1
|
Namata MJ, Xu J, Habyarimana E, Palakolanu SR, Wang L, Li J. Genome editing in maize and sorghum: A comprehensive review of CRISPR/Cas9 and emerging technologies. THE PLANT GENOME 2025; 18:e70038. [PMID: 40324959 PMCID: PMC12052613 DOI: 10.1002/tpg2.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/28/2025] [Accepted: 03/21/2025] [Indexed: 05/07/2025]
Abstract
The increasing changes in the climate patterns across the globe have deeply affected food systems where unparalleled and unmatched challenges are created. This jeopardizes food security due to an ever-increasing population. The extreme efficiency of C4 crops as compared to C3 crops makes them incredibly significant in securing food safety. C4 crops, maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) in particular, have the ability to withstand osmotic stress induced by oxidative stress. Osmotic stress causes a series of physical changes in a plant thus facilitating reduced water uptake and photosynthesis inhibition, such as membrane tension, cell wall stiffness, and turgor changes. There has been a great advancement in plant breeding brought by introduction of clustered regularly interspaced short palindromic repeats (CRISPR) gene editing technology. This technology offers precise alterations to an organism's DNA through targeting specific genes for desired traits in a wide number of crop species. Despite its immense opportunities in plant breeding, it faces limitations such as effective delivery systems, editing efficiency, regulatory concerns, and off-target effects. Future prospects lie in optimizing next-generation techniques, such as prime editing, and developing novel genotype-independent delivery methods. Overall, the transformative role of CRISPR/Cas9 in sorghum and maize breeding underscores the need for responsible and sustainable utilization to address global food security challenges.
Collapse
Affiliation(s)
- Mercy Jocyline Namata
- College of AgricultureAnhui Science and Technology UniversityFengyangChina
- International Joint Research Center of Forage Bio‐Breeding in Anhui ProvinceChuzhouChina
| | - Jingyi Xu
- College of AgricultureAnhui Science and Technology UniversityFengyangChina
- International Joint Research Center of Forage Bio‐Breeding in Anhui ProvinceChuzhouChina
| | - Ephrem Habyarimana
- International Crops Research Institute for the Semi‐Arid TropicsHyderabadIndia
| | | | - Lihua Wang
- College of AgricultureAnhui Science and Technology UniversityFengyangChina
- International Joint Research Center of Forage Bio‐Breeding in Anhui ProvinceChuzhouChina
| | - Jieqin Li
- College of AgricultureAnhui Science and Technology UniversityFengyangChina
- International Joint Research Center of Forage Bio‐Breeding in Anhui ProvinceChuzhouChina
| |
Collapse
|
2
|
Li T, Tang Y, Lin Z, Wang J, Zhang J, Li Q, Huang F, Liang J, Zhang H, Liu Z, Li J, Yang W, Deng G, Long H. Genetic identification and characterization of quantitative trait loci for wheat grain size-related traits independent of grain number per spike. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:125. [PMID: 40413655 DOI: 10.1007/s00122-025-04912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/21/2025] [Indexed: 05/27/2025]
Abstract
KEY MESSAGE Seven stable QTLs for TGW, GW and GL were identified, and two major QTLs were stable in various genetic backgrounds and environments. Thousand grain weight (TGW), mainly determined by grain length (GL) and width (GW), is an important yield component of wheat. In the study, combined with phenotyping in four field trials and a high-quality genetic map constructed with the wheat 55 K SNP array, a total of seven stable QTLs for TGW, GW and GL were identified in a doubled haploid (DH) population derived from the cross between Chuanmai 42 (CM42) and Kechengmai 4 (K4), in which QTgw.CK4-cib-3D, QGw.CK4-cib-2D and QGl.CK4-cib-5 A.1 were novel, and QTgw/Gw.CK4-cib-6 A and QGl.CK4-cib-5 A.1 were major QTLs explaining more than 10% of the phenotypic variances. The effects of QTgw/Gw.CK4-cib-6 A and QGl.CK4-cib-5 A.1 on corresponding traits were further validated in different populations by developing the Kompetitive Allele-Specific PCR marker. QTgw/Gw.CK4-cib-6 A significantly increased TGW while reducing grain number per spike (GNS). Interestingly, the other QTLs for grain size, QGw.CK4-cib-2D, QGl.CK4-cib-5 A.1 and QGl.CK4-cib-5 A.2, showed a significant increase in TGW, but did not affect GNS. Moreover, the polymerization of QGw.CK4-cib-2D, QGl.CK4-cib-5 A.1 and QGl.CK4-cib-5 A.2 had a significant addition effect on TGW without reducing GNS, suggesting that these QTLs can work together as an excellent molecular module to break the trade-off between GNS and TGW in wheat high-yield breeding. By analysis of expression, sequence and function annotation TraesCS5A02G001400, TraesCS5A02G002700 and TraesCS5A02G003400 were predicted as the candidate genes for QGl.CK4-cib-5 A.1. Taken together, the present results lay a foundation for subsequent map-based cloning of these QTL and their utilization in wheat breeding.
Collapse
Affiliation(s)
- Tao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, Sichuan, China
- Chengdu Plain Agricultural Ecology Research Station, Chinese Academy of Sciences, Deyang, 618499, Sichuan, China
| | - Yanyan Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, Sichuan, China
- Chengdu Plain Agricultural Ecology Research Station, Chinese Academy of Sciences, Deyang, 618499, Sichuan, China
| | - ZhengXi Lin
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, Sichuan, China
- Chengdu Plain Agricultural Ecology Research Station, Chinese Academy of Sciences, Deyang, 618499, Sichuan, China
| | - Jinghui Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, Sichuan, China
- Chengdu Plain Agricultural Ecology Research Station, Chinese Academy of Sciences, Deyang, 618499, Sichuan, China
| | - Juanyu Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, Sichuan, China
- Chengdu Plain Agricultural Ecology Research Station, Chinese Academy of Sciences, Deyang, 618499, Sichuan, China
| | - Qiang Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, Sichuan, China
- Chengdu Plain Agricultural Ecology Research Station, Chinese Academy of Sciences, Deyang, 618499, Sichuan, China
| | - Furong Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, Sichuan, China
- Chengdu Plain Agricultural Ecology Research Station, Chinese Academy of Sciences, Deyang, 618499, Sichuan, China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, Sichuan, China
- Chengdu Plain Agricultural Ecology Research Station, Chinese Academy of Sciences, Deyang, 618499, Sichuan, China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, Sichuan, China
- Chengdu Plain Agricultural Ecology Research Station, Chinese Academy of Sciences, Deyang, 618499, Sichuan, China
| | - Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, Sichuan, China.
- Chengdu Plain Agricultural Ecology Research Station, Chinese Academy of Sciences, Deyang, 618499, Sichuan, China.
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, Sichuan, China.
- Chengdu Plain Agricultural Ecology Research Station, Chinese Academy of Sciences, Deyang, 618499, Sichuan, China.
| |
Collapse
|
3
|
Li G, Ren Y, Yang Y, Chen S, Zheng J, Zhang X, Li J, Chen M, Sun X, Lv C, Li X, Zhang B, Sun X, Li Y, Zhao M, Dong C, Tang J, Huang Z, Peng Y, Gu D, Wang Z, Zheng H, Shi C, Kang G, Zheng T, Chen F, Wang D, Zhang K, Yin G. Genomic analysis of Zhou8425B, a key founder parent, reveals its genetic contributions to elite agronomic traits in wheat breeding. PLANT COMMUNICATIONS 2025; 6:101222. [PMID: 39690740 PMCID: PMC11956103 DOI: 10.1016/j.xplc.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/14/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
High-quality genome information is essential for efficiently deciphering and improving crop traits. Here, we report a highly contiguous and accurate hexaploid genome assembly for the key wheat breeding parent Zhou8425B, an elite 1BL/1RS translocation line with durable adult plant resistance (APR) against yellow rust (YR) disease. By integrating HiFi and Hi-C sequencing reads, we have generated a 14.75-Gb genome assembly for Zhou8425B with a contig N50 of 70.94 and a scaffold N50 of 735.11 Mb. Comparisons with previously sequenced common wheat cultivars shed light on structural changes in the 1RS chromosome arm, which has been extensively used in wheat improvement. Interestingly, Zhou8425B 1RS carries more genes encoding AP2/ERF-ERF or B3 transcription factors than its counterparts in four previously sequenced wheat and rye genotypes. The Zhou8425B genome assembly aided in the fine mapping of a new APR locus (YrZH3BS) that confers resistance to YR disease and promotes grain yield under field conditions. Notably, pyramiding YrZH3BS with two previously characterized APR loci (YrZH22 and YrZH84) can further reduce YR severity and enhance grain yield, with the triple combination (YrZH3B + YrZH22 + YrZH84) having the greatest effect. Finally, the founder genotype effects of Zhou8425B were explored using publicly available genome resequencing data, which reveals the presence of important Zhou8425B genomic blocks in its derivative cultivars. Our data demonstrate the value of the Zhou8425B genome assembly for further study of the structural and functional characteristics of 1RS, the genetic basis of durable YR resistance, and founder genotype effects in wheat breeding. Our resources will facilitate the development of elite wheat cultivars through genomics-assisted breeding.
