1
|
Papoutsis K. Alternatives to DPA and ethoxyquin for preventing the development of superficial scald in apples: A review. Food Chem X 2024; 23:101730. [PMID: 39239534 PMCID: PMC11375236 DOI: 10.1016/j.fochx.2024.101730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/04/2024] [Accepted: 08/10/2024] [Indexed: 09/07/2024] Open
Abstract
Apples are one of most economically important crops worldwide with a production of approximately 96 million tons in 2022. During postharvest storage, apple quality can decline due to the development of physiological disorders. Superficial scald is one of the main physiological disorders that develops in apples during cold storage and results in quality deterioration. Superficial scald is controlled by synthetic antioxidants such as diphenylamine (DPA) and ethoxyquin. Both chemicals have been banned from the EU due to their toxicity. The current review provides an update on superficial scald complicated development mechanism and summarizes studies investigating postharvest treatments as alternatives to DPA and ethoxyquin. Ethylene and oxygen are important factors that trigger the development of superficial scald in apples by regulating various metabolic pathways during cold storage. More studies are required to investigate alternatives to synthetic antioxidants and elucidate the contribution level of the different metabolites to superficial scald development.
Collapse
Affiliation(s)
- Konstantinos Papoutsis
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, SE-230 53, Box 101, Alnarp, Sweden
| |
Collapse
|
2
|
Zenoni S, Savoi S, Busatto N, Tornielli GB, Costa F. Molecular regulation of apple and grape ripening: exploring common and distinct transcriptional aspects of representative climacteric and non-climacteric fruits. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6207-6223. [PMID: 37591311 PMCID: PMC10627160 DOI: 10.1093/jxb/erad324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Fleshy fruits of angiosperms are organs specialized for promoting seed dispersal by attracting herbivores and enticing them to consume the organ and the seeds it contains. Ripening can be broadly defined as the processes serving as a plant strategy to make the fleshy fruit appealing to animals, consisting of a coordinated series of changes in color, texture, aroma, and flavor that result from an intricate interplay of genetically and epigenetically programmed events. The ripening of fruits can be categorized into two types: climacteric, which is characterized by a rapid increase in respiration rate typically accompanied by a burst of ethylene production, and non-climacteric, in which this pronounced peak in respiration is absent. Here we review current knowledge of transcriptomic changes taking place in apple (Malus × domestica, climacteric) and grapevine (Vitis vinifera, non-climacteric) fruit during ripening, with the aim of highlighting specific and common hormonal and molecular events governing the process in the two species. With this perspective, we found that specific NAC transcription factor members participate in ripening initiation in grape and are involved in restoring normal physiological ripening progression in impaired fruit ripening in apple. These elements suggest the existence of a common regulatory mechanism operated by NAC transcription factors and auxin in the two species.
Collapse
Affiliation(s)
- Sara Zenoni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Stefania Savoi
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Torino), Italy
| | - Nicola Busatto
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 39098 San Michele all’Adige (Trento), Italy
| | | | - Fabrizio Costa
- Center Agriculture Food Environment (C3A), University of Trento, Via Mach 1, 39098 San Michele all’Adige (Trento), Italy
| |
Collapse
|
3
|
Meng D, Cao H, Yang Q, Zhang M, Borejsza-Wysocka E, Wang H, Dandekar AM, Fei Z, Cheng L. SnRK1 kinase-mediated phosphorylation of transcription factor bZIP39 regulates sorbitol metabolism in apple. PLANT PHYSIOLOGY 2023; 192:2123-2142. [PMID: 37067900 PMCID: PMC10315300 DOI: 10.1093/plphys/kiad226] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Sorbitol is a major photosynthate produced in leaves and transported through the phloem of apple (Malus domestica) and other tree fruits in Rosaceae. Sorbitol stimulates its own metabolism, but the underlying molecular mechanism remains unknown. Here, we show that sucrose nonfermenting 1 (SNF1)-related protein kinase 1 (SnRK1) is involved in regulating the sorbitol-responsive expression of both SORBITOL DEHYDROGENASE 1 (SDH1) and ALDOSE-6-PHOSPHATE REDUCTASE (A6PR), encoding 2 key enzymes in sorbitol metabolism. SnRK1 expression is increased by feeding of exogenous sorbitol but decreased by sucrose. SnRK1 interacts with and phosphorylates the basic leucine zipper (bZIP) transcription factor bZIP39. bZIP39 binds to the promoters of both SDH1 and A6PR and activates their expression. Overexpression of SnRK1 in 'Royal Gala' apple increases its protein level and activity, upregulating transcript levels of both SDH1 and A6PR without altering the expression of bZIP39. Of all the sugars tested, sorbitol is the only 1 that stimulates SDH1 and A6PR expression, and this stimulation is blocked by RNA interference (RNAi)-induced repression of either SnRK1 or bZIP39. These findings reveal that sorbitol acts as a signal regulating its own metabolism via SnRK1-mediated phosphorylation of bZIP39, which integrates sorbitol signaling into the SnRK1-mediated sugar signaling network to modulate plant carbohydrate metabolism.
Collapse
Affiliation(s)
- Dong Meng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Hongyan Cao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Qing Yang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Mengxia Zhang
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Ewa Borejsza-Wysocka
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Huicong Wang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Gapper NE, Bowen JK, Brummell DA. Biotechnological approaches for predicting and controlling apple storage disorders. Curr Opin Biotechnol 2023; 79:102851. [PMID: 36446143 DOI: 10.1016/j.copbio.2022.102851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022]
Abstract
Fruit storage disorders are major causes of crop losses and downgrades. Cold storage, either in air or in controlled atmospheres high in CO2 and low in O2, can result in chilling injury or respiratory injury (due to high internal CO2 concentrations). Here, we review biotechnological approaches currently being used to better understand these processes, to predict to provide resistance/tolerance to them. Reducing postharvest crop losses through improved cultivars or inventory management will be a major contributor to food security.
