin modifiers and remodelers, DNA methylation, mRNA degradation, endosperm weakening, and cell wall structures coordinately mediate P. sibiricum seed germination, epicotyl dormancy release, and seedling establishment. These results provided the first insights into molecular regulation of P. sibiricum seed epicotyl morphophysiological dormancy release and seedling emergence. They may form the foundation of future studies regarding gene interaction and the specific roles of individual tissues (endosperm, newly-formed corm) in P. sibiricum bulk seed dormancy.
Collapse
Affiliation(s)
- Dengqun Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ruipeng An
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- College of Life Science, Hebei Agricultural University, Baoding, 071000, Hebei, China
- The Key Laboratory of Plant Physiology and Molecular Pathology, Hebei province, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Dongmei Wang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, Hebei, China
- The Key Laboratory of Plant Physiology and Molecular Pathology, Hebei province, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Xianen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jianjun Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
11
|
Betts NS, Collins HM, Shirley NJ, Cuesta-Seijo JA, Schwerdt JG, Phillips RJ, Finnie C, Fincher GB, Dockter C, Skadhauge B, Bulone V. Identification and spatio-temporal expression analysis of barley genes that encode putative modular xylanolytic enzymes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110792. [PMID: 34034860 DOI: 10.1016/j.plantsci.2020.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Arabinoxylans are cell wall polysaccharides whose re-modelling and degradation during plant development are mediated by several classes of xylanolytic enzymes. Here, we present the identification and new annotation of twelve putative (1,4)-β-xylanase and six β-xylosidase genes, and their spatio-temporal expression patterns during vegetative and reproductive growth of barley (Hordeum vulgare cv. Navigator). The encoded xylanase proteins are all predicted to contain a conserved carbohydrate-binding module (CBM) and a catalytic glycoside hydrolase (GH) 10 domain. Additional domains in some xylanases define three discrete phylogenetic clades: one clade contains proteins with an additional N-terminal signal sequence, while another clade contains proteins with multiple CBMs. Homology modelling revealed that all fifteen xylanases likely contain a third domain, a β-sandwich folded from two non-contiguous sequence segments that bracket the catalytic GH domain, which may explain why the full length protein is required for correct folding of the active enzyme. Similarly, predicted xylosidase proteins share a highly conserved domain structure, each with an N-terminal signal peptide, a split GH 3 domain, and a C-terminal fibronectin-like domain. Several genes appear to be ubiquitously expressed during barley growth and development, while four newly annotated xylanase and xylosidase genes are expressed at extremely high levels, which may be of broader interest for industrial applications where cell wall degradation is necessary.
Collapse
Affiliation(s)
- Natalie S Betts
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia.
| | - Helen M Collins
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia.
| | - Neil J Shirley
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia
| | - Jose A Cuesta-Seijo
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Julian G Schwerdt
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia.
| | - Renee J Phillips
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia.
| | - Christine Finnie
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Geoffrey B Fincher
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia.
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Birgitte Skadhauge
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Vincent Bulone
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia; Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden.
| |
Collapse
|
12
|
Drygin YF, Butenko KO, Gasanova TV. Environmentally friendly method of RNA isolation. Anal Biochem 2021; 620:114113. [PMID: 33524410 DOI: 10.1016/j.ab.2021.114113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 11/16/2022]
Abstract
The diversity of organisms, tissues and cells is so great that, to date, no universal method for RNA extraction from these biological materials exist. The RNA isolation technique with a mix of guanidine thiocyanate, phenol, and chloroform is most widely used. Extraction and purification of RNA methods using selling guanidinium-phenol (TRIzol)-based and silica-based column kits have limitations on toxicity, or RNA isolation, particularly for plants, and scaling. The agents' toxicity is particularly relevant when employing for mass analysis in practice while gaining RNA preparations during the pandemics, epizootics, and epiphytotic. In modern diagnostics of infections at the molecular level, powerful RT-PCR technology is used, which amplifies the detection of RNA pathogens by hundreds of millions of times. We proposed obtaining RNA samples from viruses, bacteria, and plants for the reverse transcription reactions with a subsequent amplification of cDNAs by the polymerase chain reaction using potent and nontoxic chaotropic agent ammonium trichloroacetate. The method works in the analytical and preparative range and can be useful in the case of extraordinary circumstances during mass infections. Potentially this method can be adapted for obtaining RNA samples ready for the RT-isothermal PCR in the field.