Collapse
Affiliation(s)
- Guangwei Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Yan Ren
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Yuxin Yang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Shulin Chen
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Jizhou Zheng
- Henan Fengdekang Seed Industry Co., Ltd, Zhengzhou 450001, China
| | - Xiaoqing Zhang
- National Agro-Tech Extension and Service Center, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Junlong Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Mengen Chen
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Xiaonan Sun
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Chunlei Lv
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Xiaode Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Bingbing Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Xiao Sun
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Yujia Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Mingtian Zhao
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Chunhao Dong
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Jianwei Tang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Zhenpu Huang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Yanyan Peng
- Henan Fengdekang Seed Industry Co., Ltd, Zhengzhou 450001, China
| | - Dengbin Gu
- Henan Fengdekang Seed Industry Co., Ltd, Zhengzhou 450001, China
| | - Zhiyong Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Hongyuan Zheng
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Cuilan Shi
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Guozhang Kang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Tiancun Zheng
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; Henan Fengdekang Seed Industry Co., Ltd, Zhengzhou 450001, China
| | - Feng Chen
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China.
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China.
| | - Kunpu Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China.
| | - Guihong Yin
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Li S, Li T, Zhang P, Wang X, Feng W, Zhang Y, Chen B, Liu Y, Zhan G, Hao C, Zhang X, Kang Z, Mao H. The E3 ubiquitin ligase TaGW2 facilitates TaSnRK1γ and TaVPS24 degradation to enhance stripe rust susceptibility in wheat. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:750-765. [PMID: 39625738 PMCID: PMC11869196 DOI: 10.1111/pbi.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/15/2024] [Accepted: 11/18/2024] [Indexed: 03/01/2025]
Abstract
Wheat stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), threatens global wheat production, and therefore discovering genes involved in stripe rust susceptibility is essential for balancing yield with disease resistance in sustainable breeding strategies. Although TaGW2 is well known to negatively regulate wheat kernel size and weight, its role in stress response remains unclear. Here, we found that TaGW2 transcription levels increased following inoculation with Pst or treatment with flg22 or chitin. TaGW2 knockdown lines showed enhanced resistance to multiple Pst races, while TaGW2 overexpression reduced host defence response, promoted Pst growth and development and increased wheat susceptibility to Pst. Additionally, TaGW2 could mediate the ubiquitination and degradation of both TaSnRK1γ and TaVPS24 via the 26S proteasome pathway. Silencing TaSnRK1γ or TaVPS24 in wheat increased sensitivity to Pst, whereas overexpressing either gene enhanced wheat defence response, indicating that TaSnRK1γ and TaVPS24 act as positive regulators of Pst resistance. This study reveals a previously unrecognized mechanism inhibiting plant immunity to Pst through TaGW2-mediated ubiquitination and degradation of TaSnRK1γ and TaVPS24. This work also provides crucial genetic resources for breeding high-yield, stripe rust-resistant wheat varieties.
Collapse
Affiliation(s)
- Shumin Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Tian Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Peiyin Zhang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Xuemin Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Wenxuan Feng
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yifang Zhang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Bin Chen
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuling Liu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Gangming Zhan
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xueyong Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Hude Mao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
5
|
Wang Y, Shaw RK, Fan X. Review: Recent advances in unraveling the genetic architecture of kernel row number in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112366. [PMID: 39710150 DOI: 10.1016/j.plantsci.2024.112366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Kernel row number (KRN) is an important trait in maize that significantly impacts maize yield. The high heritability of KRN underscores its significance in maize breeding programs. In this review, we summarize recent advances in understanding the mechanisms underlying the formation, differentiation, and regulation of KRN in maize. Specifically, we have discussed gene mapping studies, functional validation of KRN-associated genes, and the application of gene editing techniques to KRN in maize. We summarized the various methods used to map and fine-map QTLs controlling KRN and provide an overview of the current status of cloned KRN-regulating genes. Despite the identification of many genes associated with KRN, the complexity of its regulation-arising from multiple loci and intricate gene interactions-remains a challenge. Balancing KRN with kernel number per row (KNR) and kernel weight is critical for optimizing yield while ensuring stability across different environments. Furthermore, we analyzed the influence of environmental factors on KRN, noting that despite its high heritability, environmental conditions can significantly affect this trait. Combining genotype-phenotype relationships with environmental data using big data and artificial intelligence could enhance maize breeding efficiency and accelerate genetic gains. This review emphasizes the importance of balancing traits, integrating environmental factors, and leveraging advanced technologies in maize breeding to achieve optimal yield and stress tolerance. Finally, we outlined future research perspectives aimed at developing high-yielding maize varieties through advances in KRN-related research.
Collapse
Affiliation(s)
- Yizhu Wang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 65000, China.
| | - Ranjan K Shaw
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 65000, China.
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 65000, China.
| |
Collapse
|
6
|
Landau OA, Jamison BV, Riechers DE. Transcriptomic analysis reveals cloquintocet-mexyl-inducible genes in hexaploid wheat (Triticum aestivum L.). PLoS One 2025; 20:e0319151. [PMID: 39965030 PMCID: PMC11835315 DOI: 10.1371/journal.pone.0319151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
Identification and characterization of genes encoding herbicide-detoxifying enzymes is lacking in allohexaploid wheat (Triticum aestivum L.). Gene expression is frequently induced by herbicide safeners and implies the encoded enzymes serve a role in herbicide metabolism and detoxification. Cloquintocet-mexyl (CM) is a safener commonly utilized with halauxifen-methyl (HM), a synthetic auxin herbicide whose phytotoxic form is halauxifen acid (HA). Our first objective was to identify candidate HA-detoxifying genes via RNA-Seq by comparing untreated and CM-treated leaf tissue. On average, 81% of RNA-Seq library reads mapped uniquely to the reference genome and 76.4% of reads were mapped to a gene. Among the 103 significant differentially expressed genes (DEGs), functional annotations indicate the majority of DEGs encode proteins associated with herbicide or xenobiotic metabolism. This finding was further corroborated by gene ontology (GO) enrichment analysis, where several genes were assigned GO terms indicating oxidoreductase activity (34 genes) and transferase activity (45 genes). One of the significant DEGs is a member of the CYP81A subfamily of cytochrome P450s (CYPs; denoted as CYP81A-5A), which are of interest due to their ability to catalyze synthetic auxin detoxification. To investigate CYP expression induced by HM and/or CM, our second objective was to measure gene-specific expression of CYP81A-5A and its homoeologs (CYP81A-5B and CYP81A-5D) in untreated leaf tissue and leaf tissue treated with CM and HM over time using RT-qPCR. Relative to the reference gene (β-tubulin), basal CYP expression is high, expression among these CYPs varies over time, and expression for all CYPs is CM-inducible but not HM-inducible. Further analysis of CYP81A-5A, such as gene knock-out, overexpression experiments, or in vitro activity assays with purified enzyme are necessary to test the hypotheses that the encoded CYP detoxifies HA and that CM upregulates this reaction.
Collapse
Affiliation(s)
- Olivia A. Landau
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Brendan V. Jamison
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
7
|
Wang J, Wang H, Zhai J, Zhu F, Ren Y, Zhou J, Zhang Z, Luo L, Xu W. Identification of Ziziphus jujuba cv. Dongzao DNA Demethylase ZjROS1 Gene Family and Construction of CRISPR/Cas9-Mediated Gene-Editing Vector. Genes (Basel) 2025; 16:228. [PMID: 40004557 PMCID: PMC11855291 DOI: 10.3390/genes16020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
DNA methylation is one of the earliest and most extensively studied epigenetic regulatory mechanisms. The ROS1 (Repressor of Silencing 1) gene was first discovered in Arabidopsis thaliana, and it is a DNA demethylase that can remove 5-methylcytosine from DNA, thereby affecting DNA methylation levels and gene expression. Objectives: The objective of this study was to investigate the role of ROS1 in the development and maturation of Ziziphus jujuba cv. "Dongzao" fruit. Methods: We cloned the ROS1 gene and conducted bioinformatics and expression characteristics analyses on it. Results: Three ROS1 genes, named ZjROS1-1~3, was identified, and each member protein was localized in the nucleus, cytoskeleton, chloroplast, and vacuole. The promoter contained cis-elements such as light response, plant hormone signal transduction, and stress response cis-elements, and it interacted with many proteins such as CMT, MET, and ZDP. The results of the real-time fluorescence quantitative PCR show that ZjROS1 has specific expression patterns in different tissues of Z. jujuba cv. Dongzao, and the expression of ZjROS1-2 in flowers and fruits is high. At the same time, CRISPR/Cas9 technology was used to construct a gene-editing vector for ZjROS1, which provided a basis for the subsequent genetic transformation. Conclusions: In this study, the biological function of ZjROS1 was clarified and a gene-editing vector was constructed, which provided a theoretical basis for the regulation mechanism of demethylase ZjROS1 in the fruit ripening and development of Z. jujuba cv. Dongzao.