Collapse
Affiliation(s)
- Nigel E Gapper
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand.
| | - Joanna K Bowen
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant and Food Research Limited, Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand
| |
Collapse
|
5
|
Li J, Dai Q, Zhu Y, Xu W, Zhang W, Chen Y, Mu W. Low-calorie bulk sweeteners: Recent advances in physical benefits, applications, and bioproduction. Crit Rev Food Sci Nutr 2023; 64:6581-6595. [PMID: 36705477 DOI: 10.1080/10408398.2023.2171362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
At present, with the continuous improvement of living standards, people are paying increasing attention to dietary nutrition and health. Low sugar and low energy consumption have become important dietary trends. In terms of sugar control, more and more countries have implemented sugar taxes in recent years. Hence, as the substitute for sugar, low-calorie sweeteners have been widely used in beverage, bakery, and confectionary industries. In general, low-calorie sweeteners consist of high-intensity and low-calorie bulk sweeteners (some rare sugars and sugar alcohols). In this review, recent advances and challenges in low-calorie bulk sweeteners are explored. Bioproduction of low-calorie bulk sweeteners has become the focus of many researches, because it has the potential to replace the current industrial scale production through chemical synthesis. A comprehensive summary of the physicochemical properties, physiological functions, applications, bioproduction, and regulation of typical low-calorie bulk sweeteners, such as D-allulose, D-tagatose, D-mannitol, sorbitol, and erythritol, is provided.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Quanyu Dai
- China Rural Technology Development Center, Beijing, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Vittani L, Populin F, Stuerz S, Buehlmann A, Khomenko I, Biasioli F, Bühlmann-Schütz S, Vrhovsek U, Masuero D, Zanella A, Busatto N, Costa F. Comparative transcriptome and metabolite survey reveal key pathways involved in the control of the chilling injury disorder superficial scald in two apple cultivars, 'Granny Smith' and 'Ladina'. FRONTIERS IN PLANT SCIENCE 2023; 14:1150046. [PMID: 37152125 PMCID: PMC10157158 DOI: 10.3389/fpls.2023.1150046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023]
Abstract
The low temperature normally applied to prevent fruit decay during the storage of apples, can also triggers the onset of a chilling injury disorder known as superficial scald. In this work, the etiology of this disorder and the mechanism of action of two preventing strategies, such as the application of 1-MCP (1-methylcyclopropene) and storage at low oxygen concentration in 'Granny Smith' and 'Ladina' apple cultivars were investigated. The metabolite assessment highlighted a reorganization of specific metabolites, in particular flavan-3-ols and unsaturated fatty acids, while the genome-wide transcriptomic analysis grouped the DEGs into four functional clusters. The KEGG pathway and GO enrichment analysis, together with the gene-metabolite interactome, showed that the treatment with 1-MCP prevented the development of superficial scald by actively promoting the production of unsaturated fatty acids, especially in 'Granny Smith'. 'Ladina', more susceptible to superficial scald and less responsive to the preventing strategies, was instead characterized by a higher accumulation of very long chain fatty acids. Storage at low oxygen concentration stimulated a higher accumulation of ethanol and acetaldehyde together with the expression of genes involved in anaerobic respiration, such as malate, alcohol dehydrogenase and pyruvate decarboxylase in both cultivars. Low oxygen concentration, likewise 1-MCP, through a direct control on ethylene prevented the onset of superficial scald repressing the expression of PPO, a gene encoding for the polyphenol oxidase enzyme responsible of the oxidation of chlorogenic acid. Moreover, in 'Granny Smith' apple, the expression of three members of the VII subgroups of ERF genes, encoding for elements coordinating the acclimation process to hypoxia in plants was observed. The global RNA-Seq pattern also elucidated a specific transcriptomic signature between the two cultivars, disclosing the effect of the different genetic background in the control of this disorder.
Collapse
Affiliation(s)
- Lorenzo Vittani
- Center Agriculture Food Environment C3A, University of Trento, San Michele all’Adige, Italy
| | - Francesca Populin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | | | - Andreas Buehlmann
- Strategic Research Division Food Microbial Systems, Agroscope, Wädenswil, Switzerland
| | - Iuliia Khomenko
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | | | - Urska Vrhovsek
- Center Agriculture Food Environment C3A, University of Trento, San Michele all’Adige, Italy
| | - Domenico Masuero
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | | | - Nicola Busatto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Fabrizio Costa
- Center Agriculture Food Environment C3A, University of Trento, San Michele all’Adige, Italy
- *Correspondence: Fabrizio Costa,
| |
Collapse
|
7
|
He J, Feng Y, Cheng Y, Wang M, Guan J. A comprehensive insight on the main physiological biochemical and related genes expression changes during the development of superficial scald in "Yali" pear. FRONTIERS IN PLANT SCIENCE 2022; 13:987240. [PMID: 36119567 PMCID: PMC9478120 DOI: 10.3389/fpls.2022.987240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Superficial scald is a serious physiological disorder in "Yali" pear (Pyrus bretschneideri Rehd. cv. Yali) after long-term cold storage. Changes in superficial scald, ethylene production, α-farnesene and phenylpropane metabolism with associated gene expression in "Yali" pear treated with and without (control) 1-methylcyclopropene (1-MCP) were investigated. Compared with the control group (without 1-MCP), 1-MCP (1.0 μl L-1) significantly lowered the superficial scald index after 180 days of cold storage. During cold storage and shelf life, the contents of α-farnesene, conjugated trienols, chlorogenic acid, and epicatechin in the peel were reduced, while quercetin was enhanced in 1-MCP-treated fruit, and the expression of genes associated with ethylene synthesis (ACS1, ACO1), receptors (ETR2, ERS1) and signal transduction (ERF1), α-farnesene metabolism (AFS1, HMGR2, GST7), phenolic biosynthesis (PAL1, C4H1, C4H2, HCT3, 4CL2, C3H), and oxidases (PPO1, PPO5, and LAC7) were significantly downregulated by 1-MCP. These results suggested that the onset and development of superficial scald was closely related to the ethylene receptor, conjugated trienols, chlorogenic acid and epicatechin and related genes expression in "Yali" pear.
Collapse
Affiliation(s)
- Jingang He
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- Key Laboratory of Hebei Plant Genetic Engineering Center, Shijiazhuang, China
| | - Yunxiao Feng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- Key Laboratory of Hebei Plant Genetic Engineering Center, Shijiazhuang, China
| | - Yudou Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- Key Laboratory of Hebei Plant Genetic Engineering Center, Shijiazhuang, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- Key Laboratory of Hebei Plant Genetic Engineering Center, Shijiazhuang, China
| |
Collapse
|
8
|
Liu X, Xiao K, Zhang A, Zhu W, Zhang H, Tan F, Huang Q, Wu X, Zha D. Metabolomic Analysis, Combined with Enzymatic and Transcriptome Assays, to Reveal the Browning Resistance Mechanism of Fresh-Cut Eggplant. Foods 2022; 11:foods11081174. [PMID: 35454761 PMCID: PMC9031582 DOI: 10.3390/foods11081174] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Browning has been the primary limitation in eggplant processing. This study investigates the molecular mechanism underlying fresh-cut eggplant fruit browning by observing the physicochemical characteristics of browning-resistant (‘F’) and browning-sensitive (‘36′) eggplant cultivars. Browning-related enzyme activity and gene expression (PPO, LOX, and PLD) were significantly higher in the ‘36′ eggplant, thereby enhancing the degree of browning, compared to the ‘F’ eggplant. The MDA content and O2− production rate progressively increased as browning increased, while the antioxidant capacity of the fruit decreased. The cutting injury significantly activated the expression of PAL, thereby inducing the accumulation of phenolic acids, while the PPO gene was significantly upregulated, which activated the activity of polyphenol oxidase. Our results showed that the oxidation of chlorogenic acids to chlorogenic quinones resulted in the occurrence of browning, which suggests chlorogenic acid as the main browning substrate in fresh-cut eggplant.