Collapse
Affiliation(s)
- Yuri F Drygin
- Laboratory of Molecular Biology of Viruses, Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation; Laboratory of Immunochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Konstantin O Butenko
- Laboratory of Immunochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation; Chair of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Tatiana V Gasanova
- Chair of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
13
|
Gomez-Sanchez A, Santamaria ME, Gonzalez-Melendi P, Muszynska A, Matthess C, Martinez M, Diaz I. Repression of barley cathepsins, HvPap-19 and HvPap-1, differentially alters grain composition and delays germination. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3474-3485. [PMID: 33454762 DOI: 10.1093/jxb/erab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
During barley germination, cysteine proteases are essential in the mobilization of storage compounds providing peptides and amino acids to sustain embryo growth until photosynthesis is completely established. Knockdown barley plants, generated by artificial miRNA, for the cathepsins B- and F-like HvPap-19 and HvPap-1 genes, respectively, showed less cysteine protease activities and consequently lower protein degradation. The functional redundancy between proteases triggered an enzymatic compensation associated with an increase in serine protease activities in both knockdown lines, which was not sufficient to maintain germination rates and behaviour. Concomitantly, these transgenic lines showed alterations in the accumulation of protein and carbohydrates in the grain. While the total amount of protein increased in both transgenic lines, the starch content decreased in HvPap-1 knockdown lines and the sucrose concentration was reduced in silenced HvPap-19 grains. Consequently, phenotypes of HvPap-1 and HvPap-19 artificial miRNA lines showed a delay in the grain germination process. These data demonstrate the potential of exploring the properties of barley proteases for selective modification and use in brewing or in the livestock feeding industry.
Collapse
Affiliation(s)
- Andrea Gomez-Sanchez
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid (UPM), Spain
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid (UPM), Spain
| | - Pablo Gonzalez-Melendi
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid (UPM), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| | - Aleksandra Muszynska
- Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse, Gatersleben, Germany
| | - Christiane Matthess
- Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse, Gatersleben, Germany
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid (UPM), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid (UPM), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| |
Collapse
|
14
|
Betts NS, Dockter C, Berkowitz O, Collins HM, Hooi M, Lu Q, Burton RA, Bulone V, Skadhauge B, Whelan J, Fincher GB. Transcriptional and biochemical analyses of gibberellin expression and content in germinated barley grain. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1870-1884. [PMID: 31819970 PMCID: PMC7242073 DOI: 10.1093/jxb/erz546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/08/2019] [Indexed: 05/17/2023]
Abstract
Mobilization of reserves in germinated cereal grains is critical for early seedling vigour, global crop productivity, and hence food security. Gibberellins (GAs) are central to this process. We have developed a spatio-temporal model that describes the multifaceted mechanisms of GA regulation in germinated barley grain. The model was generated using RNA sequencing transcript data from tissues dissected from intact, germinated grain, which closely match measurements of GA hormones and their metabolites in those tissues. The data show that successful grain germination is underpinned by high concentrations of GA precursors in ungerminated grain, the use of independent metabolic pathways for the synthesis of several bioactive GAs during germination, and a capacity to abort bioactive GA biosynthesis. The most abundant bioactive form is GA1, which is synthesized in the scutellum as a glycosyl conjugate that diffuses to the aleurone, where it stimulates de novo synthesis of a GA3 conjugate and GA4. Synthesis of bioactive GAs in the aleurone provides a mechanism that ensures the hormonal signal is relayed from the scutellum to the distal tip of the grain. The transcript data set of 33 421 genes used to define GA metabolism is available as a resource to analyse other physiological processes in germinated grain.
