1
|
Bacheva V, Rockwell FE, Salmon JB, Woodson JD, Frank MH, Stroock AD. A unified framework for hydromechanical signaling can explain transmission of local and long-distance signals in plants. Proc Natl Acad Sci U S A 2025; 122:e2422692122. [PMID: 40261931 DOI: 10.1073/pnas.2422692122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/05/2025] [Indexed: 04/24/2025] Open
Abstract
Local wounding in plants triggers signals that travel locally within the wounded leaf or systemically through the vasculature to distant leaves. Our understanding of the mechanisms of initiation and propagation of this ubiquitous class of signals remains incomplete. Here, we develop a unifying framework based on poroelastic dynamics to study two coupled biophysical processes-propagation of pressure changes and transmission of chemical elicitors via mass flows driven by these pressure changes-as potential mechanisms for the initiation and propagation of wound-induced signals. We show that rapid pressure changes in the xylem can transmit mechanical information across the plant, while their coupling with neighboring nonvascular tissue drives swelling and mass flow that can transport chemical elicitors to distant leaves. We confront predictions from our model with measurements of signaling dynamics in several species to show that i) the poroelastic model can capture the observed dynamics of purely mechanical changes (swelling of distant leaves) induced by wounding; ii) advection and diffusion of hypothetical elicitors with mass flows induced by poroelastic relaxations can explain distant cellular responses observed with gene-encoded reporters of cytosolic calcium concentration and electrical signals; and iii) poroelastic diffusion of pressure changes around local wounds in nonvascular tissue matches the observed cytosolic calcium signals and represents an alternative hypothesis relative to molecular diffusion of chemical elicitors. This framework provides a valuable foundation for assessing mechanisms of signal transmission and for designing future experiments to elucidate factors involved in signal initiation, propagation, and target elicitation.
Collapse
Affiliation(s)
- Vesna Bacheva
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853
| | - Fulton E Rockwell
- Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Jean-Baptiste Salmon
- CNRS, Syensqo, Laboratoire du futur, UMR 5258, Université de Bordeaux, Pessac F-33600, France
| | - Jesse D Woodson
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721
| | - Margaret H Frank
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Abraham D Stroock
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
2
|
Sylvain Bonfanti L, Arbelet-Bonnin D, Filaine F, Lalanne C, Renault A, Meimoun P, Laurenti P, Grésillon E, Bouteau F. Toxic and signaling effects of the anaesthetic lidocaine on rice cultured cells. PLANT SIGNALING & BEHAVIOR 2024; 19:2388443. [PMID: 39116108 PMCID: PMC11312988 DOI: 10.1080/15592324.2024.2388443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Most studies on anesthesia focus on the nervous system of mammals due to their interest in medicine. The fact that any life form can be anaesthetised is often overlooked although anesthesia targets ion channel activities that exist in all living beings. This study examines the impact of lidocaine on rice (Oryza sativa). It reveals that the cellular responses observed in rice are analogous to those documented in animals, encompassing direct effects, the inhibition of cellular responses, and the long-distance transmission of electrical signals. We show that in rice cells, lidocaine has a cytotoxic effect at a concentration of 1%, since it induces programmed reactive oxygen species (ROS) and caspase-like-dependent cell death, as already demonstrated in animal cells. Additionally, lidocaine causes changes in membrane ion conductance and induces a sharp reduction in electrical long-distance signaling following seedlings leaves burning. Finally, lidocaine was shown to inhibit osmotic stress-induced cell death and the regulation of Ca2+ homeostasis. Thus, lidocaine treatment in rice and tobacco (Nicotiana benthamiana) seedlings induces not only cellular but also systemic effects similar to those induced in mammals.
Collapse
Affiliation(s)
- Lucia Sylvain Bonfanti
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
- Université Paris-Cité, Laboratoire Dynamiques sociales et recomposition des espaces (LADYSS UMR 7533), Paris, France
| | - Delphine Arbelet-Bonnin
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Frédéric Filaine
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Christophe Lalanne
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Aurélien Renault
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Patrice Meimoun
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
- Sorbonne Université, Paris, France
| | - Patrick Laurenti
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Etienne Grésillon
- Université Paris-Cité, Laboratoire Dynamiques sociales et recomposition des espaces (LADYSS UMR 7533), Paris, France
| | - François Bouteau
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| |
Collapse
|
3
|
Minorsky PV. The "plant neurobiology" revolution. PLANT SIGNALING & BEHAVIOR 2024; 19:2345413. [PMID: 38709727 PMCID: PMC11085955 DOI: 10.1080/15592324.2024.2345413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024]
Abstract
The 21st-century "plant neurobiology" movement is an amalgam of scholars interested in how "neural processes", broadly defined, lead to changes in plant behavior. Integral to the movement (now called plant behavioral biology) is a triad of historically marginalized subdisciplines, namely plant ethology, whole plant electrophysiology and plant comparative psychology, that set plant neurobiology apart from the mainstream. A central tenet held by these "triad disciplines" is that plants are exquisitely sensitive to environmental perturbations and that destructive experimental manipulations rapidly and profoundly affect plant function. Since destructive measurements have been the norm in plant physiology, much of our "textbook knowledge" concerning plant physiology is unrelated to normal plant function. As such, scientists in the triad disciplines favor a more natural and holistic approach toward understanding plant function. By examining the history, philosophy, sociology and psychology of the triad disciplines, this paper refutes in eight ways the criticism that plant neurobiology presents nothing new, and that the topics of plant neurobiology fall squarely under the purview of mainstream plant physiology. It is argued that although the triad disciplines and mainstream plant physiology share the common goal of understanding plant function, they are distinct in having their own intellectual histories and epistemologies.