Collapse
Affiliation(s)
- Xiaohui Liu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.L.); (K.X.); (A.Z.); (W.Z.); (H.Z.); (F.T.); (Q.H.); (D.Z.)
- College of Food Science, Shanghai Ocean University, Shanghai 201306, China
| | - Kai Xiao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.L.); (K.X.); (A.Z.); (W.Z.); (H.Z.); (F.T.); (Q.H.); (D.Z.)
| | - Aidong Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.L.); (K.X.); (A.Z.); (W.Z.); (H.Z.); (F.T.); (Q.H.); (D.Z.)
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.L.); (K.X.); (A.Z.); (W.Z.); (H.Z.); (F.T.); (Q.H.); (D.Z.)
| | - Hui Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.L.); (K.X.); (A.Z.); (W.Z.); (H.Z.); (F.T.); (Q.H.); (D.Z.)
| | - Feng Tan
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.L.); (K.X.); (A.Z.); (W.Z.); (H.Z.); (F.T.); (Q.H.); (D.Z.)
| | - Qianru Huang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.L.); (K.X.); (A.Z.); (W.Z.); (H.Z.); (F.T.); (Q.H.); (D.Z.)
| | - Xuexia Wu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.L.); (K.X.); (A.Z.); (W.Z.); (H.Z.); (F.T.); (Q.H.); (D.Z.)
- Correspondence: ; Tel.: +86-21-37195817
| | - Dingshi Zha
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.L.); (K.X.); (A.Z.); (W.Z.); (H.Z.); (F.T.); (Q.H.); (D.Z.)
| |
Collapse
|
9
|
Ankolekar C, Sarkar D, Greene D, Shetty K. Using Biological Elicitation to Improve Type 2 Diabetes Targeted Food Quality of Stored Apple. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.709384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Food quality improvements of fresh fruits targeting both food preservation and human health is essential to advance healthy dietary options and to mitigate imbalanced nutrition-linked non-communicable chronic disease (NCDs) challenges globally. Specifically, protective phenolic bioactives of fruits with dual functional benefits can be harnessed to advance innovations for improving nutritional quality and post-harvest shelf-life of perishable fruits. Based on this rationale the dual functional benefits of plant phenolics were harnessed using novel biological elicitation strategies to modulate phenolic bioactive-linked protective responses in apple during storage in two interrelated studies. Bioprocessed food-grade elicitors [water soluble chitosan oligosaccharide -(COS) and phenolic enriched oregano extracts-(OX)] were targeted as post-harvest dipping treatments (2 & 4 g/ L) and compared with diphenylamine (DPA) (1 & 2 g/L) to enhance phenolic-linked antioxidant and anti-diabetic (type 2 diabetes) relevant properties of Cortland apple during 3 months of storage (4°C). The selection of bio-elicitors and respective doses were based on the foundations of the previous related study, which resulted in reduction of superficial scald of Cortland apple during storage. Apples sampled over 3 months as aqueous and ethanol (12%) extracts of peel and pulp were analyzed separately for total soluble phenolic content, phenolic profile, antioxidant activity, and glucose metabolism relevant α-amylase and α-glucosidase enzyme inhibitory activities using in vitro assay models. Enhanced soluble phenolic content and associated antioxidant activity were observed in ethanol (12%) extracts of apple peel with 4 g/L COS elicitor treatments after 2 and 3 months of storage. High chlorogenic acid and quercetin derivatives were found in peel extracts of Cortland apple, while pulp extracts had high chlorogenic and gallic acids. Additionally, high α-glucosidase enzyme inhibitory activity, which is relevant for managing post-prandial hyperglycemia of type 2 diabetes was also observed in bio-elicited apple peel and pulp extracts. Therefore, results of these two interrelated studies indicate that bioprocessed food grade elicitor such as OX and COS can be recruited as a novel tool to enhance protective phenolic responses for improving type 2 diabetes targeted food quality and post-harvest storage quality of apple.
Collapse
|
10
|
Gong Y, Song J, Palmer LC, Vinqvist-Tymchuk M, Fillmore S, Toivonen P, Zhang Z. Tracking the development of the superficial scald disorder and effects of treatments with diphenylamine and 1-MCP using an untargeted metabolomic approach in apple fruit. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 2:100022. [PMID: 35415623 PMCID: PMC8991853 DOI: 10.1016/j.fochms.2021.100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 05/25/2023]
Abstract
Superficial scald is a physiological storage disorder that significantly reduces the marketability of apple fruit. To gain fundamental knowledge about the biochemical pathways leading to the development of the disorder and mechanisms of treatments for prevention, an untargeted metabolomics experiment employing liquid chromatography and mass spectrometry with data independent acquisition was performed. Metabolomic changes of two apple cultivars 'Cortland' and 'Red Delicious' with scald development and scald control treatments, using diphenylamine and 1-MCP, at 0-1 °C for up to 7 months was investigated. In total, 833 features/compounds were analyzed, and among them 59 were found to change significantly in controls involved in scald development, and in response to DPA and 1-MCP treatments. Our results provide new evidence that metabolites in association with phenylpropanoid metabolism, antioxidant and redox systems, and amino acid metabolism are related closely to scald development and response to potential treatments.