Collapse
Affiliation(s)
- Jiaqi Wang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (J.W.); (H.W.); (J.Z.); (F.Z.); (Y.R.); (J.Z.); (Z.Z.); (L.L.)
| | - Huiran Wang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (J.W.); (H.W.); (J.Z.); (F.Z.); (Y.R.); (J.Z.); (Z.Z.); (L.L.)
| | - Jiayi Zhai
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (J.W.); (H.W.); (J.Z.); (F.Z.); (Y.R.); (J.Z.); (Z.Z.); (L.L.)
| | - Fulun Zhu
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (J.W.); (H.W.); (J.Z.); (F.Z.); (Y.R.); (J.Z.); (Z.Z.); (L.L.)
| | - Yufeng Ren
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (J.W.); (H.W.); (J.Z.); (F.Z.); (Y.R.); (J.Z.); (Z.Z.); (L.L.)
- Innovation Team for Genetic Improvement of Economic Forest, North Minzu University, Yinchuan 750021, China
| | - Jun Zhou
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (J.W.); (H.W.); (J.Z.); (F.Z.); (Y.R.); (J.Z.); (Z.Z.); (L.L.)
- Innovation Team for Genetic Improvement of Economic Forest, North Minzu University, Yinchuan 750021, China
| | - Zhikai Zhang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (J.W.); (H.W.); (J.Z.); (F.Z.); (Y.R.); (J.Z.); (Z.Z.); (L.L.)
| | - Lan Luo
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (J.W.); (H.W.); (J.Z.); (F.Z.); (Y.R.); (J.Z.); (Z.Z.); (L.L.)
| | - Wendi Xu
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (J.W.); (H.W.); (J.Z.); (F.Z.); (Y.R.); (J.Z.); (Z.Z.); (L.L.)
- Innovation Team for Genetic Improvement of Economic Forest, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
8
|
Garcia-Oliveira AL, Ortiz R, Sarsu F, Rasmussen SK, Agre P, Asfaw A, Kante M, Chander S. The importance of genotyping within the climate-smart plant breeding value chain - integrative tools for genetic enhancement programs. FRONTIERS IN PLANT SCIENCE 2025; 15:1518123. [PMID: 39980758 PMCID: PMC11839310 DOI: 10.3389/fpls.2024.1518123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 02/22/2025]
Abstract
The challenges faced by today's agronomists, plant breeders, and their managers encompass adapting sustainably to climate variability while working with limited budgets. Besides, managers are dealing with a multitude of issues with different organizations working on similar initiatives and projects, leading to a lack of a sustainable impact on smallholder farmers. To transform the current food systems as a more sustainable and resilient model efficient solutions are needed to deliver and convey results. Challenges such as logistics, labour, infrastructure, and equity, must be addressed alongside adapting to increasingly unstable climate conditions which affect the life cycle of transboundary pathogens and pests. In this context, transforming food systems go far beyond just farmers and plant breeders and it requires substantial contributions from industry, global finances, transportation, energy, education, and country developmental sectors including legislators. As a result, a holistic approach is essential for achieving sustainable and resilient food systems to sustain a global population anticipated to reach 9.7 billion by 2050 and 11.2 billion by 2100. As of 2021, nearly 193 million individuals were affected by food insecurity, 40 million more than in 2020. Meanwhile, the digital world is rapidly advancing with the digital economy estimated at about 20% of the global gross domestic product, suggesting that digital technologies are increasingly accessible even in areas affected by food insecurity. Leveraging these technologies can facilitate the development of climate-smart cultivars that adapt effectively to climate variation, meet consumer preferences, and address human and livestock nutritional needs. Most economically important traits in crops are controlled by multiple loci often with recessive alleles. Considering particularly Africa, this continent has several agro-climatic zones, hence crops need to be adapted to these. Therefore, targeting specific loci using modern tools offers a precise and efficient approach. This review article aims to address how these new technologies can provide a better support to smallholder farmers.
Collapse
Affiliation(s)
- Ana Luísa Garcia-Oliveira
- Genetic Resources Program, Alliance Bioversity International and International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Fatma Sarsu
- Plant Breeding and Genetics Section, Joint FAO/IAEA Center, International Atomic Energy Agency, Vienna, Austria
| | | | - Paterne Agre
- Yam Breeding Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Asrat Asfaw
- Yam Breeding Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Moctar Kante
- Genetics, Genomics, and Crop Improvement Division, International Potato Center, Lima, Peru
| | - Subhash Chander
- Oilseeds Section, Department of Genetics & Plant Breeding, CCS Haryana Agricultural University, Hisar, India
| |
Collapse
|
9
|
Yao Y, Guo W, Gou J, Hu Z, Liu J, Ma J, Zong Y, Xin M, Chen W, Li Q, Wang Z, Zhang R, Uauy C, Baloch FS, Ni Z, Sun Q. Wheat2035: Integrating pan-omics and advanced biotechnology for future wheat design. MOLECULAR PLANT 2025; 18:272-297. [PMID: 39780492 DOI: 10.1016/j.molp.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Wheat (Triticum aestivum) production is vital for global food security, providing energy and protein to millions of people worldwide. Recent advancements in wheat research have led to significant increases in production, fueled by technological and scientific innovation. Here, we summarize the major advancements in wheat research, particularly the integration of biotechnologies and a deeper understanding of wheat biology. The shift from multi-omics to pan-omics approaches in wheat research has greatly enhanced our understanding of the complex genome, genomic variations, and regulatory networks to decode complex traits. We also outline key scientific questions, potential research directions, and technological strategies for improving wheat over the next decade. Since global wheat production is expected to increase by 60% in 2050, continued innovation and collaboration are crucial. Integrating biotechnologies and a deeper understanding of wheat biology will be essential for addressing future challenges in wheat production, ensuring sustainable practices and improved productivity.
Collapse
Affiliation(s)
- Yingyin Yao
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinying Gou
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jun Ma
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zihao Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Ruijie Zhang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Yenişehir, Mersin 33343, Turkey; Department of Plant Resources and Environment, Jeju National University, Jeju City, Republic of Korea
| | - Zhongfu Ni
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Qixin Sun
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Zolkiewicz K, Gruszka D. Take a deep BReath: Manipulating brassinosteroid homeostasis helps cereals adapt to environmental stress. PLANT PHYSIOLOGY 2024; 197:kiaf003. [PMID: 39761526 PMCID: PMC11781206 DOI: 10.1093/plphys/kiaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/20/2024] [Accepted: 12/07/2024] [Indexed: 02/01/2025]
Abstract
Global climate change leads to the increased occurrence of environmental stress (including drought and heat stress) during the vegetative and reproductive stages of cereal crop development. Thus, more attention should be given to developing new cereal cultivars with improved tolerance to environmental stress. However, during the development of new stress-tolerant cereal cultivars, the balance between improved stress responses (which occur at the expense of growth) and plant yield needs to be maintained. Thus, the urgent need for developing new cereal germplasm with improved stress tolerance could be fulfilled using semidwarf cereal mutants defective in brassinosteroid (BR) biosynthesis or signaling. BRs are steroid phytohormones that regulate various developmental and physiological processes throughout the plant life cycle. Mutants defective in BR biosynthesis or responses show reduced plant height (dwarfism or semi-dwarfism). Importantly, numerous reports indicate that genetic modification or biotechnological manipulation of BR biosynthesis or signaling genes in cereals such as rice (Oryza sativa), maize (Zea mays), wheat (Triticum aestivum), and barley (Hordeum vulgare), which are of crucial importance for global agriculture, may facilitate the development of cereal germplasm with improved stress tolerance. This review presents a comprehensive overview of the genetic manipulation of BR homeostasis in the above-mentioned cereal crops aimed at improving plant responses to various environmental stresses, such as drought, salinity, oxidative stress, thermal stress, and biotic stresses. We highlight target BR-related genes and the effects of genetic manipulation (gene editing, overexpression, and silencing or microRNA-mediated regulation) on plant adaptability to various stresses and provide future perspectives.