Collapse
Affiliation(s)
- Peter V. Minorsky
- Department of Natural Sciences, Mercy University, Dobbs Ferry, NY, USA
| |
Collapse
|
4
|
Sukhova E, Yudina L, Kozlova E, Sukhov V. Preliminary Treatment by Exogenous 24-Epibrassinolide Influences Burning-Induced Electrical Signals and Following Photosynthetic Responses in Pea ( Pisum sativum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:3292. [PMID: 39683085 DOI: 10.3390/plants13233292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Long-distance electrical signals (ESs) are an important mechanism of induction of systemic adaptive changes in plants under local action of stressors. ES-induced changes in photosynthesis and transpiration play a key role in these responses increasing plant tolerance to action of adverse factors. As a result, investigating ways of regulating electrical signaling and ES-induced physiological responses is a perspective problem of plant electrophysiology. The current work was devoted to the analysis of the influence of preliminary treatment (spraying) by exogenous 24-epibrassinolide (EBL) on burning-induced ESs and following photosynthetic and transpiratory responses in pea (Pisum sativum L.). It was shown that preliminary treatment by 1 µM EBL (1 day before the experiment) increased the amplitude of burning-induced ESs (variation potentials) in leaves and decreased the time of propagation of these signals from the stem to the leaf. The EBL treatment weakly influenced the magnitudes of burning-induced decreasing the photosynthetic linear electron flow and CO2 assimilation, but these changes were accelerated. Burning-induced changes in the cyclic electron flow around photosystem I were also affected by the EBL treatment. The influence of the EBL treatment on burning-induced changes in the stomatal water conductance was not observed. Our results show that preliminary treatment by EBL can be used for the modification of electrical signals and following photosynthetic responses in plants.
Collapse
Affiliation(s)
- Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Lyubov Yudina
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Elizaveta Kozlova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Mudrilov M, Ladeynova M, Vetrova Y, Vodeneev V. Analysis of the Mechanisms Underlying the Specificity of the Variation Potential Induced by Different Stimuli. PLANTS (BASEL, SWITZERLAND) 2024; 13:2896. [PMID: 39458843 PMCID: PMC11511009 DOI: 10.3390/plants13202896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Plants are able to perceive diverse environmental factors and form an appropriate systemic functional response. Systemic responses are induced by stimulus-specific long-distance signals that carry information about the stimulus. Variation potential is proposed as a candidate for the role of such a signal. Here, we focus on the mechanisms that determine the specificity of the variation potential under the action of different local stimuli. Local stimuli such as heating, burning and wounding cause variation potential, the parameters of which differ depending on the type of stimulus. It was found that the stimulus-specific features of the hydraulic signal monitored by changes in leaf thickness and variation potential, such as a greater amplitude upon heating and burning and a significant amplitude decrement upon burning and wounding, were similar. The main features of these signals are the greater amplitude upon heating and burning, and a significant amplitude decrement upon burning and wounding. Together with the temporal correspondence of signal propagation, this evidence indicates a role for the hydraulic signal in the induction of stimulus-specific variation potential. Experiments using mechanosensitive channel inhibitors have demonstrated that the hydraulic signal contributes more to the induction of the variation potential in the case of rapidly growing stimuli, such as burning and wounding, than in the case of gradual heating. For thermal stimuli (gradual heating and burning), a greater contribution, compared to wounding, of the chemical signal related to reactive oxygen species to the induction of the variation potential was demonstrated. Thus, the specificity of the parameters of the variation potential is determined by the different contributions of hydraulic and chemical signals.
Collapse
Affiliation(s)
| | | | | | - Vladimir Vodeneev
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
6
|
Yudina L, Popova A, Zolin Y, Grebneva K, Sukhova E, Sukhov V. Local Action of Moderate Heating and Illumination Induces Electrical Signals, Suppresses Photosynthetic Light Reactions, and Increases Drought Tolerance in Wheat Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1173. [PMID: 38732388 PMCID: PMC11085084 DOI: 10.3390/plants13091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Local actions of stressors induce electrical signals (ESs), influencing photosynthetic processes and probably increasing tolerance to adverse factors in higher plants. However, the participation of well-known depolarization ESs (action potentials and variation potentials) in these responses seems to be rare under natural conditions, particularly in the case of variation potentials, which are induced by extreme stressors (e.g., burning). Earlier, we showed that the local action of moderate heating and illumination can induce low-amplitude hyperpolarization ESs influencing photosynthetic light reactions in wheat plants cultivated in a vegetation room. In the current work, we analyzed ESs and changes in photosynthetic light reactions and drought tolerance that were induced by a combination of moderate heating and illumination in wheat plants cultivated under open-ground conditions. It was shown that the local heating and illumination induced low-amplitude ESs, and the type of signal (depolarization or hyperpolarization) was dependent on distance from the irritated zone and wheat age. Induction of depolarization ESs was not accompanied by photosynthetic changes in plants under favorable conditions or under weak drought. In contrast, the changes were observed after induction of these signals under moderate drought. Increasing drought tolerance was also observed in the last case. Thus, low-amplitude ESs can participate in photosynthetic regulation and increase tolerance to drought in plants cultivated under open-ground conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (L.Y.); (A.P.); (Y.Z.); (K.G.); (E.S.)
| |
Collapse
|
7
|
Sukhova EM, Yudina LM, Sukhov VS. Changes in Activity of the Plasma Membrane H+-ATPase as a Link Between Formation of Electrical Signals and Induction of Photosynthetic Responses in Higher Plants. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1488-1503. [PMID: 38105019 DOI: 10.1134/s0006297923100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 12/19/2023]
Abstract
Action of numerous adverse environmental factors on higher plants is spatially-heterogenous; it means that induction of a systemic adaptive response requires generation and transmission of the stress signals. Electrical signals (ESs) induced by local action of stressors include action potential, variation potential, and system potential and they participate in formation of fast physiological changes at the level of a whole plant, including photosynthetic responses. Generation of these ESs is accompanied by the changes in activity of H+-ATPase, which is the main system of electrogenic proton transport across the plasma membrane. Literature data show that the changes in H+-ATPase activity and related changes in intra- and extracellular pH play a key role in the ES-induced inactivation of photosynthesis in non-irritated parts of plants. This inactivation is caused by both suppression of CO2 influx into mesophyll cells in leaves, which can be induced by the apoplast alkalization and, probably, cytoplasm acidification, and direct influence of acidification of stroma and lumen of chloroplasts on light and, probably, dark photosynthetic reactions. The ES-induced inactivation of photosynthesis results in the increasing tolerance of photosynthetic machinery to the action of adverse factors and probability of the plant survival.