Collapse
Affiliation(s)
- Natalie S Betts
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia
| | | | - Oliver Berkowitz
- School of Life Science and ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Melbourne, VIC, Australia
| | - Helen M Collins
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia
| | - Michelle Hooi
- Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Qiongxian Lu
- Carlsberg Research Laboratory, Copenhagen V, Denmark
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia
| | - Vincent Bulone
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia
- Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | | | - James Whelan
- School of Life Science and ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Melbourne, VIC, Australia
| | - Geoffrey B Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia
- Correspondence:
| |
Collapse
|
15
|
Rico D, Peñas E, García MDC, Martínez-Villaluenga C, Rai DK, Birsan RI, Frias J, Martín-Diana AB. Sprouted Barley Flour as a Nutritious and Functional Ingredient. Foods 2020; 9:E296. [PMID: 32150936 PMCID: PMC7142429 DOI: 10.3390/foods9030296] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
The increasing demand for healthy food products has promoted the use of germinated seeds to produce functional flours. In this study, germination conditions were optimized in barley grains with the aim to produce flours with high nutritional and biofunctional potential using response surface methodology (RSM). The impact of germination time (0.8-6 days) and temperature (12-20 °C) on barley quality was studied. Non-germinated barley was used as the control. The content of vitamins B1, B2 and C, and proteins increased notably after germination, especially at longer times, while levels of fat, carbohydrates, fibre, and b-glucan were reduced. Total phenolic compounds, g-aminobutyric acid and antioxidant activity determined by Oxygen Radical Absorbance Capacity increased between 2-fold and 4-fold during sprouting, depending on germination conditions and this increase was more pronounced at higher temperatures (16-20 °C) and longer times (5-6 days). Procyanidin B and ferulic acid were the main phenolics in the soluble and insoluble fraction, respectively. Procyanidin B levels decreased while bound ferulic acid content increased during germination. Germinated barley flours exhibited lower brightness and a higher glycemic index than the control ones. This study shows that germination at 16 °C for 3.5 days was the optimum process to obtain nutritious and functional barley flours. Under these conditions, sprouts retained 87% of the initial b-glucan content, and exhibited levels of ascorbic acid, riboflavin, phenolic compounds and GABA between 1.4-fold and 2.5-fold higher than the non-sprouted grain.
Collapse
Affiliation(s)
- Daniel Rico
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, 47171 Valladolid, Spain; (D.R.); (M.d.C.G.); (A.B.M.-D.)
| | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (C.M.-V.); (J.F.)
| | - María del Carmen García
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, 47171 Valladolid, Spain; (D.R.); (M.d.C.G.); (A.B.M.-D.)
| | - Cristina Martínez-Villaluenga
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (C.M.-V.); (J.F.)
| | - Dilip K. Rai
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, 15 Dublin, Ireland; (D.K.R.); (R.I.B.)
| | - Rares I. Birsan
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, 15 Dublin, Ireland; (D.K.R.); (R.I.B.)
| | - Juana Frias
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (C.M.-V.); (J.F.)
| | - Ana B. Martín-Diana
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, 47171 Valladolid, Spain; (D.R.); (M.d.C.G.); (A.B.M.-D.)
| |
Collapse
|
16
|
Liew LC, Narsai R, Wang Y, Berkowitz O, Whelan J, Lewsey MG. Temporal tissue-specific regulation of transcriptomes during barley (Hordeum vulgare) seed germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:700-715. [PMID: 31628689 DOI: 10.1111/tpj.14574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/09/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
The distinct functions of individual cell types require cells to express specific sets of genes. The germinating seed is an excellent model to study genome regulation between cell types since the majority of the transcriptome is differentially expressed in a short period, beginning from a uniform, metabolically inactive state. In this study, we applied laser-capture microdissection RNA-sequencing to small numbers of cells from the plumule, radicle tip and scutellum of germinating barley seeds every 8 h, over a 48 h time course. Tissue-specific gene expression was notably common; 25% (910) of differentially expressed transcripts in plumule, 34% (1876) in radicle tip and 41% (2562) in scutellum were exclusive to that organ. We also determined that tissue-specific storage of transcripts occurs during seed development and maturation. Co-expression of genes had strong spatiotemporal structure, with most co-expression occurring within one organ and at a subset of specific time points during germination. Overlapping and distinct enrichment of functional categories were observed in the tissue-specific profiles. We identified candidate transcription factors amongst these that may be regulators of spatiotemporal gene expression programs. Our findings contribute to the broader goal of generating an integrative model that describes the structure and function of individual cells within seeds during germination.