Collapse
Affiliation(s)
- Yihui Gong
- College of Horticulture, South China Agriculture University, Guangzhou, China
| | - Jun Song
- Agriculture and Agri-Food Canada, KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia B4N 1J5, Canada
| | - Leslie Campbell Palmer
- Agriculture and Agri-Food Canada, KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia B4N 1J5, Canada
| | - Mindy Vinqvist-Tymchuk
- Agriculture and Agri-Food Canada, KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia B4N 1J5, Canada
| | - Sherry Fillmore
- Agriculture and Agri-Food Canada, KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia B4N 1J5, Canada
| | - Peter Toivonen
- Agriculture and Agri-Food Canada, SuRDC, Summerland Research and Development Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - ZhaoQi Zhang
- College of Horticulture, South China Agriculture University, Guangzhou, China
| |
Collapse
|
11
|
Wang H, Wang S, Fan MM, Zhang SH, Sun LL, Zhao ZY. Metabolomic insights into the browning of the peel of bagging 'Rui Xue' apple fruit. BMC PLANT BIOLOGY 2021; 21:209. [PMID: 33964877 PMCID: PMC8106160 DOI: 10.1186/s12870-021-02974-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bagging is one of the most important techniques for producting high-quality fruits. In the actual of cultivating, we found a new kind of browning in peel of apple fruit that occurs before harvest and worsen during storage period. There are many studies on metabonomic analysis of browning about storage fruits, but few studies on the mechanism of browning before harvest. RESULTS In this study, five-year-old trees of 'Rui Xue' (CNA20151469.1) were used as materials. Bagging fruits without browning (BFW) and bagging fruits with browning (BFB) were set as the experimental groups, non-bagging fruits (NBF) were set as control. After partial least squares discriminant analysis (PLS-DA), 50 kinds of metabolites were important with predictive VIP > 1 and p-value < 0.05. The most important differential metabolites include flavonoids and lipids molecules, 11 flavonoids and 6 lipids molecules were significantly decreased in the BFW compared with NBF. After browning, 11 flavonoids and 7 lipids were further decreased in BFB compared with BFW. Meanwhile, the significantly enriched metabolic pathways include galactose metabolism, ABC membrane transporter protein, flavonoid biosynthesis and linoleic acid metabolism pathways et al. Physiological indicators show that, compared with NBF, the content of malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide anion (O2-) in peel of BFW and BFB were significantly increased, and the difference of BFB was more significant. Meanwhile, the antioxidant enzyme activities of BFW and BFB were inhibited, which accelerated the destruction of cell structure. In addition, the metabolome and physiological data showed that the significantly decrease of flavonoid was positively correlated with peel browning. So, we analyzed the expression of flavonoid related genes and found that, compared with NBF, the flavonoid synthesis genes MdLAR and MdANR were significantly up-regulated in BFW and BFB, but, the downstream flavonoids-related polymeric genes MdLAC7 and MdLAC14 were also significantly expressed. CONCLUSIONS Our findings demonstrated that the microenvironment of fruit was changed by bagging, the destruction of cell structure, the decrease of flavonoids and the increase of triterpenoids were the main reasons for the browning of peel.
Collapse
Affiliation(s)
- Hui Wang
- College of Horticulture, Northwest A & F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Shuang Wang
- College of Horticulture, Northwest A & F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Miao-Miao Fan
- College of Horticulture, Northwest A & F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Shu-Hui Zhang
- College of Horticultural Science and Engineering, Shandong Agricultural University / State Key Laboratory of Crop Biology, Taian, 271018, Shandong, China
| | - Lu-Long Sun
- College of Horticulture, Northwest A & F University, Yangling, Xianyang, 712100, Shaanxi, China.
| | - Zheng-Yang Zhao
- College of Horticulture, Northwest A & F University, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Baghel RS, Keren-Keiserman A, Ginzberg I. Metabolic changes in pomegranate fruit skin following cold storage promote chilling injury of the peel. Sci Rep 2021; 11:9141. [PMID: 33911123 PMCID: PMC8080622 DOI: 10.1038/s41598-021-88457-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/13/2021] [Indexed: 12/02/2022] Open
Abstract
Pomegranate cv. ‘Wonderful’ fruit are susceptible to chilling injuries of the peel (CIp) when stored at 7 °C in modified-atmosphere bags for more than 3 months. The damage, manifested as superficial browning, is restricted to the fruit skin, i.e., the outer colored layer of the peel. To characterize possible causes of CIp development, fruit were collected at early harvest—when the premature fruit are poorly colored and susceptible to CIp development, and at late harvest—when mature fruit have fully red skin and less susceptibility to CIp. Skin samples were collected on day of harvest and at different time points during storage. Anatomical study of skin with CIp disorder showed a broken cuticle layer with underlying degenerated cells. A high total phenol content, which is associated with high antioxidant capacity, was not sufficient to prevent the development of CIp in the premature fruit. The concentration of punicalagin was the same for premature and mature skin at harvest and during storage, and therefore not associated with CIp development in the premature fruit skin. Furthermore, the expression of antioxidant-related genes CAT2, SOD and GR2 was similar for both premature and mature fruit skin. Poor pigmentation of the premature fruit skin and chilling-induced downregulation of key anthocyanin-biosynthesis genes were associated with CIp development. High total phenol concentration combined with high expression of the gene encoding PPO was also associated with CIp; however, high expression ratio of PAL to PPO was found in mature skin, and may be associated with reduced CIp disorder. The results presented suggest future possibilities for controlling the CIp phenomenon.
Collapse
Affiliation(s)
- Ravi Singh Baghel
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMacabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel.,Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Alexandra Keren-Keiserman
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMacabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Idit Ginzberg
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMacabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel.