Collapse
Affiliation(s)
- Ekaterina M Sukhova
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - Lyubov' M Yudina
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - Vladimir S Sukhov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia.
| |
Collapse
|
8
|
Gao YQ, Jimenez-Sandoval P, Tiwari S, Stolz S, Wang J, Glauser G, Santiago J, Farmer EE. Ricca's factors as mobile proteinaceous effectors of electrical signaling. Cell 2023; 186:1337-1351.e20. [PMID: 36870332 PMCID: PMC10098372 DOI: 10.1016/j.cell.2023.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/26/2022] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
Leaf-feeding insects trigger high-amplitude, defense-inducing electrical signals called slow wave potentials (SWPs). These signals are thought to be triggered by the long-distance transport of low molecular mass elicitors termed Ricca's factors. We sought mediators of leaf-to-leaf electrical signaling in Arabidopsis thaliana and identified them as β-THIOGLUCOSIDE GLUCOHYDROLASE 1 and 2 (TGG1 and TGG2). SWP propagation from insect feeding sites was strongly attenuated in tgg1 tgg2 mutants and wound-response cytosolic Ca2+ increases were reduced in these plants. Recombinant TGG1 fed into the xylem elicited wild-type-like membrane depolarization and Ca2+ transients. Moreover, TGGs catalyze the deglucosidation of glucosinolates. Metabolite profiling revealed rapid wound-induced breakdown of aliphatic glucosinolates in primary veins. Using in vivo chemical trapping, we found evidence for roles of short-lived aglycone intermediates generated by glucosinolate hydrolysis in SWP membrane depolarization. Our findings reveal a mechanism whereby organ-to-organ protein transport plays a major role in electrical signaling.
Collapse
Affiliation(s)
- Yong-Qiang Gao
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pedro Jimenez-Sandoval
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Satyam Tiwari
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Stéphanie Stolz
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jing Wang
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Julia Santiago
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
9
|
Gao YQ, Farmer EE. Osmoelectric siphon models for signal and water dispersal in wounded plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1207-1220. [PMID: 36377754 PMCID: PMC9923213 DOI: 10.1093/jxb/erac449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
When attacked by herbivores, plants produce electrical signals which can activate the synthesis of the defense mediator jasmonate. These wound-induced membrane potential changes can occur in response to elicitors that are released from damaged plant cells. We list plant-derived elicitors of membrane depolarization. These compounds include the amino acid l-glutamate (Glu), a potential ligand for GLUTAMATE RECEPTOR-LIKE (GLR) proteins that play roles in herbivore-activated electrical signaling. How are membrane depolarization elicitors dispersed in wounded plants? In analogy with widespread turgor-driven cell and organ movements, we propose osmoelectric siphon mechanisms for elicitor transport. These mechanisms are based on membrane depolarization leading to cell water shedding into the apoplast followed by membrane repolarization and water uptake. We discuss two related mechanisms likely to occur in response to small wounds and large wounds that trigger leaf-to-leaf electrical signal propagation. To reduce jasmonate pathway activation, a feeding insect must cut through tissues cleanly. If their mandibles become worn, the herbivore is converted into a robust plant defense activator. Our models may therefore help to explain why numerous plants produce abrasives which can blunt herbivore mouthparts. Finally, if verified, the models we propose may be generalizable for cell to cell transport of water and pathogen-derived regulators.
Collapse
Affiliation(s)
- Yong-Qiang Gao
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
10
|
Suda H, Toyota M. Integration of long-range signals in plants: A model for wound-induced Ca 2+, electrical, ROS, and glutamate waves. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102270. [PMID: 35926395 DOI: 10.1016/j.pbi.2022.102270] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Plants show long-range cytosolic Ca2+ signal transduction in response to wounding. Recent advances in in vivo imaging techniques have helped visualize spatiotemporal dynamics of the systemic Ca2+ signals and provided new insights into underlying molecular mechanisms, in which ion channels of the GLUTAMATE RECEPTOR-LIKE (GLR) family are critical for the sensory system. These, along with MECHANOSENSITIVE CHANNEL OF SMALL CONDUCTANCE-LIKE 10 (MSL10) and Arabidopsis H+-ATPase (AHA1) regulate the propagation system. In addition, membrane potential, reactive oxygen species (ROS), and glutamate waves operate in parallel to long-range signal transduction. We summarize these findings and introduce a model that integrates long-range Ca2+, electrical, ROS, and glutamate signals in systemic wound responses.
Collapse
Affiliation(s)
- Hiraku Suda
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama, Japan
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama, Japan; Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Kyoto, Japan; Department of Botany, University of Wisconsin-Madison, WI, USA.
| |
Collapse
|
11
|
Gorgues L, Li X, Maurel C, Martinière A, Nacry P. Root osmotic sensing from local perception to systemic responses. STRESS BIOLOGY 2022; 2:36. [PMID: 37676549 PMCID: PMC10442022 DOI: 10.1007/s44154-022-00054-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/28/2022] [Indexed: 09/08/2023]
Abstract
Plants face a constantly changing environment, requiring fine tuning of their growth and development. Plants have therefore developed numerous mechanisms to cope with environmental stress conditions. One striking example is root response to water deficit. Upon drought (which causes osmotic stress to cells), plants can among other responses alter locally their root system architecture (hydropatterning) or orientate their root growth to optimize water uptake (hydrotropism). They can also modify their hydraulic properties, metabolism and development coordinately at the whole root and plant levels. Upstream of these developmental and physiological changes, plant roots must perceive and transduce signals for water availability. Here, we review current knowledge on plant osmotic perception and discuss how long distance signaling can play a role in signal integration, leading to the great phenotypic plasticity of roots and plant development.
Collapse
Affiliation(s)
- Lucille Gorgues
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | - Xuelian Li
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | - Christophe Maurel
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | | | - Philippe Nacry
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| |
Collapse
|
12
|
Allan C, Morris RJ, Meisrimler CN. Encoding, transmission, decoding, and specificity of calcium signals in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3372-3385. [PMID: 35298633 PMCID: PMC9162177 DOI: 10.1093/jxb/erac105] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Calcium acts as a signal and transmits information in all eukaryotes. Encoding machinery consisting of calcium channels, stores, buffers, and pumps can generate a variety of calcium transients in response to external stimuli, thus shaping the calcium signature. Mechanisms for the transmission of calcium signals have been described, and a large repertoire of calcium binding proteins exist that can decode calcium signatures into specific responses. Whilst straightforward as a concept, mysteries remain as to exactly how such information processing is biochemically implemented. Novel developments in imaging technology and genetically encoded sensors (such as calcium indicators), in particular for multi-signal detection, are delivering exciting new insights into intra- and intercellular calcium signaling. Here, we review recent advances in characterizing the encoding, transmission, and decoding mechanisms, with a focus on long-distance calcium signaling. We present technological advances and computational frameworks for studying the specificity of calcium signaling, highlight current gaps in our understanding and propose techniques and approaches for unravelling the underlying mechanisms.