Collapse
Affiliation(s)
- Karolina Zolkiewicz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-032 Katowice, Poland
| | - Damian Gruszka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-032 Katowice, Poland
| |
Collapse
|
11
|
Liu Y, Yu R, Shen L, Sun M, Peng Y, Zeng Q, Shen K, Yu X, Wu H, Ye B, Wang Z, Sun Z, Liu D, Sun X, Zhang Z, Dong J, Dong J, Han D, He Z, Hao Y, Wu J, Guo Z. Genomic insights into the modifications of spike morphology traits during wheat breeding. PLANT, CELL & ENVIRONMENT 2024; 47:5470-5482. [PMID: 39205629 DOI: 10.1111/pce.15117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Over the past century, environmental changes have significantly impacted wheat spike morphology, crucial for adaptation and grain yield. However, the changes in wheat spike modifications during this period remain largely unknown. This study examines 16 spike morphology traits in 830 accessions released from 1900 to 2020. It finds that spike weight, grain number per spike (GN), and thousand kernel weight have significantly increased, while spike length has no significant change. The increase in fertile spikelets is due to fewer degenerated spikelets, resulting in a higher GN. Genome-wide association studies identified 49,994 significant SNPs, grouped into 293 genomic regions. The accumulation of favorable alleles in these genomic regions indicates the genetic basis for modification in spike morphology traits. Genetic network analysis of these genomic regions reveals the genetic basis for phenotypic correlations among spike morphology traits. The haplotypes of the identified genomic regions display obvious geographical differentiation in global accessions and environmental adaptation over the past 120 years. In summary, we reveal the genetic basis of adaptive evolution and the interactions of spike morphology, offering valuable resources for the genetic improvement of spike morphology to enhance environmental adaptation.
Collapse
Affiliation(s)
- Yangyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Rui Yu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, China
| | - Liping Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Mengjing Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yanchun Peng
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Kuocheng Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuchang Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - He Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Botao Ye
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziying Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiweng Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Danning Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Sun
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Zhiliang Zhang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jiayu Dong
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jing Dong
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, China
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Yuan P, Usman M, Liu W, Adhikari A, Zhang C, Njiti V, Xia Y. Advancements in Plant Gene Editing Technology: From Construct Design to Enhanced Transformation Efficiency. Biotechnol J 2024; 19:e202400457. [PMID: 39692063 DOI: 10.1002/biot.202400457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 12/19/2024]
Abstract
Plant gene editing technology has significantly advanced in recent years, thereby transforming both biotechnological research and agricultural practices. This review provides a comprehensive summary of recent advancements in this rapidly evolving field, showcasing significant discoveries from improved transformation efficiency to advanced construct design. The primary focus is on the maturation of the Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)9 system, which has emerged as a powerful tool for precise gene editing in plants. Through a detailed exploration, we elucidate the intricacies of integrating genetic modifications into plant genomes, shedding light on transport mechanisms, transformation techniques, and optimization strategies specific to CRISPR constructs. Furthermore, we explore the initiatives aimed at extending the frontiers of gene editing to nonmodel plant species, showcasing the growing scope of this technology. Overall, this comprehensive review highlights the significant impact of recent advancements in plant gene editing, illuminating its transformative potential in driving agricultural innovation and biotechnological progress.
Collapse
Affiliation(s)
- Pu Yuan
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Muhammad Usman
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Wenshan Liu
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Ashna Adhikari
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Chunquan Zhang
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, Mississippi, USA
| | - Victor Njiti
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, Mississippi, USA
| | - Ye Xia
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
13
|
Jian C, Pan Y, Liu S, Guo M, Huang Y, Cao L, Zhang W, Yan L, Zhang X, Hou J, Hao C, Li T. The TaGW2-TaSPL14 module regulates the trade-off between tiller number and grain weight in wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1953-1965. [PMID: 38924348 DOI: 10.1111/jipb.13723] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
IDEAL PLANT ARCHITECTURE1 (IPA1) is a pivotal gene controlling plant architecture and grain yield. However, little is known about the effects of Triticum aestivum SQUAMOSA PROMOTER-BINDING-LIKE 14 (TaSPL14), an IPA1 ortholog in wheat, on balancing yield traits and its regulatory mechanism in wheat (T. aestivum L.). Here, we determined that the T. aestivum GRAIN WIDTH2 (TaGW2)-TaSPL14 module influences the balance between tiller number and grain weight in wheat. Overexpression of TaSPL14 resulted in a reduced tiller number and increased grain weight, whereas its knockout had the opposite effect, indicating that TaSPL14 negatively regulates tillering while positively regulating grain weight. We further identified TaGW2 as a novel interacting protein of TaSPL14 and confirmed its ability to mediate the ubiquitination and degradation of TaSPL14. Based on our genetic evidence, TaGW2 acts as a positive regulator of tiller number, in addition to its known role as a negative regulator of grain weight, which is opposite to TaSPL14. Moreover, combinations of TaSPL14-7A and TaGW2-6A haplotypes exhibit significantly additive effects on tiller number and grain weight in wheat breeding. Our findings provide insight into how the TaGW2-TaSPL14 module regulates the trade-off between tiller number and grain weight and its potential application in improving wheat yield.
Collapse
Affiliation(s)
- Chao Jian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuxue Pan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shujuan Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mengjiao Guo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yilin Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lina Cao
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Weijun Zhang
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Liuling Yan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, 74078, Oklahoma, USA
| | - Xueyong Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Hou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tian Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
14
|
Chen T, Miao Y, Jing F, Gao W, Zhang Y, Zhang L, Zhang P, Guo L, Yang D. Genomic-wide analysis reveals seven in absentia genes regulating grain development in wheat (Triticum aestivum L.). THE PLANT GENOME 2024; 17:e20480. [PMID: 38840306 DOI: 10.1002/tpg2.20480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
Seven in absentia proteins, which contain a conserved SINA domain, are involved in regulating various aspects of wheat (Triticum aestivum L.) growth and development, especially in response to environmental stresses. However, it is unclear whether TaSINA family members are involved in regulating grain development until now. In this study, the expression pattern, genomic polymorphism, and relationship with grain-related traits were analyzed for all TaSINA members. Most of the TaSINA genes identified showed higher expression levels in young wheat spikes or grains than other organs. The genomic polymorphism analysis revealed that at least 62 TaSINA genes had different haplotypes, where the haplotypes of five genes were significantly correlated with grain-related traits. Kompetitive allele-specific PCR markers were developed to confirm the single nucleotide polymorphisms in TaSINA101 and TaSINA109 among the five selected genes in a set of 292 wheat accessions. The TaSINA101-Hap II and TaSINA109-Hap II haplotypes had higher grain weight and width compared to TaSINA101-Hap I and TaSINA109-Hap I in at least three environments, respectively. The qRT-PCR assays revealed that TaSINA101 was highly expressed in the palea shell, seed coat, and embryo in young wheat grains. The TaSINA101 protein was unevenly distributed in the nucleus when transiently expressed in the protoplast of wheat. Three homozygous TaSINA101 transgenic lines in rice (Oryza sativa L.) showed higher grain weight and size compared to the wild type. These findings provide valuable insight into the biological function and elite haplotype of TaSINA family genes in wheat grain development at a genomic-wide level.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongping Miao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fanli Jing
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weidong Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yanyan Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Long Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Lijian Guo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
15
|
Zhang Y, Huang C, Xiong R. Advanced materials for intracellular delivery of plant cells: Strategies, mechanisms and applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2024; 160:100821. [DOI: 10.1016/j.mser.2024.100821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Ji Y, Hewavithana T, Sharpe AG, Jin L. Understanding grain development in the Poaceae family by comparing conserved and distinctive pathways through omics studies in wheat and maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1393140. [PMID: 39100085 PMCID: PMC11295249 DOI: 10.3389/fpls.2024.1393140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
The Poaceae family, commonly known as the grass family, encompasses a diverse group of crops that play an essential role in providing food, fodder, biofuels, environmental conservation, and cultural value for both human and environmental well-being. Crops in Poaceae family are deeply intertwined with human societies, economies, and ecosystems, making it one of the most significant plant families in the world. As the major reservoirs of essential nutrients, seed grain of these crops has garnered substantial attention from researchers. Understanding the molecular and genetic processes that controls seed formation, development and maturation can provide insights for improving crop yield, nutritional quality, and stress tolerance. The diversity in photosynthetic pathways between C3 and C4 plants introduces intriguing variations in their physiological and biochemical processes, potentially affecting seed development. In this review, we explore recent studies performed with omics technologies, such as genomics, transcriptomics, proteomics and metabolomics that shed light on the mechanisms underlying seed development in wheat and maize, as representatives of C3 and C4 plants respectively, providing insights into their unique adaptations and strategies for reproductive success.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Thulani Hewavithana
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew G. Sharpe
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lingling Jin
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
17
|
Kumari R, Saha T, Kumar P, Singh AK. CRISPR/Cas9-mediated genome editing technique to control fall armyworm ( Spodoptera frugiperda) in crop plants with special reference to maize. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1161-1173. [PMID: 39100879 PMCID: PMC11291824 DOI: 10.1007/s12298-024-01486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Fall Armyworm imposes a major risk to agricultural losses. Insecticides have historically been used to manage its infestations, but it eventually becomes resistant to them. To combat the pest, a more recent strategy based on the use of transgenic maize that expresses Bt proteins such as Cry1F from the bacteria has been used. Nonetheless, there have been numerous reports of Cry1F maize resistance in FAW populations. Nowadays, the more effective and less time-consuming genome editing method known as CRISPR/Cas9 technology has gradually supplanted these various breeding techniques. This method successfully edits the genomes of various insects, including Spodoptera frugiperda. On the other hand, this new technique can change an insect's DNA to overcome its tolerance to specific insecticides or to generate a gene drive. The production of plant cultivars resistant to fall armyworms holds great potential for the sustainable management of this pest, given the swift advancement of CRISPR/Cas9 technology and its varied uses. Thus, this review article discussed and critically assessed the use of CRISPR/Cas9 genome-editing technology in long-term fall armyworm pest management. However, this review study focuses primarily on the mechanism of the CRISPR-Cas9 system in both crop plants and insects for FAW management.