| |
Collapse
|
13
|
Chen H, Jiang L, Zeng J, Huo Y, Li Y. Combination of carnauba wax‐based coating and 1‐methylcyclopropene (1‐MCP) maintains better “Fuji” apple qualities during storage at low temperature. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hui‐Yun Chen
- Institute of Agricultural Processing Research Ningbo Academy of Agricultural Sciences Ningbo China
| | - Ling‐Feng Jiang
- School of Agriculture and Food Science Zhejiang Agriculture & Forestry University Hangzhou China
| | - Ji‐Hao Zeng
- School of Marine Sciences Ningbo University Ningbo China
| | - Yan‐Rong Huo
- School of Agriculture and Food Science Zhejiang Agriculture & Forestry University Hangzhou China
| | - Yong‐Xin Li
- School of Agriculture and Food Science Zhejiang Agriculture & Forestry University Hangzhou China
| |
Collapse
|
14
|
Hadjipieri M, Georgiadou EC, Costa F, Fotopoulos V, Manganaris GA. Dissection of the incidence and severity of purple spot physiological disorder in loquat fruit through a physiological and molecular approach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:980-986. [PMID: 33039939 DOI: 10.1016/j.plaphy.2020.06.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Loquat (Eriobotrya japonica) fruit marketability is affected by the incidence and severity of purple spot (PS), a pre-harvest physiological disorder showing an evident skin discoloration with depressed surface. Despite its impact in limiting the cultivation and economic potential of loquat, the etiology of this disorder is still poorly understood. To this end, our study aimed to investigate and disclose possible mechanisms underlying PS development. The intensity and severity of PS in three loquat cultivars ('Morphitiki', 'Karantoki' and 'Obusa') was phenotypically monitored during successive on-tree fruit developmental stages. 'Obusa' fruits harvested at commercial maturity stage showed the highest incidence of purple spot (58.6%), while 'Morphitiki' fruits did not show any symptoms. 'Karantoki' fruits demonstrated an intermediate response, with 31.3% of the fruit being affected. Thereafter, fruits with 30-50% PS severity were selected and used for further analysis; peel tissue was removed from both symptomatic and asymptomatic tissue of the same fruit for all examined cultivars. 'Karantoki' fruit with PS were characterized by the highest accumulation of total soluble sugars, sucrose, glucose and fructose contents, while the concentration of these primary metabolites was the lowest in asymptomatic fruit of 'Obusa', exception made for the sucrose. The incidence of PS was also transcriptionally investigated by assessing the mRNA profile of important genes involved in polyphenolic (PAL1, PAL2 and PPO1) and carbohydrate (CWI2, CWI3, SPS1, SPS2, NI2, NI3, SuSy, HXK, FRK and VI) pathway. The enhanced expression levels of CWI3 and VI genes in symptomatic fruit of the highly susceptible cultivar 'Obusa' highlight a cultivar-specific type of response. Notably, SuSy registered significantly suppressed levels in symptomatic tissue of both 'Obusa' and 'Karantoki'. To what extent PPO is associated with PS incidence and whether the etiology of the disorder can be assigned to an oxidative process triggered and coordinated by its action need to be further elucidated. The aforementioned genes are suggested to be further examined as potential markers towards a more sophisticated and informed characterization of purple spot detection in loquat fruit.
Collapse
Affiliation(s)
- Margarita Hadjipieri
- Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology & Food Science, 3603, Lemesos, Cyprus
| | - Egli C Georgiadou
- Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology & Food Science, 3603, Lemesos, Cyprus
| | - Fabrizio Costa
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All' Adige, Trento, Italy; Center Agriculture Food Environment, University of Trento, Via E. Mach 1, 38010, San Michele All'Adige, Italy
| | - Vasileios Fotopoulos
- Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology & Food Science, 3603, Lemesos, Cyprus
| | - George A Manganaris
- Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology & Food Science, 3603, Lemesos, Cyprus.
| |
Collapse
|
15
|
Liu H, Liu S, Du B, Dong K, Wang Y, Zhang Y. Aloe vera gel coating aggravates superficial scald incidence in 'Starking' apples during low-temperature storage. Food Chem 2020; 339:128151. [PMID: 33152896 DOI: 10.1016/j.foodchem.2020.128151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 11/26/2022]
Abstract
The effects of aloe vera (Aloe vera (L.) Burm. f.) gel treatment on the incidence of superficial scald in 'Starking' apples (Malus domestica Borkh. Var. Starking) during cold storage were studied. Apples were harvested at the pre-climacteric stage and treated with aloe vera gel. The treatment increased malondialdehyde content and membrane lipid damage. Furthermore, it inhibited the release of ethylene at the early stage but increased it in the later stage. The expression level of ACC synthase 1 (MdACS1) also increased, and the antioxidant capacity in apples, particularly, catalase, peroxidase, and superoxide dismutase activities, all decreased, while concomitantly, the content of α-farnesene and its oxidation product, conjugated triene increased, thereby aggravating superficial scald incidence during storage at low temperature.
Collapse
Affiliation(s)
- Heng Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Tai'an 271018, China
| | - Shaohua Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Tai'an 271018, China
| | - Bingyang Du
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Tai'an 271018, China
| | - Kuntian Dong
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Tai'an 271018, China
| | - Yong Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Tai'an 271018, China
| | - Yuanhu Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Tai'an 271018, China.
| |
Collapse
|
16
|
Wang Q, Liu H, Zhang M, Liu S, Hao Y, Zhang Y. MdMYC2 and MdERF3 Positively Co-Regulate α-Farnesene Biosynthesis in Apple. FRONTIERS IN PLANT SCIENCE 2020; 11:512844. [PMID: 32983209 PMCID: PMC7492718 DOI: 10.3389/fpls.2020.512844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 08/18/2020] [Indexed: 05/09/2023]
Abstract
α-Farnesene, a sesquiterpene volatile compound plays an important role in plant defense and is known to be associated with insect attraction and with superficial scald of apple and pear fruits during cold storage. But the mechanism whereby transcription factors regulate apple α-farnesene biosynthesis has not been clarified. Here, we report that two transcription factors, MdMYC2 and MdERF3 regulated α-farnesene biosynthesis in apple fruit. Dual-luciferase assays and Y1H assays indicated that MdMYC2 and MdERF3 effectively trans-activated the MdAFS promoter. EMSAs showed that MdERF3 directly binds the DRE motif in the MdAFS promoter. Subsequently, overexpression of MdMYC2 and MdERF3 in apple calli markedly activated the transcript levels of MdHMGR2 and MdAFS. Furthermore, transient overexpression of MdMYC2 and MdERF3 in apple fruit significantly increased MdAFS expression and hence, α-farnesene production. These results indicate that MdMYC2 and MdERF3 are positive regulators of α-farnesene biosynthesis and have important value in genetic engineering of α-farnesene production.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Heng Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Min Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Shaohua Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Yujin Hao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Yuanhu Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
17
|
Dias C, L. Amaro A, C. Salvador Â, Silvestre AJD, Rocha SM, Isidoro N, Pintado M. Strategies to Preserve Postharvest Quality of Horticultural Crops and Superficial Scald Control: From Diphenylamine Antioxidant Usage to More Recent Approaches. Antioxidants (Basel) 2020; 9:E356. [PMID: 32344588 PMCID: PMC7222380 DOI: 10.3390/antiox9040356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/17/2023] Open
Abstract
Horticultural crops are vulnerable to several disorders, which affect their physiological and organoleptic quality. For about forty years, the control of physiological disorders (such as superficial scald) in horticultural crops, particularly in fruit, was achieved through the application of the antioxidant diphenylamine (DPA), usually combined with controlled atmosphere (CA) conditions. However, identification of DPA residues and metabolites in treated fruits, associated with their toxicity, banned the use of this antioxidant in Europe. This triggered the urgent need for novel and, ideally, natural and sustainable alternatives, combined with adequate storage conditions to protect cultivars from harmful agents. This review systematizes the state-of-the-art DPA application on several fresh cultivars, such as apples, pears, and vegetables (potatoes, spinach, etc.), as well as the possible mechanisms of the action and effects of DPA, emphasizing its antioxidant properties. Alternative methods to DPA are also discussed, as well as respective effects and limitations. Recent research on scald development molecular pathways are highlighted to open new non-chemical strategies opportunities. This appraisal shows that most of the current solutions have not lead to satisfactory commercial results; thus, further research aimed to understand the mechanisms underlying postharvest disorders and to design sustainable and safe solutions to improve horticultural products storage is needed.