Collapse
Affiliation(s)
- Claudia Allan
- University of Canterbury, School of Biological Science, Christchurch, New Zealand
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich, UK
| | | |
Collapse
|
13
|
Moe-Lange J, Gappel NM, Machado M, Wudick MM, Sies CSA, Schott-Verdugo SN, Bonus M, Mishra S, Hartwig T, Bezrutczyk M, Basu D, Farmer EE, Gohlke H, Malkovskiy A, Haswell ES, Lercher MJ, Ehrhardt DW, Frommer WB, Kleist TJ. Interdependence of a mechanosensitive anion channel and glutamate receptors in distal wound signaling. SCIENCE ADVANCES 2021; 7:eabg4298. [PMID: 34516872 PMCID: PMC8442888 DOI: 10.1126/sciadv.abg4298] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Glutamate has dual roles in metabolism and signaling; thus, signaling functions must be isolatable and distinct from metabolic fluctuations, as seen in low-glutamate domains at synapses. In plants, wounding triggers electrical and calcium (Ca2+) signaling, which involve homologs of mammalian glutamate receptors. The hydraulic dispersal and squeeze-cell hypotheses implicate pressure as a key component of systemic signaling. Here, we identify the stretch-activated anion channel MSL10 as necessary for proper wound-induced electrical and Ca2+ signaling. Wound gene induction, genetics, and Ca2+ imaging indicate that MSL10 acts in the same pathway as the glutamate receptor–like proteins (GLRs). Analogous to mammalian NMDA glutamate receptors, GLRs may serve as coincidence detectors gated by the combined requirement for ligand binding and membrane depolarization, here mediated by stretch activation of MSL10. This study provides a molecular genetic basis for a role of mechanical signal perception and the transmission of long-distance electrical and Ca2+ signals in plants.
Collapse
Affiliation(s)
- Jacob Moe-Lange
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Department of Plant Biology, Carnegie Science, Stanford, CA 94305, USA
| | - Nicoline M. Gappel
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Mackenzie Machado
- Department of Plant Biology, Carnegie Science, Stanford, CA 94305, USA
| | - Michael M. Wudick
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Cosima S. A. Sies
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Stephan N. Schott-Verdugo
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, CL-3460000 Talca, Chile
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52425 Jülich, Germany
| | - Michele Bonus
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Swastik Mishra
- Computational Cell Biology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas Hartwig
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Margaret Bezrutczyk
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Debarati Basu
- NSF Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, Box 1137, One Brookings Drive, St. Louis, MO 63130, USA
| | - Edward E. Farmer
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52425 Jülich, Germany
| | - Andrey Malkovskiy
- Department of Plant Biology, Carnegie Science, Stanford, CA 94305, USA
| | - Elizabeth S. Haswell
- NSF Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, Box 1137, One Brookings Drive, St. Louis, MO 63130, USA
| | - Martin J. Lercher
- Computational Cell Biology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - David W. Ehrhardt
- Department of Plant Biology, Carnegie Science, Stanford, CA 94305, USA
| | - Wolf B. Frommer
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Corresponding author.
| | - Thomas J. Kleist
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Electrical Signals, Plant Tolerance to Actions of Stressors, and Programmed Cell Death: Is Interaction Possible? PLANTS 2021; 10:plants10081704. [PMID: 34451749 PMCID: PMC8401951 DOI: 10.3390/plants10081704] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023]
Abstract
In environmental conditions, plants are affected by abiotic and biotic stressors which can be heterogenous. This means that the systemic plant adaptive responses on their actions require long-distance stress signals including electrical signals (ESs). ESs are based on transient changes in the activities of ion channels and H+-ATP-ase in the plasma membrane. They influence numerous physiological processes, including gene expression, phytohormone synthesis, photosynthesis, respiration, phloem mass flow, ATP content, and many others. It is considered that these changes increase plant tolerance to the action of stressors; the effect can be related to stimulation of damages of specific molecular structures. In this review, we hypothesize that programmed cell death (PCD) in plant cells can be interconnected with ESs. There are the following points supporting this hypothesis. (i) Propagation of ESs can be related to ROS waves; these waves are a probable mechanism of PCD initiation. (ii) ESs induce the inactivation of photosynthetic dark reactions and activation of respiration. Both responses can also produce ROS and, probably, induce PCD. (iii) ESs stimulate the synthesis of stress phytohormones (e.g., jasmonic acid, salicylic acid, and ethylene) which are known to contribute to the induction of PCD. (iv) Generation of ESs accompanies K+ efflux from the cytoplasm that is also a mechanism of induction of PCD. Our review argues for the possibility of PCD induction by electrical signals and shows some directions of future investigations in the field.
Collapse
|
15
|
Stochastic Spatial Heterogeneity in Activities of H +-ATP-Ases in Electrically Connected Plant Cells Decreases Threshold for Cooling-Induced Electrical Responses. Int J Mol Sci 2021; 22:ijms22158254. [PMID: 34361018 PMCID: PMC8348073 DOI: 10.3390/ijms22158254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022] Open
Abstract
H+-ATP-ases, which support proton efflux through the plasma membrane, are key molecular transporters for electrogenesis in cells of higher plants. Initial activities of the transporters can influence the thresholds of generation of electrical responses induced by stressors and modify other parameters of these responses. Previously, it was theoretically shown that the stochastic heterogeneity of individual cell thresholds for electrical responses in a system of electrically connected neuronal cells can decrease the total threshold of the system (“diversity-induced resonance”, DIR). In the current work, we tested a hypothesis about decreasing the thresholds of generation of cooling-induced electrical responses in a system of electrically connected plant cells with increasing stochastic spatial heterogeny in the initial activities of H+-ATP-ases in these cells. A two-dimensional model of the system of electrically connected excitable cells (simple imitation of plant leaf), which was based on a model previously developed in our works, was used for the present investigation. Simulation showed that increasing dispersion in the distribution of initial activities of H+-ATP-ases between cells decreased the thresholds of generation of cooling-induced electrical responses. In addition, the increasing weakly influenced the amplitudes of electrical responses. Additional analysis showed two different mechanisms of the revealed effect. The increasing spatial heterogeneity in activities of H+-ATP-ases induced a weak positive shift of the membrane potential at rest. The shift decreased the threshold of electrical response generation. However, the decreased threshold induced by increasing the H+-ATP-ase activity heterogeneity was also observed after the elimination of the positive shift. The result showed that the “DIR-like” mechanism also participated in the revealed effect. Finally, we showed that the standard deviation of the membrane potentials before the induction of action potentials could be used for the estimation of thresholds of cooling-induced plant electrical responses. Thus, spatial heterogeneity in the initial activities of H+-ATP-ases can be a new regulatory mechanism influencing the generation of electrical responses in plants under actions of stressors.