Collapse
Affiliation(s)
- Rima Kumari
- Division of Plant Biotechnology, College of Agricultural Biotechnology, Bihar Agricultural University, Sabour, Bihar 813210 India
| | - Tamoghna Saha
- Department of Entomology, Bihar Agricultural University, Sabour, Bihar 813210 India
| | - Pankaj Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Sabour, Bihar 813210 India
| | - A. K. Singh
- Bihar Agricultural University, Sabour, 813210 Bihar India
| |
Collapse
|
18
|
Vicentin L, Canales J, Calderini DF. The trade-off between grain weight and grain number in wheat is explained by the overlapping of the key phases determining these major yield components. FRONTIERS IN PLANT SCIENCE 2024; 15:1380429. [PMID: 38919825 PMCID: PMC11196766 DOI: 10.3389/fpls.2024.1380429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
Enhancing grain yield is a primary goal in the cultivation of major staple crops, including wheat. Recent research has focused on identifying the physiological and molecular factors that influence grain weight, a critical determinant of crop yield. However, a bottleneck has arisen due to the trade-off between grain weight and grain number, whose underlying causes remain elusive. In a novel approach, a wheat expansin gene, TaExpA6, known for its expression in root tissues, was engineered to express in the grains of the spring wheat cultivar Fielder. This modification led to increases in both grain weight and yield without adversely affecting grain number. Conversely, a triple mutant line targeting the gene TaGW2, a known negative regulator of grain weight, resulted in increased grain weight but decreased grain number, potentially offsetting yield gains. This study aimed to evaluate the two aforementioned modified wheat genotypes (TaExpA6 and TaGW2) alongside their respective wild-type counterparts. Conducted in southern Chile, the study employed a Complete Randomized Block Design with four replications, under well-managed field conditions. The primary metrics assessed were grain yield, grain number, and average grain weight per spike, along with detailed measurements of grain weight and dimensions across the spike, ovary weight at pollination (Waddington's scale 10), and post-anthesis expression levels of TaExpA6 and TaGW2. Results indicated that both the TaExpA6 and the triple mutant lines achieved significantly higher average grain weights compared to their respective wild types. Notably, the TaExpA6 line did not exhibit a reduction in grain number, thereby enhancing grain yield per spike. By contrast, the triple mutant line showed a reduced grain number per spike, with no significant change in overall yield. TaExpA6 expression peaked at 10 days after anthesis (DAA), and its effect on grain weight over the WT became apparent after 15 DAA. In contrast, TaGW2 gene disruption in the triple mutant line increased ovary size at anthesis, leading to improved grain weight above the WT from the onset of grain filling. These findings suggest that the trade-off between grain weight and number could be attributed to the overlapping of the critical periods for the determination of these traits.
Collapse
Affiliation(s)
- Lucas Vicentin
- Graduate School, Faculty of Agricultural Science, Universidad Austral de Chile, Valdivia, Chile
- Institute of Plant Production and Protection, Universidad Austral de Chile, Valdivia, Chile
| | - Javier Canales
- Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Valdivia, Chile
- National Agency for Research and Development of Chile-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Daniel F. Calderini
- Institute of Plant Production and Protection, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
19
|
Akanmu AO, Asemoloye MD, Marchisio MA, Babalola OO. Adoption of CRISPR-Cas for crop production: present status and future prospects. PeerJ 2024; 12:e17402. [PMID: 38860212 PMCID: PMC11164064 DOI: 10.7717/peerj.17402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/25/2024] [Indexed: 06/12/2024] Open
Abstract
Background Global food systems in recent years have been impacted by some harsh environmental challenges and excessive anthropogenic activities. The increasing levels of both biotic and abiotic stressors have led to a decline in food production, safety, and quality. This has also contributed to a low crop production rate and difficulty in meeting the requirements of the ever-growing population. Several biotic stresses have developed above natural resistance in crops coupled with alarming contamination rates. In particular, the multiple antibiotic resistance in bacteria and some other plant pathogens has been a hot topic over recent years since the food system is often exposed to contamination at each of the farm-to-fork stages. Therefore, a system that prioritizes the safety, quality, and availability of foods is needed to meet the health and dietary preferences of everyone at every time. Methods This review collected scattered information on food systems and proposes methods for plant disease management. Multiple databases were searched for relevant specialized literature in the field. Particular attention was placed on the genetic methods with special interest in the potentials of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and Cas (CRISPR associated) proteins technology in food systems and security. Results The review reveals the approaches that have been developed to salvage the problem of food insecurity in an attempt to achieve sustainable agriculture. On crop plants, some systems tend towards either enhancing the systemic resistance or engineering resistant varieties against known pathogens. The CRISPR-Cas technology has become a popular tool for engineering desired genes in living organisms. This review discusses its impact and why it should be considered in the sustainable management, availability, and quality of food systems. Some important roles of CRISPR-Cas have been established concerning conventional and earlier genome editing methods for simultaneous modification of different agronomic traits in crops. Conclusion Despite the controversies over the safety of the CRISPR-Cas system, its importance has been evident in the engineering of disease- and drought-resistant crop varieties, the improvement of crop yield, and enhancement of food quality.
Collapse
Affiliation(s)
- Akinlolu Olalekan Akanmu
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, University of North-West, Mmabatho, South Africa
| | - Michael Dare Asemoloye
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, University of North-West, Mmabatho, South Africa
| | | | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, University of North-West, Mmabatho, South Africa
| |
Collapse
|
20
|
Li C, He YQ, Yu J, Kong JR, Ruan CC, Yang ZK, Zhuang JJ, Wang YX, Xu JH. The rice LATE ELONGATED HYPOCOTYL enhances salt tolerance by regulating Na +/K + homeostasis and ABA signalling. PLANT, CELL & ENVIRONMENT 2024; 47:1625-1639. [PMID: 38282386 DOI: 10.1111/pce.14835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
The circadian clock plays multiple functions in the regulation of plant growth, development and response to various abiotic stress. Here, we showed that the core oscillator component late elongated hypocotyl (LHY) was involved in rice response to salt stress. The mutations of OsLHY gene led to reduced salt tolerance in rice. Transcriptomic analyses revealed that the OsLHY gene regulates the expression of genes related to ion homeostasis and the abscisic acid (ABA) signalling pathway, including genes encoded High-affinity K+ transporters (OsHKTs) and the stress-activated protein kinases (OsSAPKs). We demonstrated that OsLHY directly binds the promoters of OsHKT1;1, OsHKT1;4 and OsSAPK9 to regulate their expression. Moreover, the ossapk9 mutants exhibited salt tolerance under salt stress. Taken together, our findings revealed that OsLHY integrates ion homeostasis and the ABA pathway to regulate salt tolerance in rice, providing insights into our understanding of how the circadian clock controls rice response to salt stress.
Collapse
Affiliation(s)
- Chao Li
- Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong, China
| | - Yi-Qin He
- Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
- Yazhou Bay Seed Laboratory, Yazhou Bay Science and Technology City, Sanya, China
| | - Jie Yu
- Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
- Yazhou Bay Seed Laboratory, Yazhou Bay Science and Technology City, Sanya, China
| | - Jia-Rui Kong
- Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
| | - Cheng-Cheng Ruan
- Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhen-Kun Yang
- Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
- Yazhou Bay Seed Laboratory, Yazhou Bay Science and Technology City, Sanya, China
| | - Jun-Jie Zhuang
- Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
| | - Yu-Xiao Wang
- Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
- Yazhou Bay Seed Laboratory, Yazhou Bay Science and Technology City, Sanya, China
| | - Jian-Hong Xu
- Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong, China
- Hainan Institute, Zhejiang University, Sanya, China
- Yazhou Bay Seed Laboratory, Yazhou Bay Science and Technology City, Sanya, China
| |
Collapse
|
21
|
Zhao X, Zhu H, Liu F, Wang J, Zhou C, Yuan M, Zhao X, Li Y, Teng W, Han Y, Zhan Y. Integrating Genome-Wide Association Study, Transcriptome and Metabolome Reveal Novel QTL and Candidate Genes That Control Protein Content in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:1128. [PMID: 38674535 PMCID: PMC11054237 DOI: 10.3390/plants13081128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Protein content (PC) is crucial to the nutritional quality of soybean [Glycine max (L.) Merrill]. In this study, a total of 266 accessions were used to perform a genome-wide association study (GWAS) in three tested environments. A total of 23,131 high-quality SNP markers (MAF ≥ 0.02, missing data ≤ 10%) were identified. A total of 40 association signals were significantly associated with PC. Among them, five novel quantitative trait nucleotides (QTNs) were discovered, and another 32 QTNs were found to be overlapping with the genomic regions of known quantitative trait loci (QTL) related to soybean PC. Combined with GWAS, metabolome and transcriptome sequencing, 59 differentially expressed genes (DEGs) that might control the change in protein content were identified. Meantime, four commonly upregulated differentially abundant metabolites (DAMs) and 29 commonly downregulated DAMs were found. Remarkably, the soybean gene Glyma.08G136900, which is homologous with Arabidopsis hydroxyproline-rich glycoproteins (HRGPs), may play an important role in improving the PC. Additionally, Glyma.08G136900 was divided into two main haplotype in the tested accessions. The PC of haplotype 1 was significantly lower than that of haplotype 2. The results of this study provided insights into the genetic mechanisms regulating protein content in soybean.