Collapse
Affiliation(s)
- Cindy Dias
- CBQF—Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.D.); (A.L.A.)
| | - Ana L. Amaro
- CBQF—Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.D.); (A.L.A.)
| | - Ângelo C. Salvador
- CICECO, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | | | - Sílvia M. Rocha
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Nélson Isidoro
- Cooperativa Agrícola dos Fruticultores do Cadaval, CRL (COOPVAL), Estrada Nacional 115, Km 26, 2550-108 Cadaval, Portugal;
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.D.); (A.L.A.)
| |
Collapse
|
18
|
Pre-harvest climate and post-harvest acclimation to cold prevent from superficial scald development in Granny Smith apples. Sci Rep 2020; 10:6180. [PMID: 32277099 PMCID: PMC7148358 DOI: 10.1038/s41598-020-63018-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/16/2020] [Indexed: 11/08/2022] Open
Abstract
Superficial scald is one of the most serious postharvest physiological disorders that can affect apples after a prolonged cold storage period. This study investigated the impact of pre- and post-harvest climatic variations on superficial scald in a susceptible apple cultivar. Fruit batches with contrasting phenotypes for superficial scald incidence were identified among several years of "Granny Smith" fruit production. The "low scald" year pre-harvest climate was characterised by a warm period followed by a sudden decrease in temperature, playing the part of an in vivo acclimation to cold storage. This was associated with many abiotic stress responsive genes which were induced in fruit peel. In particular 48 Heat Shock Proteins (HSPs) and 5 Heat Shock transcription Factors (HSFs) were strongly induced at harvest when scald incidence was low. For "high scald" year, a post-harvest acclimation of 1 week was efficient in reducing scald incidence. Expression profiles of stress related genes were affected by the acclimation treatment and indicate fruit physiological adaptations to cold storage. The identified stress-responsive genes, and in particular HSPs, could be useful indicators of the fruit physiological status to predict the risk of scald occurrence as early as harvest.
Collapse
|
19
|
Giné-Bordonaba J, Busatto N, Larrigaudière C, Lindo-García V, Echeverria G, Vrhovsek U, Farneti B, Biasioli F, De Quattro C, Rossato M, Delledonne M, Costa F. Investigation of the transcriptomic and metabolic changes associated with superficial scald physiology impaired by lovastatin and 1-methylcyclopropene in pear fruit (cv. "Blanquilla"). HORTICULTURE RESEARCH 2020; 7:49. [PMID: 32257235 PMCID: PMC7109095 DOI: 10.1038/s41438-020-0272-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 05/07/2023]
Abstract
To elucidate the physiology underlying the development of superficial scald in pears, susceptible "Blanquilla" fruit was treated with different compounds that either promoted (ethylene) or repressed (1-methylcyclopropene and lovastatin) the incidence of this disorder after 4 months of cold storage. Our data show that scald was negligible for the fruit treated with 1-methylcyclopropene or lovastatin, but highly manifested in untreated (78% incidence) or ethylene-treated fruit (97% incidence). The comparison between the fruit metabolomic profile and transcriptome evidenced a distinct reprogramming associated with each treatment. In all treated samples, cold storage led to an activation of a cold-acclimation-resistance mechanism, including the biosynthesis of very-long-chain fatty acids, which was especially evident in 1-methylcyclopropane-treated fruit. Among the treatments applied, only 1-methylcyclopropene inhibited ethylene production, hence supporting the involvement of this hormone in the development of scald. However, a common repression effect on the PPO gene combined with higher sorbitol content was found for both lovastatin and 1-methylcyclopropene-treated samples, suggesting also a non-ethylene-mediated process preventing the development of this disorder. The results presented in this work represent a step forward to better understand the physiological mechanisms governing the etiology of superficial scald in pears.
Collapse
Affiliation(s)
- Jordi Giné-Bordonaba
- XaRTA-Postharvest, Institute for Food and Agricultural Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Spain
| | - Nicola Busatto
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Christian Larrigaudière
- XaRTA-Postharvest, Institute for Food and Agricultural Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Spain
| | - Violeta Lindo-García
- XaRTA-Postharvest, Institute for Food and Agricultural Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Spain
| | - Gemma Echeverria
- XaRTA-Postharvest, Institute for Food and Agricultural Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Spain
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento Italy
| | - Brian Farneti
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Franco Biasioli
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento Italy
| | - Concetta De Quattro
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento, Italy
- Center Agriculture Food Environment, University of Trento, via Mach 1, 38010 San Michele all’Adige, Trento Italy
| |
Collapse
|
20
|
Karagiannis E, Tanou G, Scossa F, Samiotaki M, Michailidis M, Manioudaki M, Laurens F, Job D, Fernie AR, Orsel M, Molassiotis A. Systems-Based Approaches to Unravel Networks and Individual Elements Involved in Apple Superficial Scald. FRONTIERS IN PLANT SCIENCE 2020; 11:8. [PMID: 32117359 PMCID: PMC7031346 DOI: 10.3389/fpls.2020.00008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 05/24/2023]
Abstract
Superficial scald is a major physiological disorder in apple fruit that is induced by cold storage and is mainly expressed as brown necrotic patches on peel tissue. However, a global view of the gene-protein-metabolite interactome underlying scald prevention/sensitivity is currently missing. Herein, we have found for the first time that cold storage in an atmosphere enriched with ozone (O3) induced scald symptoms in 'Granny Smith' apple fruits during subsequent ripening at room temperature. In contrast, treatment with the ethylene perception inhibitor 1-methylcyclopropene (1-MCP) reversed this O3-induced scald effect. Amino acids, including branched-chain amino acids, were the most strongly induced metabolites in peel tissue of 1-MCP treated fruits. Proteins involved in oxidative stress and protein trafficking were differentially accumulated prior to and during scald development. Genes involved in photosynthesis, flavonoid biosynthesis and ethylene signaling displayed significant alterations in response to 1-MCP and O3. Analysis of regulatory module networks identified putative transcription factors (TFs) that could be involved in scald. Subsequently, a transcriptional network of the genes-proteins-metabolites and the connected TFs was constructed. This approach enabled identification of several genes coregulated by TFs, notably encoding glutathione S-transferase (GST) protein(s) with distinct signatures following 1-MCP and O3 treatments. Overall, this study is an important contribution to future functional studies and breeding programs for this fruit, aiding to the development of improved apple cultivars to superficial scald.