Collapse
|
16
|
Li JH, Fan LF, Zhao DJ, Zhou Q, Yao JP, Wang ZY, Huang L. Plant electrical signals: A multidisciplinary challenge. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153418. [PMID: 33887526 DOI: 10.1016/j.jplph.2021.153418] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 05/15/2023]
Abstract
Plant electrical signals, an early event in the plant-stimulus interaction, rapidly transmit information generated by the stimulus to other organs, and even the whole plant, to promote the corresponding response and trigger a regulatory cascade. In recent years, many promising state-of-the-art technologies applicable to study plant electrophysiology have emerged. Research focused on expression of genes associated with electrical signals has also proliferated. We propose that it is appropriate for plant electrical signals to be considered in the form of a "plant electrophysiological phenotype". This review synthesizes research on plant electrical signals from a novel, interdisciplinary perspective, which is needed to improve the efficient aggregation and use of plant electrical signal data and to expedite interpretation of plant electrical signals.
Collapse
Affiliation(s)
- Jin-Hai Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, 100083, China
| | - Li-Feng Fan
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, 100083, China
| | - Dong-Jie Zhao
- Institute for Future (IFF), Qingdao University, Qingdao, 266071, China
| | - Qiao Zhou
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing, 100083, China
| | - Jie-Peng Yao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing, 100083, China
| | - Zhong-Yi Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, 100083, China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing, 100083, China.
| | - Lan Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing, 100083, China.
| |
Collapse
|
17
|
Mallatt J, Blatt MR, Draguhn A, Robinson DG, Taiz L. Debunking a myth: plant consciousness. PROTOPLASMA 2021; 258:459-476. [PMID: 33196907 PMCID: PMC8052213 DOI: 10.1007/s00709-020-01579-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/22/2020] [Indexed: 05/18/2023]
Abstract
Claims that plants have conscious experiences have increased in recent years and have received wide coverage, from the popular media to scientific journals. Such claims are misleading and have the potential to misdirect funding and governmental policy decisions. After defining basic, primary consciousness, we provide new arguments against 12 core claims made by the proponents of plant consciousness. Three important new conclusions of our study are (1) plants have not been shown to perform the proactive, anticipatory behaviors associated with consciousness, but only to sense and follow stimulus trails reactively; (2) electrophysiological signaling in plants serves immediate physiological functions rather than integrative-information processing as in nervous systems of animals, giving no indication of plant consciousness; (3) the controversial claim of classical Pavlovian learning in plants, even if correct, is irrelevant because this type of learning does not require consciousness. Finally, we present our own hypothesis, based on two logical assumptions, concerning which organisms possess consciousness. Our first assumption is that affective (emotional) consciousness is marked by an advanced capacity for operant learning about rewards and punishments. Our second assumption is that image-based conscious experience is marked by demonstrably mapped representations of the external environment within the body. Certain animals fit both of these criteria, but plants fit neither. We conclude that claims for plant consciousness are highly speculative and lack sound scientific support.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho, Moscow, ID 83844 USA
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ UK
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany
| | - David G. Robinson
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Lincoln Taiz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA 95064 USA
| |
Collapse
|
18
|
Mallatt J, Blatt MR, Draguhn A, Robinson DG, Taiz L. Debunking a myth: plant consciousness. PROTOPLASMA 2021. [PMID: 33196907 DOI: 10.1007/s00709-026-01579-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Claims that plants have conscious experiences have increased in recent years and have received wide coverage, from the popular media to scientific journals. Such claims are misleading and have the potential to misdirect funding and governmental policy decisions. After defining basic, primary consciousness, we provide new arguments against 12 core claims made by the proponents of plant consciousness. Three important new conclusions of our study are (1) plants have not been shown to perform the proactive, anticipatory behaviors associated with consciousness, but only to sense and follow stimulus trails reactively; (2) electrophysiological signaling in plants serves immediate physiological functions rather than integrative-information processing as in nervous systems of animals, giving no indication of plant consciousness; (3) the controversial claim of classical Pavlovian learning in plants, even if correct, is irrelevant because this type of learning does not require consciousness. Finally, we present our own hypothesis, based on two logical assumptions, concerning which organisms possess consciousness. Our first assumption is that affective (emotional) consciousness is marked by an advanced capacity for operant learning about rewards and punishments. Our second assumption is that image-based conscious experience is marked by demonstrably mapped representations of the external environment within the body. Certain animals fit both of these criteria, but plants fit neither. We conclude that claims for plant consciousness are highly speculative and lack sound scientific support.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho, Moscow, ID, 83844, USA.
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| | - David G Robinson
- Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| | - Lincoln Taiz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| |
Collapse
|
19
|
Influence of Local Burning on Difference Reflectance Indices Based on 400-700 nm Wavelengths in Leaves of Pea Seedlings. PLANTS 2021; 10:plants10050878. [PMID: 33925343 PMCID: PMC8146762 DOI: 10.3390/plants10050878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 01/05/2023]
Abstract
Local damage (e.g., burning) induces a variation potential (VP), which is an important electrical signal in higher plants. A VP propagates into undamaged parts of the plant and influences numerous physiological processes, including photosynthesis. Rapidly increasing plant tolerance to stressors is likely to be a result of the physiological changes. Thus, developing methods of revealing VP-induced physiological changes can be used for the remote sensing of plant systemic responses to local damage. Previously, we showed that burning-induced VP influenced a photochemical reflectance index in pea leaves, but the influence of the electrical signals on other reflectance indices was not investigated. In this study, we performed a complex analysis of the influence of VP induction by local burning on difference reflectance indices based on 400–700 nm wavelengths in leaves of pea seedlings. Heat maps of the significance of local burning-induced changes in the reflectance indices and their correlations with photosynthetic parameters were constructed. Large spectral regions with significant changes in these indices after VP induction were revealed. Most changes were strongly correlated to photosynthetic parameters. Some indices, which can be potentially effective for revealing local burning-induced photosynthetic changes, are separately shown. Our results show that difference reflectance indices based on 400–700 nm wavelengths can potentially be used for the remote sensing of plant systemic responses induced by local damages and subsequent propagation of VPs.