Collapse
Affiliation(s)
- Xunchao Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Hanhan Zhu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Fang Liu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Jie Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Changjun Zhou
- Daqing Branch, Heilongjiang Academy of Agricultural Science, Daqing 163711, China;
| | - Ming Yuan
- Qiqihar Branch, Heilongjiang Academy of Agricultural Science, Qiqihar 161006, China;
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Yongguang Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| |
Collapse
|
22
|
Haber Z, Sharma D, Selvaraj KSV, Sade N. Is CRISPR/Cas9-based multi-trait enhancement of wheat forthcoming? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112021. [PMID: 38311249 DOI: 10.1016/j.plantsci.2024.112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technologies have been implemented in recent years in the genome editing of eukaryotes, including plants. The original system of knocking out a single gene by causing a double-strand break (DSB), followed by non-homologous end joining (NHEJ) or Homology-directed repair (HDR) has undergone many adaptations. These adaptations include employing CRISPR/Cas9 to upregulate gene expression or to cause specific small changes to the DNA sequence of the gene-of-interest. In plants, multiplexing, i.e., inducing multiple changes by CRISPR/Cas9, is extremely relevant due to the redundancy of many plant genes, and the time- and labor-consuming generation of stable transgenic plant lines via crossing. Here we discuss relevant examples of various traits, such as yield, biofortification, gluten content, abiotic stress tolerance, and biotic stress resistance, which have been successfully manipulated using CRISPR/Cas9 in plants. While existing studies have primarily focused on proving the impact of CRISPR/Cas9 on a single trait, there is a growing interest among researchers in creating a multi-stress tolerant wheat cultivar 'super wheat', to commercially and sustainably enhance wheat yields under climate change. Due to the complexity of the technical difficulties in generating multi-target CRISPR/Cas9 lines and of the interactions between stress responses, we propose enhancing already commercial local landraces with higher yield traits along with stress tolerances specific to the respective localities, instead of generating a general 'super wheat'. We hope this will serve as the sustainable solution to commercially enhancing crop yields under both stable and challenging environmental conditions.
Collapse
Affiliation(s)
- Zechariah Haber
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Davinder Sharma
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - K S Vijai Selvaraj
- Vegetable Research Station, Tamil Nadu Agricultural University, Palur 607102, Tamil Nadu, India
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
23
|
Bhoite R, Han Y, Chaitanya AK, Varshney RK, Sharma DL. Genomic approaches to enhance adaptive plasticity to cope with soil constraints amidst climate change in wheat. THE PLANT GENOME 2024; 17:e20358. [PMID: 37265088 DOI: 10.1002/tpg2.20358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/09/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
Climate change is varying the availability of resources, soil physicochemical properties, and rainfall events, which collectively determines soil physical and chemical properties. Soil constraints-acidity (pH < 6), salinity (pH ≤ 8.5), sodicity, and dispersion (pH > 8.5)-are major causes of wheat yield loss in arid and semiarid cropping systems. To cope with changing environments, plants employ adaptive strategies such as phenotypic plasticity, a key multifaceted trait, to promote shifts in phenotypes. Adaptive strategies for constrained soils are complex, determined by key functional traits and genotype × environment × management interactions. The understanding of the molecular basis of stress tolerance is particularly challenging for plasticity traits. Advances in sequencing and high-throughput genomics technologies have identified functional alleles in gene-rich regions, haplotypes, candidate genes, mechanisms, and in silico gene expression profiles at various growth developmental stages. Our review focuses on favorable alleles for enhanced gene expression, quantitative trait loci, and epigenetic regulation of plant responses to soil constraints, including heavy metal stress and nutrient limitations. A strategy is then described for quantitative traits in wheat by investigating significant alleles and functional characterization of variants, followed by gene validation using advanced genomic tools, and marker development for molecular breeding and genome editing. Moreover, the review highlights the progress of gene editing in wheat, multiplex gene editing, and novel alleles for smart control of gene expression. Application of these advanced genomic technologies to enhance plasticity traits along with soil management practices will be an effective tool to build yield, stability, and sustainability on constrained soils in the face of climate change.
Collapse
Affiliation(s)
- Roopali Bhoite
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| | - Yong Han
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia
| | - Alamuru Krishna Chaitanya
- Grains Genetics Portfolio, University of Southern Queensland, Centre for Crop Health, Toowoomba, Queensland, Australia
| | - Rajeev K Varshney
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia
| | - Darshan Lal Sharma
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
24
|
Kis A, Polgári D, Dalmadi Á, Ahmad I, Rakszegi M, Sági L, Csorba T, Havelda Z. Targeted mutations in the GW2.1 gene modulate grain traits and induce yield loss in barley. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111968. [PMID: 38157889 DOI: 10.1016/j.plantsci.2023.111968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Grain Width and Weight 2 (GW2) is an E3-ubiquitin ligase-encoding gene that negatively regulates the size and weight of the grain in cereal species. Therefore, disabling GW2 gene activity was suggested for enhancing crop productivity. We show here that CRISPR/Cas-mediated mutagenesis of the barley GW2.1 homologue results in the development of elongated grains and increased protein content. At the same time, GW2.1 loss of function induces a significant grain yield deficit caused by reduced spike numbers and low grain setting. We also show that the converse effect caused by GW2.1 absence on crop yield and protein content is largely independent of cultivation conditions. These findings indicate that the barley GW2.1 gene is necessary for the optimization between yield and grain traits. Altogether, our data show that the loss of GW2.1 gene activity in barley is associated with pleiotropic effects negatively affecting the development of generative organs and consequently the grain production. Our findings contribute to the better understanding of grain development and the utilisation of GW2.1 control in quantitative and qualitative genetic improvement of barley.
Collapse
Affiliation(s)
- András Kis
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
| | - Dávid Polgári
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary; Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary; Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Hungary
| | - Ágnes Dalmadi
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary; Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Hungary
| | - Imtiaz Ahmad
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
| | - Marianna Rakszegi
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - László Sági
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary; Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Hungary
| | - Tibor Csorba
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
| | - Zoltán Havelda
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary; Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Hungary.
| |
Collapse
|
25
|
Herrera-Ubaldo H. Less water, more seeds? The E3 ligase TaGW2 regulates drought resistance in wheat. THE PLANT CELL 2024; 36:495-496. [PMID: 38109462 PMCID: PMC10896284 DOI: 10.1093/plcell/koad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Affiliation(s)
- Humberto Herrera-Ubaldo
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
26
|
Li S, Zhang Y, Liu Y, Zhang P, Wang X, Chen B, Ding L, Nie Y, Li F, Ma Z, Kang Z, Mao H. The E3 ligase TaGW2 mediates transcription factor TaARR12 degradation to promote drought resistance in wheat. THE PLANT CELL 2024; 36:605-625. [PMID: 38079275 PMCID: PMC10896296 DOI: 10.1093/plcell/koad307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/07/2023] [Indexed: 02/27/2024]
Abstract
Drought stress limits crop yield, but the molecular modulators and their mechanisms underlying the trade-off between drought resistance and crop growth and development remain elusive. Here, a grain width and weight2 (GW2)-like really interesting new gene finger E3 ligase, TaGW2, was identified as a pivotal regulator of both kernel development and drought responses in wheat (Triticum aestivum). TaGW2 overexpression enhances drought resistance but leads to yield drag under full irrigation conditions. In contrast, TaGW2 knockdown or knockout attenuates drought resistance but remarkably increases kernel size and weight. Furthermore, TaGW2 directly interacts with and ubiquitinates the type-B Arabidopsis response regulator TaARR12, promoting its degradation via the 26S proteasome. Analysis of TaARR12 overexpression and knockdown lines indicated that TaARR12 represses the drought response but does not influence grain yield in wheat. Further DNA affinity purification sequencing combined with transcriptome analysis revealed that TaARR12 downregulates stress-responsive genes, especially group-A basic leucine zipper (bZIP) genes, resulting in impaired drought resistance. Notably, TaARR12 knockdown in the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated tagw2 knockout mutant leads to significantly higher drought resistance and grain yield compared to wild-type plants. Collectively, these findings show that the TaGW2-TaARR12 regulatory module is essential for drought responses, providing a strategy for improving stress resistance in high-yield wheat varieties.