Collapse
Affiliation(s)
- Evangelos Karagiannis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Tanou
- Institute of Soil and Water Resources, ELGO-DEMETER, Thessaloniki, Greece
| | - Federico Scossa
- Department Willmitzer, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Council for Agricultural Research and Economics, Research Center for Genomics and Bioinformatics, Rome, Italy
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Manioudaki
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - François Laurens
- Institut de Recherche en Horticulture et Semences (IRHS), UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers, Beaucouzé, France
| | - Dominique Job
- Centre National de la Recherche Scientifique - Université Claude Bernard Lyon 1 - Institut National des Sciences Appliquées-Bayer CropScience, Lyon, France
| | - Alisdair R Fernie
- Department Willmitzer, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Mathilde Orsel
- Institut de Recherche en Horticulture et Semences (IRHS), UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers, Beaucouzé, France
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
21
|
Busatto N, Matsumoto D, Tadiello A, Vrhovsek U, Costa F. Multifaceted analyses disclose the role of fruit size and skin-russeting in the accumulation pattern of phenolic compounds in apple. PLoS One 2019; 14:e0219354. [PMID: 31306452 PMCID: PMC6629076 DOI: 10.1371/journal.pone.0219354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/23/2019] [Indexed: 12/14/2022] Open
Abstract
Fruits are nowadays considered important suppliers of anti-oxidant molecules. Apples are particularly rich in phenolic compounds, non-nutritional phytochemicals that play active roles in controlling severe chronic diseases. In this work, 19 phenolic compounds were investigated in both skin and pulp tissues of seven apple accessions across the Malus genus collected at two stages: during fruit development and at harvest. The primary difference in phenolic concentration between wild and domesticated accessions, especially in the pulp, could be explained by the larger growth rate of the domesticated varieties. The proposed dilution effect was also confirmed through the observation of the increased content of procyanidin B2+B4 and phloridzin in russet-skinned apples, known to have higher concentrations of these compounds. The metabolite screening was also accompanied by the expression analysis of 16 polyphenolic genes showing, for nine elements, a higher expression at harvest than during fruit development. Finally, a polyphenolic comparison with red-fleshed apples was also carried out, underlying a larger amount of procyanidins and quercetin-3rhamnoside in the white-fleshed accessions. The results presented and discussed in this work suggest that specific white-fleshed apples, especially with russeted-skin, may play an important role in ameliorating the nutraceutical potential of apple fruit.
Collapse
Affiliation(s)
- Nicola Busatto
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Daiki Matsumoto
- Faculty of Agriculture, Department of Food, Life, and Environmental Sciences, Yamagata University, Tsuruoka, Japan
| | - Alice Tadiello
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
- * E-mail:
| |
Collapse
|
22
|
Peace CP, Bianco L, Troggio M, van de Weg E, Howard NP, Cornille A, Durel CE, Myles S, Migicovsky Z, Schaffer RJ, Costes E, Fazio G, Yamane H, van Nocker S, Gottschalk C, Costa F, Chagné D, Zhang X, Patocchi A, Gardiner SE, Hardner C, Kumar S, Laurens F, Bucher E, Main D, Jung S, Vanderzande S. Apple whole genome sequences: recent advances and new prospects. HORTICULTURE RESEARCH 2019; 6:59. [PMID: 30962944 PMCID: PMC6450873 DOI: 10.1038/s41438-019-0141-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 05/19/2023]
Abstract
In 2010, a major scientific milestone was achieved for tree fruit crops: publication of the first draft whole genome sequence (WGS) for apple (Malus domestica). This WGS, v1.0, was valuable as the initial reference for sequence information, fine mapping, gene discovery, variant discovery, and tool development. A new, high quality apple WGS, GDDH13 v1.1, was released in 2017 and now serves as the reference genome for apple. Over the past decade, these apple WGSs have had an enormous impact on our understanding of apple biological functioning, trait physiology and inheritance, leading to practical applications for improving this highly valued crop. Causal gene identities for phenotypes of fundamental and practical interest can today be discovered much more rapidly. Genome-wide polymorphisms at high genetic resolution are screened efficiently over hundreds to thousands of individuals with new insights into genetic relationships and pedigrees. High-density genetic maps are constructed efficiently and quantitative trait loci for valuable traits are readily associated with positional candidate genes and/or converted into diagnostic tests for breeders. We understand the species, geographical, and genomic origins of domesticated apple more precisely, as well as its relationship to wild relatives. The WGS has turbo-charged application of these classical research steps to crop improvement and drives innovative methods to achieve more durable, environmentally sound, productive, and consumer-desirable apple production. This review includes examples of basic and practical breakthroughs and challenges in using the apple WGSs. Recommendations for "what's next" focus on necessary upgrades to the genome sequence data pool, as well as for use of the data, to reach new frontiers in genomics-based scientific understanding of apple.