Collapse
|
20
|
Johns S, Hagihara T, Toyota M, Gilroy S. The fast and the furious: rapid long-range signaling in plants. PLANT PHYSIOLOGY 2021; 185:694-706. [PMID: 33793939 PMCID: PMC8133610 DOI: 10.1093/plphys/kiaa098] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/08/2020] [Indexed: 05/04/2023]
Abstract
Plants possess a systemic signaling system whereby local stimuli can lead to rapid, plant-wide responses. In addition to the redistribution of chemical messengers that range from RNAs and peptides to hormones and metabolites, a communication system acting through the transmission of electrical, Ca2+, reactive oxygen species and potentially even hydraulic signals has also been discovered. This latter system can propagate signals across many cells each second and researchers are now beginning to uncover the molecular machineries behind this rapid communications network. Thus, elements such as the reactive oxygen species producing NAPDH oxidases and ion channels of the two pore channel, glutamate receptor-like and cyclic nucleotide gated families are all required for the rapid propagation of these signals. Upon arrival at their distant targets, these changes trigger responses ranging from the production of hormones, to changes in the levels of primary metabolites and shifts in patterns of gene expression. These systemic responses occur within seconds to minutes of perception of the initial, local signal, allowing for the rapid deployment of plant-wide responses. For example, an insect starting to chew on just a single leaf triggers preemptive antiherbivore defenses throughout the plant well before it has a chance to move on to the next leaf on its menu.
Collapse
Affiliation(s)
- Sarah Johns
- Department of Botany, University of Wisconsin–Madison, Birge Hall, 430 Lincoln Drive, Madison, WI 35706, USA
| | - Takuma Hagihara
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Simon Gilroy
- Department of Botany, University of Wisconsin–Madison, Birge Hall, 430 Lincoln Drive, Madison, WI 35706, USA
- Author for communication:
| |
Collapse
|
21
|
Li M, Du H, Zhou L, Chai S, Wang M. Analysis on the applicability of modified polyvinyl alcohol (MPA) for temporary controlling the dust from soil in construction site. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:422-432. [PMID: 33179991 DOI: 10.1080/10962247.2020.1844341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/19/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Dust from construction field is one of sources for the atmosphere particulate pollution. In this study, a solidifying material, modified polyvinyl alcohol (MPA), is used to control the dust from soil. The controlling efficiency of the MPA is evaluated based on its anti-wind and anti-rain erosion performance under different conditions such as soil types, spraying amount of MPA, slope morphologies (gradients and unevenness), and treated time. Results indicate that the MPA can bind well with the soil particles and it is able to strengthen the integrity of the surface. Soil treated with MPA exhibits good anti-wind effects, and PM10 and PM2.5 in environment do not increase even under a nine-grade wind erosion. Soil treated with MPA can maintain the surface integrity under a rainstorm, and there are no erosion traces and mud after rain erosion. The application of MPA has no limitation in terms of soil type, soil slope, and surface morphology, and thus, it has a wide applied prospect in engineering.Implications: In order to solve the air pollution problems existing on construction sites in densely populated areas, MPA optimizes a kind of environmental agent to treat, which does not affect the later use of soil. The applicability effect was verified from the perspective of anti-wind and anti-rain erosion doubly. Research results not only can provide data support for the construction management, but also help to promote the civilization and ecological benefit of construction.
Collapse
Affiliation(s)
- Min Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, People's Republic of China
| | - Hongpu Du
- Department of Innovation and Development, Henan Information Industry Investment Co., Ltd, Henan, People's Republic of China
| | - Lang Zhou
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Shouxi Chai
- School of Geology and Geomatics, Tianjin Chengjian University, Tianjin, People's Republic of China
| | - Min Wang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, People's Republic of China
| |
Collapse
|
22
|
Sukhova E, Akinchits E, Gudkov SV, Pishchalnikov RY, Vodeneev V, Sukhov V. A Theoretical Analysis of Relations between Pressure Changes along Xylem Vessels and Propagation of Variation Potential in Higher Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:372. [PMID: 33671945 PMCID: PMC7919029 DOI: 10.3390/plants10020372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 01/27/2023]
Abstract
Variation potential (VP) is an important long-distance electrical signal in higher plants that is induced by local damages, influences numerous physiological processes, and participates in plant adaptation to stressors. The transmission of increased hydraulic pressure through xylem vessels is the probable mechanism of VP propagation in plants; however, the rates of the pressure transmission and VP propagation can strongly vary. We analyzed this problem on the basis of a simple mathematical model of the pressure distribution along a xylem vessel, which was approximated by a tube with a pressure gradient. It is assumed that the VP is initiated if the integral over pressure is more than a threshold one, taking into account that the pressure is transiently increased in the initial point of the tube and is kept constant in the terminal point. It was shown that this simple model can well describe the parameters of VP propagation in higher plants, including the increase in time before VP initiation and the decrease in the rate of VP propagation with an increase in the distance from the zone of damage. Considering three types of the pressure dynamics, our model predicts that the velocity of VP propagation can be stimulated by an increase in the length of a plant shoot and also depends on pressure dynamics in the damaged zone. Our results theoretically support the hypothesis about the impact of pressure variations in xylem vessels on VP propagation.
Collapse
Affiliation(s)
- Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.A.); (S.V.G.); (V.V.)
| | - Elena Akinchits
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.A.); (S.V.G.); (V.V.)
| | - Sergey V. Gudkov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.A.); (S.V.G.); (V.V.)
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Roman Y. Pishchalnikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Vladimir Vodeneev
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.A.); (S.V.G.); (V.V.)