Collapse
Affiliation(s)
- Shumin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peiyin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuemin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingxiong Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fangfang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenbing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Yangling Seed Industry Innovation Center, Yangling, Shaanxi 712100, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
27
|
Ahmar S, Usman B, Hensel G, Jung KH, Gruszka D. CRISPR enables sustainable cereal production for a greener future. TRENDS IN PLANT SCIENCE 2024; 29:179-195. [PMID: 37981496 DOI: 10.1016/j.tplants.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has become the most important tool for targeted genome editing in many plant and animal species over the past decade. The CRISPR/Cas9 technology has also sparked a flood of applications and technical advancements in genome editing in the key cereal crops, including rice, wheat, maize, and barley. Here, we review advanced uses of CRISPR/Cas9 and derived systems in genome editing of cereal crops to enhance a variety of agronomically important features. We also highlight new technological advances for delivering preassembled Cas9-gRNA ribonucleoprotein (RNP)-editing systems, multiplex editing, gain-of-function strategies, the use of artificial intelligence (AI)-based tools, and combining CRISPR with novel speed breeding (SB) and vernalization strategies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Babar Usman
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, D-40225 Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 783 71 Olomouc, Czech Republic
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Republic of Korea.
| | - Damian Gruszka
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
28
|
Bi C, Wei C, Li J, Wen S, Zhao H, Yu J, Shi X, Zhang Y, Liu Q, Zhang Y, Li B, You M. A novel variation of TaGW2-6B increases grain weight without penalty in grain protein content in wheat ( Triticum aestivum L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:15. [PMID: 38362529 PMCID: PMC10864231 DOI: 10.1007/s11032-024-01455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Yield and quality are two crucial breeding objects of wheat therein grain weight and grain protein content (GPC) are two key relevant factors correspondingly. Investigations of their genetic mechanisms represent special significance for breeding. In this study, 199 F2 plants and corresponding F2:3 families derived from Nongda3753 (ND3753) and its EMS-generated mutant 564 (M564) were used to investigate the genetic basis of larger grain and higher GPC of M564. QTL analysis identified a total of 33 environmentally stable QTLs related to thousand grain weight (TGW), grain area (GA), grain circle (GC), grain length (GL), grain width (GW), and GPC on chromosomes 1B, 2A, 2B, 4D, 6B, and 7D, respectively, among which QGw.cau-6B.1, QTgw.cau-6B.1, QGa.cau-6B.1, and QGc.cau-6B.1 shared overlap confidence interval on chromosome 6B. This interval contained the TaGW2 gene playing the same role as the QTLs, so TaGW2-6B was cloned and sequenced. Sequence alignment revealed two G/A SNPs between two parents, among which the SNP in the seventh exon led to a premature termination in M564. A KASP marker was developed based on the SNP, and single-marker analysis on biparental populations showed that the mutant allele could significantly increase GW and TGW, but had no effect on GPC. Distribution detection of the mutant allele through KASP marker genotyping and sequence alignment against databases ascertained that no materials harbored this allele within natural populations. This allele was subsequently introduced into three different varieties through molecular marker-assisted backcrossing, and it was revealed that the allele had a significant effect on simultaneously increasing GW, TGW, and even GPC in all of three backgrounds. Summing up the above, it could be concluded that a novel elite allele of TaGW2-6B was artificially created and might play an important role in wheat breeding for high yield and quality. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01455-y.
Collapse
Affiliation(s)
- Chan Bi
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Chaoxiong Wei
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Jinghui Li
- Wheat Center, Henan Institute of Science and Technology, Henan Provincial Key Laboratory of Hybrid Wheat, Xinxiang, 453003 China
| | - Shaozhe Wen
- Department of Landscape and Garden, Yangzhou Polytechnic College, Yangzhou, 225009 China
| | - Huanhuan Zhao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Jiazheng Yu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Xintian Shi
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Yuan Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Qiaofeng Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Yufeng Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Baoyun Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Mingshan You
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
29
|
Jia J, Zhao G, Li D, Wang K, Kong C, Deng P, Yan X, Zhang X, Lu Z, Xu S, Jiao Y, Chong K, Liu X, Cui D, Li G, Zhang Y, Du C, Wu L, Li T, Yan D, Zhan K, Chen F, Wang Z, Zhang L, Kong X, Ru Z, Wang D, Gao L. Genome resources for the elite bread wheat cultivar Aikang 58 and mining of elite homeologous haplotypes for accelerating wheat improvement. MOLECULAR PLANT 2023; 16:1893-1910. [PMID: 37897037 DOI: 10.1016/j.molp.2023.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 07/12/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Despite recent progress in crop genomics studies, the genomic changes brought about by modern breeding selection are still poorly understood, thus hampering genomics-assisted breeding, especially in polyploid crops with compound genomes such as common wheat (Triticum aestivum). In this work, we constructed genome resources for the modern elite common wheat variety Aikang 58 (AK58). Comparative genomics between AK58 and the landrace cultivar Chinese Spring (CS) shed light on genomic changes that occurred through recent varietal improvement. We also explored subgenome diploidization and divergence in common wheat and developed a homoeologous locus-based genome-wide association study (HGWAS) approach, which was more effective than single homoeolog-based GWAS in unraveling agronomic trait-associated loci. A total of 123 major HGWAS loci were detected using a genetic population derived from AK58 and CS. Elite homoeologous haplotypes (HHs), formed by combinations of subgenomic homoeologs of the associated loci, were found in both parents and progeny, and many could substantially improve wheat yield and related traits. We built a website where users can download genome assembly sequence and annotation data for AK58, perform blast analysis, and run JBrowse. Our work enriches genome resources for wheat, provides new insights into genomic changes during modern wheat improvement, and suggests that efficient mining of elite HHs can make a substantial contribution to genomics-assisted breeding in common wheat and other polyploid crops.
Collapse
Affiliation(s)
- Jizeng Jia
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China; State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangyao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Danping Li
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Wang
- Xi'An Shansheng Biosciences Co., Ltd., Xi'an 710000, China
| | - Chuizheng Kong
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pingchuan Deng
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 612100, China
| | - Xueqing Yan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueyong Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zefu Lu
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shujuan Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Chong
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dangqun Cui
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Guangwei Li
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chunguang Du
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Yazhou Bay Seed Laboratory, Hainan Institute of Zhejiang University, Sanya, Hainan 562000, China
| | - Tianbao Li
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China; State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dong Yan
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kehui Zhan
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Feng Chen
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Zhiyong Wang
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhengang Ru
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Daowen Wang
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Lifeng Gao
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
30
|
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv 2023; 69:108248. [PMID: 37666372 DOI: 10.1016/j.biotechadv.2023.108248] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Cereal crops, including triticeae species (barley, wheat, rye), as well as edible cereals (wheat, corn, rice, oat, rye, sorghum), are significant suppliers for human consumption, livestock feed, and breweries. Over the past half-century, modern varieties of cereal crops with increased yields have contributed to global food security. However, presently cultivated elite crop varieties were developed mainly for optimal environmental conditions. Thus, it has become evident that taking into account the ongoing climate changes, currently a priority should be given to developing new stress-tolerant cereal cultivars. It is necessary to enhance the accuracy of methods and time required to generate new cereal cultivars with the desired features to adapt to climate change and keep up with the world population expansion. The CRISPR/Cas9 system has been developed as a powerful and versatile genome editing tool to achieve desirable traits, such as developing high-yielding, stress-tolerant, and disease-resistant transgene-free lines in major cereals. Despite recent advances, the CRISPR/Cas9 application in cereals faces several challenges, including a significant amount of time required to develop transgene-free lines, laboriousness, and a limited number of genotypes that may be used for the transformation and in vitro regeneration. Additionally, developing elite lines through genome editing has been restricted in many countries, especially Europe and New Zealand, due to a lack of flexibility in GMO regulations. This review provides a comprehensive update to researchers interested in improving cereals using gene-editing technologies, such as CRISPR/Cas9. We will review some critical and recent studies on crop improvements and their contributing factors to superior cereals through gene-editing technologies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
31
|
Lee ES, Heo J, Bang WY, Chougule KM, Waminal NE, Hong NT, Kim MJ, Beak HK, Kim YJ, Priatama RA, Jang JI, Cha KI, Son SH, Rajendran S, Choo Y, Bae JH, Kim CM, Lee YK, Bae S, Jones JDG, Sohn KH, Lee J, Kim HH, Hong JC, Ware D, Kim K, Park SJ. Engineering homoeologs provide a fine scale for quantitative traits in polyploid. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2458-2472. [PMID: 37530518 PMCID: PMC10651150 DOI: 10.1111/pbi.14141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
Numerous staple crops exhibit polyploidy and are difficult to genetically modify. However, recent advances in genome sequencing and editing have enabled polyploid genome engineering. The hexaploid black nightshade species Solanum nigrum has immense potential as a beneficial food supplement. We assembled its genome at the scaffold level. After functional annotations, we identified homoeologous gene sets, with similar sequence and expression profiles, based on comparative analyses of orthologous genes with close diploid relatives Solanum americanum and S. lycopersicum. Using CRISPR-Cas9-mediated mutagenesis, we generated various mutation combinations in homoeologous genes. Multiple mutants showed quantitative phenotypic changes based on the genotype, resulting in a broad-spectrum effect on the quantitative traits of hexaploid S. nigrum. Furthermore, we successfully improved the fruit productivity of Boranong, an orphan cultivar of S. nigrum suggesting that engineering homoeologous genes could be useful for agricultural improvement of polyploid crops.