Collapse
Affiliation(s)
- Lim Chee Liew
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Yan Wang
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Mathew G Lewsey
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
| |
Collapse
|
17
|
Insights on the Proteases Involved in Barley and Wheat Grain Germination. Int J Mol Sci 2019; 20:ijms20092087. [PMID: 31035313 PMCID: PMC6539298 DOI: 10.3390/ijms20092087] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 01/11/2023] Open
Abstract
Seed storage proteins must be hydrolyzed by proteases to deliver the amino acids essential for embryo growth and development. Several groups of proteases involved in this process have been identified in both the monocot and the dicot species. This review focuses on the implication of proteases during germination in two cereal species, barley and wheat, where proteolytic control during the germination process has considerable economic importance. Formerly, the participation of proteases during grain germination was inferred from reports of proteolytic activities, the expression of individual genes, or the presence of individual proteins and showed a prominent role for papain-like and legumain-like cysteine proteases and for serine carboxypeptidases. Nowadays, the development of new technologies and the release of the genomic sequences of wheat and barley have permitted the application of genome-scale approaches, such as those used in functional genomics and proteomics. Using these approaches, the repertoire of proteases known to be involved in germination has increased and includes members of distinct protease families. The development of novel techniques based on shotgun proteomics, activity-based protein profiling, and comparative and structural genomics will help to achieve a general view of the proteolytic process during germination.
Collapse
|
18
|
Robinson AJ, Tamiru M, Salby R, Bolitho C, Williams A, Huggard S, Fisch E, Unsworth K, Whelan J, Lewsey MG. AgriSeqDB: an online RNA-Seq database for functional studies of agriculturally relevant plant species. BMC PLANT BIOLOGY 2018; 18:200. [PMID: 30231853 PMCID: PMC6146512 DOI: 10.1186/s12870-018-1406-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/30/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND The genome-wide expression profile of genes in different tissues/cell types and developmental stages is a vital component of many functional genomic studies. Transcriptome data obtained by RNA-sequencing (RNA-Seq) is often deposited in public databases that are made available via data portals. Data visualization is one of the first steps in assessment and hypothesis generation. However, these databases do not typically include visualization tools and establishing one is not trivial for users who are not computational experts. This, as well as the various formats in which data is commonly deposited, makes the processes of data access, sharing and utility more difficult. Our goal was to provide a simple and user-friendly repository that meets these needs for data-sets from major agricultural crops. DESCRIPTION AgriSeqDB ( https://expression.latrobe.edu.au/agriseqdb ) is a database for viewing, analysing and interpreting developmental and tissue/cell-specific transcriptome data from several species, including major agricultural crops such as wheat, rice, maize, barley and tomato. The disparate manner in which public transcriptome data is often warehoused and the challenge of visualizing raw data are both major hurdles to data reuse. The popular eFP browser does an excellent job of presenting transcriptome data in an easily interpretable view, but previous implementation has been mostly on a case-by-case basis. Here we present an integrated visualisation database of transcriptome data-sets from six species that did not previously have public-facing visualisations. We combine the eFP browser, for gene-by-gene investigation, with the Degust browser, which enables visualisation of all transcripts across multiple samples. The two visualisation interfaces launch from the same point, enabling users to easily switch between analysis modes. The tools allow users, even those without bioinformatics expertise, to mine into data-sets and understand the behaviour of transcripts of interest across samples and time. We have also incorporated an additional graphic download option to simplify incorporation into presentations or publications. CONCLUSION Powered by eFP and Degust browsers, AgriSeqDB is a quick and easy-to-use platform for data analysis and visualization in five crops and Arabidopsis. Furthermore, it provides a tool that makes it easy for researchers to share their data-sets, promoting research collaborations and data-set reuse.