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.A.); (S.V.G.); (V.V.)
| |
Collapse
|
23
|
Vega-Muñoz I, Duran-Flores D, Fernández-Fernández ÁD, Heyman J, Ritter A, Stael S. Breaking Bad News: Dynamic Molecular Mechanisms of Wound Response in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:610445. [PMID: 33363562 PMCID: PMC7752953 DOI: 10.3389/fpls.2020.610445] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 05/08/2023]
Abstract
Recognition and repair of damaged tissue are an integral part of life. The failure of cells and tissues to appropriately respond to damage can lead to severe dysfunction and disease. Therefore, it is essential that we understand the molecular pathways of wound recognition and response. In this review, we aim to provide a broad overview of the molecular mechanisms underlying the fate of damaged cells and damage recognition in plants. Damaged cells release the so-called damage associated molecular patterns to warn the surrounding tissue. Local signaling through calcium (Ca2+), reactive oxygen species (ROS), and hormones, such as jasmonic acid, activates defense gene expression and local reinforcement of cell walls to seal off the wound and prevent evaporation and pathogen colonization. Depending on the severity of damage, Ca2+, ROS, and electrical signals can also spread throughout the plant to elicit a systemic defense response. Special emphasis is placed on the spatiotemporal dimension in order to obtain a mechanistic understanding of wound signaling in plants.
Collapse
Affiliation(s)
- Isaac Vega-Muñoz
- Laboratorio de Ecología de Plantas, CINVESTAV-Irapuato, Departamento de Ingeniería Genética, Irapuato, Mexico
| | - Dalia Duran-Flores
- Laboratorio de Ecología de Plantas, CINVESTAV-Irapuato, Departamento de Ingeniería Genética, Irapuato, Mexico
| | - Álvaro Daniel Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Andrés Ritter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
24
|
Spatial and Temporal Dynamics of Electrical and Photosynthetic Activity and the Content of Phytohormones Induced by Local Stimulation of Pea Plants. PLANTS 2020; 9:plants9101364. [PMID: 33076246 PMCID: PMC7602463 DOI: 10.3390/plants9101364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/27/2020] [Accepted: 10/12/2020] [Indexed: 01/29/2023]
Abstract
A local leaf burning causes variation potential (VP) propagation, a decrease in photosynthesis activity, and changes in the content of phytohormones in unstimulated leaves in pea plants. The VP-induced photosynthesis response develops in two phases: fast inactivation and long-term inactivation. Along with a decrease in photosynthetic activity, there is a transpiration suppression in unstimulated pea leaves, which corresponds to the long-term phase of photosynthesis response. Phytohormone level analysis showed an increase in the concentration of jasmonic acid (JA) preceding a transpiration suppression and a long-term phase of the photosynthesis response. Analysis of the spatial and temporal dynamics of electrical signals, phytohormone levels, photosynthesis, and transpiration activity showed the most pronounced changes in the more distant leaf from the area of local stimulation. The established features are related to the architecture of the vascular bundles in the pea stem.
Collapse
|
25
|
Farmer EE, Gao YQ, Lenzoni G, Wolfender JL, Wu Q. Wound- and mechanostimulated electrical signals control hormone responses. THE NEW PHYTOLOGIST 2020; 227:1037-1050. [PMID: 32392391 DOI: 10.1111/nph.16646] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/21/2020] [Indexed: 05/23/2023]
Abstract
Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound-induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR-LIKE (GLR) genes, Arabidopsis H+ -ATPases (AHAs), RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), and genes that determine cell wall properties. We briefly review touch- and wound-induced increases in cytosolic Ca2+ concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound-induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound-response leaf-to-leaf electrical signalling. This model is based on rapid electro-osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf-to-leaf electrical signal propagation.
Collapse
Affiliation(s)
- Edward E Farmer
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Yong-Qiang Gao
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Gioia Lenzoni
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, CH-1015, Switzerland
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 4, CH-1211, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 4, CH-1211, Switzerland
| | - Qian Wu
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, CH-1015, Switzerland
| |
Collapse
|
26
|
Kurenda A, Nguyen CT, Chételat A, Stolz S, Farmer EE. Insect-damaged Arabidopsis moves like wounded Mimosa pudica. Proc Natl Acad Sci U S A 2019; 116:26066-26071. [PMID: 31792188 PMCID: PMC6926025 DOI: 10.1073/pnas.1912386116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Slow wave potentials (SWPs) are damage-induced electrical signals which, based on experiments in which organs are burned, have been linked to rapid increases in leaf or stem thickness. The possibility that pressure surges in injured xylem underlie these events has been evoked frequently. We sought evidence for insect feeding-induced positive pressure changes in the petioles of Arabidopsis thaliana Instead, we found that petiole surfaces of leaves distal to insect-feeding sites subsided. We also found that insect damage induced longer-duration downward leaf movements in undamaged leaves. The transient petiole deformations were contemporary with and dependent on the SWP. We then investigated if mutants that affect the xylem, which has been implicated in SWP transmission, might modify SWP architecture. irregular xylem mutants strongly affected SWP velocity and kinetics and, in parallel, restructured insect damage-induced petiole deformations. Together, with force change measurements on the primary vein, the results suggest that extravascular water fluxes accompany the SWP. Moreover, petiole deformations in Arabidopsis mimic parts of the spectacular distal leaf collapse phase seen in wounded Mimosa pudica We genetically link electrical signals to organ movement and deformation and suggest an evolutionary origin of the large leaf movements seen in wounded Mimosa.
Collapse
Affiliation(s)
- Andrzej Kurenda
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Chi Tam Nguyen
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Aurore Chételat
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Stéphanie Stolz
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Blyth MG, Morris RJ. Shear-Enhanced Dispersion of a Wound Substance as a Candidate Mechanism for Variation Potential Transmission. FRONTIERS IN PLANT SCIENCE 2019; 10:1393. [PMID: 31803200 PMCID: PMC6872641 DOI: 10.3389/fpls.2019.01393] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 10/09/2019] [Indexed: 05/24/2023]
Abstract
A variation potential (VP) is an electrical signal unique to plants that occurs in response to wounding or flaming. The propagation mechanism itself, however, is known not to be electrical. Here we examine the hypothesis that VP transmission occurs via the transport of a chemical agent in the xylem. We assume the electrical signal is generated locally by the activation of an ion channel at the plasma membrane of cells adjacent to the xylem. We work on the assumption that the ion channels are triggered when the chemical concentration exceeds a threshold value. We use numerical computations to demonstrate the combined effect of advection and diffusion on chemical transport in a tube flow, and propose shear-enhanced Taylor-Aris dispersion as a candidate mechanism to explain VP rates observed in experiments.