Collapse
Affiliation(s)
- Cameron P. Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Luca Bianco
- Computational Biology, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Michela Troggio
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen, 6708PB The Netherlands
| | - Nicholas P. Howard
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108 USA
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| | - Amandine Cornille
- GQE – Le Moulon, Institut National de la Recherche Agronomique, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Charles-Eric Durel
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Sean Myles
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Robert J. Schaffer
- The New Zealand Institute for Plant and Food Research Ltd, Motueka, 7198 New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1142 New Zealand
| | - Evelyne Costes
- AGAP, INRA, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Gennaro Fazio
- Plant Genetic Resources Unit, USDA ARS, Geneva, NY 14456 USA
| | - Hisayo Yamane
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Chris Gottschalk
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | | | - Susan E. Gardiner
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Craig Hardner
- Queensland Alliance of Agriculture and Food Innovation, University of Queensland, St Lucia, 4072 Australia
| | - Satish Kumar
- New Cultivar Innovation, Plant and Food Research, Havelock North, 4130 New Zealand
| | - Francois Laurens
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Etienne Bucher
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
- Agroscope, 1260 Changins, Switzerland
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
23
|
Busatto N, Farneti B, Tadiello A, Oberkofler V, Cellini A, Biasioli F, Delledonne M, Cestaro A, Noutsos C, Costa F. Wide transcriptional investigation unravel novel insights of the on-tree maturation and postharvest ripening of 'Abate Fetel' pear fruit. HORTICULTURE RESEARCH 2019; 6:32. [PMID: 30854209 PMCID: PMC6395599 DOI: 10.1038/s41438-018-0115-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 05/23/2023]
Abstract
To decipher the transcriptomic regulation of the on-tree fruit maturation in pear cv. 'Abate Fetel', a RNA-seq transcription analysis identified 8939 genes differentially expressed across four harvesting stages. These genes were grouped into 11 SOTA clusters based on their transcriptional pattern, of which three included genes upregulated while the other four were represented by downregulated genes. Fruit ripening was furthermore investigated after 1 month of postharvest cold storage. The most important variation in fruit firmness, production of ethylene and volatile organic compounds were observed after 5 days of shelf-life at room temperature following cold storage. The role of ethylene in controlling the ripening of 'Abate Fetel' pears was furthermore investigated through the application of 1-methylcyclopropene, which efficiently delayed the progression of ripening by reducing fruit softening and repressing both ethylene and volatile production. The physiological response of the interference at the ethylene receptor level was moreover unraveled investigating the expression pattern of 12 candidate genes, initially selected to validate the RNA-seq profile. This analysis confirmed the effective role of the ethylene competitor in downregulating the expression of cell wall (PG) and ethylene-related genes (ACS, ACO, ERS1, and ERS2), as well as inducing one element involved in the auxin signaling pathway (Aux/IAA), highlighting a possible cross-talk between these two hormones. The expression patterns of these six elements suggest their use as molecular toolkit to monitor at molecular level the progression of the fruit on-tree maturation and postharvest ripening.
Collapse
Affiliation(s)
- Nicola Busatto
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Brian Farneti
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Alice Tadiello
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all’Adige, Italy
- Department of Biology, University of Padova, Via G. Colombo 3, 35121 Padova, Italy
| | - Vicky Oberkofler
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all’Adige, Italy
- Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Antonio Cellini
- Department of Agricultural and Food Science, University of Bologna, Via Fanin 46, 40127 Bologna, Italy
| | - Franco Biasioli
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Massimo Delledonne
- Department of Biotecnology, University of Verona, Strada le Grazie 15, Cà Vignal 1, 37134 Verona, Italy
| | - Alessandro Cestaro
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Christos Noutsos
- Biology Department, SUNY College at Old Westbury, Old Westbury, NY 11568 USA
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all’Adige, Italy
| |
Collapse
|
24
|
Ethylene -dependent and -independent superficial scald resistance mechanisms in 'Granny Smith' apple fruit. Sci Rep 2018; 8:11436. [PMID: 30061655 PMCID: PMC6065312 DOI: 10.1038/s41598-018-29706-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Superficial scald is a major physiological disorder of apple fruit (Malus domestica Borkh.) characterized by skin browning following cold storage; however, knowledge regarding the downstream processes that modulate scald phenomenon is unclear. To gain insight into the mechanisms underlying scald resistance, ‘Granny Smith’ apples after harvest were treated with diphenylamine (DPA) or 1-methylcyclopropene (1-MCP), then cold stored (0 °C for 3 months) and subsequently were ripened at room temperature (20 °C for 8 days). Phenotypic and physiological data indicated that both chemical treatments induced scald resistance while 1-MCP inhibited the ethylene-dependent ripening. A combination of multi-omic analysis in apple skin tissue enabled characterization of potential genes, proteins and metabolites that were regulated by DPA and 1-MCP at pro-symptomatic and scald-symptomatic period. Specifically, we characterized strata of scald resistance responses, among which we focus on selected pathways including dehydroabietic acid biosynthesis and UDP-D-glucose regulation. Through this approach, we revealed scald-associated transcriptional, proteomic and metabolic signatures and identified pathways modulated by the common or distinct functions of DPA and 1-MCP. Also, evidence is presented supporting that cytosine methylation-based epigenetic regulation is involved in scald resistance. Results allow a greater comprehension of the ethylene–dependent and –independent metabolic events controlling scald resistance.
Collapse
|
25
|
Sheng L, Hanrahan I, Sun X, Taylor MH, Mendoza M, Zhu MJ. Survival of Listeria innocua on Fuji apples under commercial cold storage with or without low dose continuous ozone gaseous. Food Microbiol 2018; 76:21-28. [PMID: 30166144 DOI: 10.1016/j.fm.2018.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 11/24/2022]
Abstract
This study evaluated the fate of Listeria innocua, a non-pathogenic species closely related to Listeria monocytogenes, on Fuji apple fruit surfaces during commercial cold storage with and without continuous low doses of gaseous ozone. Unwaxed Fuji apples of commercially acceptable maturity were inoculated with 6.0-7.0 Log10 CFU L. innocua/apple, and subjected to refrigerated air (RA, 33 °F), controlled atmosphere (CA, 33 °F, 2% O2, 1% CO2), or CA with low doses of ozone gas (50.0 -87.0 ppb ) storage in a commercial facility for 30 weeks. A set of uninoculated apples was simultaneously subjected to the above storage conditions for total plate count and yeasts and molds enumeration. L. innocua survival under RA and CA storage was similar, which led to 2.5-3.0 Log10 CFU/apple reduction during storage. Continuous gaseous ozone application decreased L. innocua population on Fuji apples to ∼1.0 Log10 CFU/apple after 30-week storage, and suppressed apple native flora. CA storage delayed apple fruit ripening through reduction of apple firmness and titratable acidity loss, and low dose gaseous ozone application had no negative influence on apple visual quality, including both external and internal disorders. In summary, L. innocua decreased on Fuji apple surfaces during commercial long-term RA and CA storage. Ozone gas has the potential to be used as a supplemental intervention method to control Listeria spp. and to ensure fresh apple safety.
Collapse
Affiliation(s)
- Lina Sheng
- School of Food Science, Washington State University, Pullman, WA, 99164, United States
| | - Ines Hanrahan
- Washington Tree Fruit Research Commission, Wenatchee, WA, 98801, United States
| | - Xiaofei Sun
- School of Food Science, Washington State University, Pullman, WA, 99164, United States
| | - Michael H Taylor
- School of Food Science, Washington State University, Pullman, WA, 99164, United States
| | - Manoella Mendoza
- Washington Tree Fruit Research Commission, Wenatchee, WA, 98801, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, 99164, United States.
| |
Collapse
|