Collapse
Affiliation(s)
| | - Muluneh Tamiru
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Rachel Salby
- Library, La Trobe University, Melbourne, Australia
| | | | | | | | - Eva Fisch
- Library, La Trobe University, Melbourne, Australia
| | | | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Mathew G. Lewsey
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Australia
| |
Collapse
|
19
|
Lin W, Huang W, Ning S, Wang X, Ye Q, Wei D. De novo characterization of the Baphicacanthus cusia(Nees) Bremek transcriptome and analysis of candidate genes involved in indican biosynthesis and metabolism. PLoS One 2018; 13:e0199788. [PMID: 29975733 PMCID: PMC6033399 DOI: 10.1371/journal.pone.0199788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/13/2018] [Indexed: 12/19/2022] Open
Abstract
Baphicacanthus cusia (Nees) Bremek is an herb widely used for the clinical treatment of colds, fever, and influenza in Traditional Chinese Medicine. The roots, stems and leaves can be used as natural medicine, in which indigo and indirubin are two main active ingredients. In this study, quantification of indigo, indirubin, indican and adenosine among various tissues of B. cusia was conducted using HPLC-DAD. Leaves have significantly higher contents than stems and roots (380.66, 315.15, 20,978.26, 4323.15 μg/g in leaves, 306.36, 71.71, 3,056.78, 139.45 μg/g in stems, and 9.31, 7.82, 170.45, 197.48 μg/g in roots, respectively). De novo transcriptome sequencing of B. cusia was performed for the first time. The sequencing yielded 137,216,248, 122,837,394 and 140,240,688 clean reads from leaves, stems and roots respectively, which were assembled into 51,381 unique sequences. A total of 33,317 unigenes could be annotated using the databases of Nr, Swiss-Prot, KEGG and KOG. These analyses provided a detailed view of the enzymes involved in indican backbone biosynthesis, such as cytochrome P450, UDP-glycosyltransferase, glucosidase and tryptophan synthase. Analysis results showed that tryptophan synthase was the candidate gene involved in the tissue-specific biosynthesis of indican. We also detected sixteen types of simple sequence repeats in RNA-Seq data for use in future molecular mark assisted breeding studies. The results will be helpful in further analysis of B. cusia functional genomics, especially in increasing biosynthesis of indican through biotechnological approaches and metabolic regulation.
Collapse
Affiliation(s)
- Wenjin Lin
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Wei Huang
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuju Ning
- School of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohua Wang
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Ye
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Daozhi Wei
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail:
| |
Collapse
|
20
|
Lim WL, Collins HM, Singh RR, Kibble NAJ, Yap K, Taylor J, Fincher GB, Burton RA. Method for hull-less barley transformation and manipulation of grain mixed-linkage beta-glucan. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:382-396. [PMID: 29247595 DOI: 10.1111/jipb.12625] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/13/2017] [Indexed: 05/18/2023]
Abstract
Hull-less barley is increasingly offering scope for breeding grains with improved characteristics for human nutrition; however, recalcitrance of hull-less cultivars to transformation has limited the use of these varieties. To overcome this limitation, we sought to develop an effective transformation system for hull-less barley using the cultivar Torrens. Torrens yielded a transformation efficiency of 1.8%, using a modified Agrobacterium transformation method. This method was used to over-express genes encoding synthases for the important dietary fiber component, (1,3;1,4)-β-glucan (mixed-linkage glucan), primarily present in starchy endosperm cell walls. Over-expression of the HvCslF6 gene, driven by an endosperm-specific promoter, produced lines where mixed-linkage glucan content increased on average by 45%, peaking at 70% in some lines, with smaller increases in transgenic HvCslH1 grain. Transgenic HvCslF6 lines displayed alterations where grain had a darker color, were more easily crushed than wild type and were smaller. This was associated with an enlarged cavity in the central endosperm and changes in cell morphology, including aleurone and sub-aleurone cells. This work provides proof-of-concept evidence that mixed-linkage glucan content in hull-less barley grain can be increased by over-expression of the HvCslF6 gene, but also indicates that hull-less cultivars may be more sensitive to attempts to modify cell wall composition.
Collapse
Affiliation(s)
- Wai Li Lim
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Helen M Collins
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Rohan R Singh
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Natalie A J Kibble
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Kuok Yap
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Jillian Taylor
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Geoffrey B Fincher
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Rachel A Burton
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
21
|
Liu L, Han R, Yu N, Zhang W, Xing L, Xie D, Peng D. A method for extracting high-quality total RNA from plant rich in polysaccharides and polyphenols using Dendrobium huoshanense. PLoS One 2018; 13:e0196592. [PMID: 29715304 PMCID: PMC5929529 DOI: 10.1371/journal.pone.0196592] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Acquiring high quality RNA is the basis of plant molecular biology research, plant genetics and other physiological investigations. At present, a large number of nucleotide isolation methods have been exploited or modified, such as commercial kits, CTAB, SDS methods and so on. Due to the nature of different plants, extraction methods vary. Moreover, efficiency of certain approach cannot be guaranteed due to composition of different plants and extracting high quality RNA from plants rich in polysaccharides and polyphenols are often difficult. The physical and chemical properties of polysaccharides which are similar to nucleic acids and other secondary metabolites will be coprecipitated with RNA irreversibly. Therefore, how to remove polysaccharides and other secondary metabolites during RNA extraction is the primary challenge. Dendrobium huoshanense is an Orchidaceae perennial herb that is rich in polysaccharides and other secondary metabolites. By using D. huoshanense as the subject, we improved the method originated from CHAN and made it suitable for plants containing high amount of polysaccharides and polyphenols. The extracted total RNA was clear and non-dispersive, with good integrity and no obvious contamination with DNA and other impurities. And it was also evaluated by gel electrophoresis, nucleic acid quantitative detector and PCR assessment. Thus, as a simple approach, it is suitable and efficient in RNA isolation for plants rich in polysaccharides and polyphenols.