Collapse
Affiliation(s)
- Mark G. Blyth
- School of Mathematics, University of East Anglia, Norwich, United Kingdom
| | - Richard J. Morris
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
28
|
Awan H, Zeid K, Adve RS, Wallbridge N, Plummer C, Eckford AW. Communication in Plants: Comparison of Multiple Action Potential and Mechanosensitive Signals With Experiments. IEEE Trans Nanobioscience 2019; 19:213-223. [PMID: 31689198 DOI: 10.1109/tnb.2019.2951289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Both action potentials and mechanosensitive signalling are an important communication mechanisms in plants. Considering an information-theoretic framework, this paper explores the effective range of multiple action potentials for a long chain of cells (i.e., up to 100) in different configurations, and introduces the study of multiple mechanosensitive activation signals (generated due to a mechanical stimulus) in plants. For both these signals, we find that the mutual information per cell and information propagation speed tends to increase up to a certain number of receiver cells. However, as the number of cells increase beyond 10 to 12, the mutual information per cell starts to decrease. To validate our model and results, we include an experimental verification of the theoretical model, using a PhytlSigns biosignal amplifier, allowing us to measure the magnitude of the voltage associated with the multiple AP's and mechanosensitive activation signals induced by different stimulus in plants. Experimental data is used to calculate the mutual information and information propagation speed, which is compared with corresponding numerical results. Since these signals are used for a variety of important tasks within the plant, understanding them may lead to new bioengineering methods for plants.
Collapse
|
29
|
Long-distance electrical signals as a link between the local action of stressors and the systemic physiological responses in higher plants. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:63-84. [PMID: 30508537 DOI: 10.1016/j.pbiomolbio.2018.11.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/27/2022]
Abstract
Our review is devoted to the analysis of the role of long-distance electrical signals in the development of the fast systemic physiological responses in higher plants. The characteristics and mechanisms of basic electrical signals (variation potential, action potential and system potential) are analyzed, and a potential schema of the generation and propagation of the system potential is proposed. The review summarizes the physiological changes induced by the variation potential, action potential and system potential in higher plants, including changes in gene expressions, the production of phytohormones, photosynthesis, phloem mass-flow, respiration, ATP content, transpiration and plant growth. Potential mechanisms of the changes are analyzed. Finally, a hypothetical schema, which describes a hierarchy of the variation potential, action potential and system potential, in the development of the fast systemic non-specific adaptation of plants to stressors, is proposed.
Collapse
|
30
|
Awan H, Adve RS, Wallbridge N, Plummer C, Eckford AW. Communication and Information Theory of Single Action Potential Signals in Plants. IEEE Trans Nanobioscience 2018; 18:61-73. [PMID: 30442613 DOI: 10.1109/tnb.2018.2880924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many plants, such as Mimosa pudica (the "sensitive plant"), employ electrochemical signals known as action potentials (APs) for rapid intercellular communication. In this paper, we consider a reaction-diffusion model of individual AP signals to analyze APs from a communication- and information-theoretic perspective. We use concepts from molecular communication to explain the underlying process of information transfer in a plant for a single AP pulse that is shared with one or more receiver cells. We also use the chemical Langevin equation to accommodate the deterministic as well as stochastic component of the system. Finally, we present an information-theoretic analysis of single action potentials, obtaining achievable information rates for these signals. We show that, in general, the presence of an AP signal can increase the mutual information and information propagation speed among neighboring cells with receivers in different settings.
Collapse
|
31
|
Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. Proc Natl Acad Sci U S A 2018; 115:10178-10183. [PMID: 30228123 PMCID: PMC6176584 DOI: 10.1073/pnas.1807049115] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Numerous modes of long-distance electrical signaling exist in nature. The best known of these, axonal conduction, requires one primary cell population, i.e., neurons. In contrast, the cell types that mediate leaf-to-leaf electrical signaling in wounded plants have not been defined rigorously. Using genetic approaches, we find that two distinct populations of cells in the vasculature matrix are needed to perform this function. Surprisingly, these cells do not contact each other directly. As we further defined the plant wound response, we found that wound-induced membrane depolarizations preceded large intravasculature calcium fluxes. We reveal a two-cell-type mode of electrical signaling in leaves and discuss parallels and differences in electrical signaling outside the plant kingdom. The identity of the cell files necessary for the leaf-to-leaf transmission of wound signals plants has been debated for decades. In Arabidopsis, wounding initiates the glutamate receptor-like (GLR)–dependent propagation of membrane depolarizations that lead to defense gene activation. Using a vein extraction procedure we found pools of GLR-fusion proteins in endomembranes in phloem sieve elements and/or in xylem contact cells. Strikingly, only double mutants that eliminated GLRs from both of these spatially separated cell types strongly attenuated leaf-to-leaf electrical signaling. glr3.3 mutants were also compromised in their defense against herbivores. Since wounding is known to cause increases in cytosolic calcium, we monitored electrical signals and Ca2+ transients simultaneously. This revealed that wound-induced membrane depolarizations in the wild-type preceded cytosolic Ca2+ maxima. The axial and radial distributions of calcium fluxes were differentially affected in each glr mutant. Resolving a debate over which cell types are necessary for electrical signaling between leaves, we show that phloem sieve elements and xylem contact cells function together in this process.
Collapse
|
32
|
Hilleary R, Gilroy S. Systemic signaling in response to wounding and pathogens. CURRENT OPINION IN PLANT BIOLOGY 2018; 43:57-62. [PMID: 29351871 DOI: 10.1016/j.pbi.2017.12.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 05/06/2023]
Abstract
Plants possess systemic signaling networks that allow the perception of local stresses to be translated into plant-wide responses. Although information can be propagated via a variety of molecules such as hormones and RNAs moving within the bulk flow of the phloem or in the transpiration stream, the vasculature also appears to be a major pathway whereby extremely rapid signals move bi-directionally throughout the plant. In these cases, the movement mechanisms are not dependent on redistribution through bulk flow. For example, self-reinforcing systems based around changes in Ca2+ and reactive oxygen species, coupled to parallel electrical signaling events appear able to generate waves of information that can propagate at hundreds of μm/s. These signals then elicit distant responses that prime the plant for a more effective defense or stress response in unchallenged tissues. Although ion channels, Ca2+, reactive oxygen species and associated molecular machineries, such as the NADPH oxidases, have been identified as likely important players in this propagation system, the precise nature of these signaling networks remains to be defined. Critically, whether different stimuli are using the same rapid, systemic signaling network, or whether multiple, parallel pathways for signal propagation are operating to trigger specific systemic outputs remains a key open question.
Collapse
Affiliation(s)
- Richard Hilleary
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA.
| |
Collapse
|