Collapse
Affiliation(s)
- Lulu Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Innovative Team from Colleges for Scientific Research's Platform—The Innovative Team in Researching the Key Technologies Concerning the Integration of Processing Chinese Medicine Decoction Pieces in Producing Area, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lihua Xing
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Dongmei Xie
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- * E-mail:
| |
Collapse
|
22
|
|
23
|
Betts NS, Wilkinson LG, Khor SF, Shirley NJ, Lok F, Skadhauge B, Burton RA, Fincher GB, Collins HM. Morphology, Carbohydrate Distribution, Gene Expression, and Enzymatic Activities Related to Cell Wall Hydrolysis in Four Barley Varieties during Simulated Malting. FRONTIERS IN PLANT SCIENCE 2017; 8:1872. [PMID: 29163597 PMCID: PMC5670874 DOI: 10.3389/fpls.2017.01872] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/13/2017] [Indexed: 05/27/2023]
Abstract
Many biological processes, such as cell wall hydrolysis and the mobilisation of nutrient reserves from the starchy endosperm, require stringent regulation to successfully malt barley (Hordeum vulgare) grain in an industrial context. Much of the accumulated knowledge defining these events has been collected from individual, unrelated experiments, and data have often been extrapolated from Petri dish germination, rather than malting, experiments. Here, we present comprehensive morphological, biochemical, and transcript data from a simulated malt batch of the three elite malting cultivars Admiral, Navigator, and Flagship, and the feed cultivar Keel. Activities of lytic enzymes implicated in cell wall and starch depolymerisation in germinated grain have been measured, and transcript data for published cell wall hydrolytic genes have been provided. It was notable that Flagship and Keel exhibited generally similar patterns of enzyme and transcript expression, but exhibited a few key differences that may partially explain Flagship's superior malting qualities. Admiral and Navigator also showed matching expression patterns for these genes and enzymes, but the patterns differed from those of Flagship and Keel, despite Admiral and Navigator having Keel as a common ancestor. Overall (1,3;1,4)-β-glucanase activity differed between cultivars, with lower enzyme levels and concomitantly higher amounts of (1,3;1,4)-β-glucan in the feed variety, Keel, at the end of malting. Transcript levels of the gene encoding (1,3;1,4)-β-glucanase isoenzyme EI were almost three times higher than those encoding isoenzyme EII, suggesting a previously unrecognised importance for isoenzyme EI during malting. Careful morphological examination showed that scutellum epithelial cells in mature dry grain are elongated but expand no further as malting progresses, in contrast to equivalent cells in other cereals, perhaps demonstrating a morphological change in this critical organ over generations of breeding selection. Fluorescent immuno-histochemical labelling revealed the presence of pectin in the nucellus and, for the first time, significant amounts of callose throughout the starchy endosperm of mature grain.
Collapse
Affiliation(s)
- Natalie S. Betts
- Australian Research Council Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, University of Adelaide, Waite, Glen Osmond, SA, Australia
| | - Laura G. Wilkinson
- Australian Research Council Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, University of Adelaide, Waite, Glen Osmond, SA, Australia
| | - Shi F. Khor
- Australian Research Council Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, University of Adelaide, Waite, Glen Osmond, SA, Australia
| | - Neil J. Shirley
- Australian Research Council Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, University of Adelaide, Waite, Glen Osmond, SA, Australia
| | - Finn Lok
- Carlsberg Research Laboratory, Copenhagen, Denmark
| | | | - Rachel A. Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, University of Adelaide, Waite, Glen Osmond, SA, Australia
| | - Geoffrey B. Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, University of Adelaide, Waite, Glen Osmond, SA, Australia
| | - Helen M. Collins
- Australian Research Council Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, University of Adelaide, Waite, Glen Osmond, SA, Australia
| |
Collapse
|