Collapse
Affiliation(s)
- Eun Song Lee
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Jung Heo
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| | - Woo Young Bang
- Biological and Genetic Resources Assessment DivisionNational Institute of Biological ResourcesIncheonKorea
| | | | - Nomar Espinosa Waminal
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
- BioScience Institute, Department of Chemistry & Life ScienceSahmyook UniversitySeoulKorea
| | - Nguyen Thi Hong
- BioScience Institute, Department of Chemistry & Life ScienceSahmyook UniversitySeoulKorea
| | - Min Ji Kim
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Hong Kwan Beak
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Yong Jun Kim
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Ryza A. Priatama
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Institute of Plasma TechnologyKorea Institute of Fusion EnergyGunsan‐siKorea
| | - Ji In Jang
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| | - Kang Il Cha
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Seung Han Son
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | | | - Young‐Kug Choo
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Jong Hyang Bae
- Division of Horticulture IndustryWonkwang UniversityIksanKorea
| | - Chul Min Kim
- Division of Horticulture IndustryWonkwang UniversityIksanKorea
| | - Young Koung Lee
- Institute of Plasma TechnologyKorea Institute of Fusion EnergyGunsan‐siKorea
| | - Sangsu Bae
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulSouth Korea
| | - Jonathan D. G. Jones
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Kee Hoon Sohn
- Department of Agricultural Biotechnology, Plant Immunity Research Center, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Jiyoung Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource CenterKorea Research Institute of Bioscience and BiotechnologyJeongeupKorea
| | - Hyun Hee Kim
- BioScience Institute, Department of Chemistry & Life ScienceSahmyook UniversitySeoulKorea
| | - Jong Chan Hong
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| | - Doreen Ware
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
- U.S. Department of Agriculture‐Agricultural Research ServiceNEA Robert W. Holley Center for Agriculture and HealthIthacaNYUSA
| | - Keunhwa Kim
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| | - Soon Ju Park
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| |
Collapse
|
32
|
Zhou X, Zhao Y, Ni P, Ni Z, Sun Q, Zong Y. CRISPR-mediated acceleration of wheat improvement: advances and perspectives. J Genet Genomics 2023; 50:815-834. [PMID: 37741566 DOI: 10.1016/j.jgg.2023.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Common wheat (Triticum aestivum) is one of the most widely cultivated and consumed crops globally. In the face of limited arable land and climate changes, it is a great challenge to maintain current and increase future wheat production. Enhancing agronomic traits in wheat by introducing mutations across all three homoeologous copies of each gene has proven to be a difficult task due to its large genome with high repetition. However, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease (Cas) genome editing technologies offer a powerful means of precisely manipulating the genomes of crop species, thereby opening up new possibilities for biotechnology and breeding. In this review, we first focus on the development and optimization of the current CRISPR-based genome editing tools in wheat, emphasizing recent breakthroughs in precise and multiplex genome editing. We then describe the general procedure of wheat genome editing and highlight different methods to deliver the genome editing reagents into wheat cells. Furthermore, we summarize the recent applications and advancements of CRISPR/Cas technologies for wheat improvement. Lastly, we discuss the remaining challenges specific to wheat genome editing and its future prospects.
Collapse
Affiliation(s)
- Ximeng Zhou
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Pei Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
Cui Y, Cao Q, Li Y, He M, Liu X. Advances in cis-element- and natural variation-mediated transcriptional regulation and applications in gene editing of major crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5441-5457. [PMID: 37402253 DOI: 10.1093/jxb/erad248] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
Transcriptional regulation is crucial to control of gene expression. Both spatio-temporal expression patterns and expression levels of genes are determined by the interaction between cis-acting elements and trans-acting factors. Numerous studies have focused on the trans-acting factors that mediate transcriptional regulatory networks. However, cis-acting elements, such as enhancers, silencers, transposons, and natural variations in the genome, are also vital for gene expression regulation and could be utilized by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated gene editing to improve crop quality and yield. In this review, we discuss current understanding of cis-element-mediated transcriptional regulation in major crops, including rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays), as well as the latest advancements in gene editing techniques and their applications in crops to highlight prospective strategies for crop breeding.
Collapse
Affiliation(s)
- Yue Cui
- College of Teacher Education, Molecular and Cellular Postdoctoral Research Station, Hebei Normal University, Shijiazhuang 050024, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Research Center of the Basic Discipline Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qiao Cao
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei Province 050041, China
| | - Yongpeng Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Research Center of the Basic Discipline Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Mingqi He
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei Province 050041, China
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Research Center of the Basic Discipline Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
34
|
Chawla R, Poonia A, Samantara K, Mohapatra SR, Naik SB, Ashwath MN, Djalovic IG, Prasad PVV. Green revolution to genome revolution: driving better resilient crops against environmental instability. Front Genet 2023; 14:1204585. [PMID: 37719711 PMCID: PMC10500607 DOI: 10.3389/fgene.2023.1204585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
Crop improvement programmes began with traditional breeding practices since the inception of agriculture. Farmers and plant breeders continue to use these strategies for crop improvement due to their broad application in modifying crop genetic compositions. Nonetheless, conventional breeding has significant downsides in regard to effort and time. Crop productivity seems to be hitting a plateau as a consequence of environmental issues and the scarcity of agricultural land. Therefore, continuous pursuit of advancement in crop improvement is essential. Recent technical innovations have resulted in a revolutionary shift in the pattern of breeding methods, leaning further towards molecular approaches. Among the promising approaches, marker-assisted selection, QTL mapping, omics-assisted breeding, genome-wide association studies and genome editing have lately gained prominence. Several governments have progressively relaxed their restrictions relating to genome editing. The present review highlights the evolutionary and revolutionary approaches that have been utilized for crop improvement in a bid to produce climate-resilient crops observing the consequence of climate change. Additionally, it will contribute to the comprehension of plant breeding succession so far. Investing in advanced sequencing technologies and bioinformatics will deepen our understanding of genetic variations and their functional implications, contributing to breakthroughs in crop improvement and biodiversity conservation.
Collapse
Affiliation(s)
- Rukoo Chawla
- Department of Genetics and Plant Breeding, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, India
| | - Atman Poonia
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Bawal, Haryana, India
| | - Kajal Samantara
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sourav Ranjan Mohapatra
- Department of Forest Biology and Tree Improvement, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - S. Balaji Naik
- Institute of Integrative Biology and Systems, University of Laval, Quebec City, QC, Canada
| | - M. N. Ashwath
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, India
| | - Ivica G. Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
35
|
Mroz T, Dieseth JA, Lillemo M. Grain yield and adaptation of spring wheat to Norwegian growing conditions is driven by allele frequency changes at key adaptive loci discovered by genome-wide association mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:191. [PMID: 37589760 PMCID: PMC10435424 DOI: 10.1007/s00122-023-04424-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
KEY MESSAGE Adaptation to the Norwegian environment is associated with polymorphisms in the Vrn-A1 locus. Historical selection for grain yield in Nordic wheat is associated with TaGS5-3A and TaCol-5 loci. Grain yields in Norwegian spring wheat increased by 18 kg ha-1 per year between 1972 and 2019 due to introduction of new varieties. These gains were associated with increments in the number of grains per spike and extended length of the vegetative period. However, little is known about the genetic background of this progress. To fill this gap, we conducted genome-wide association study on a panel consisting of both adapted (historical and current varieties and lines in the Nordics) and important not adapted accessions used as parents in the Norwegian wheat breeding program. The study concerned grain yield, plant height, and heading and maturity dates, and detected 12 associated loci, later validated using independent sets of recent breeding lines. Adaptation to the Norwegian cropping conditions was found to be associated with the Vrn-A1 locus, and a previously undescribed locus on chromosome 1B associated with heading date. Two loci associated with grain yield, corresponding to the TaGS5-3A and TaCol-5 loci, indicated historical selection pressure for high grain yield. A locus on chromosome 2A explained the tallness of the oldest accessions. We investigated the origins of the beneficial alleles associated with the wheat breeding progress in the Norwegian material, tracing them back to crosses with Swedish, German, or CIMMYT lines. This study contributes to the understanding of wheat adaptation to the Norwegian growing conditions, sheds light on the genetic basis of historical wheat improvement and aids future breeding efforts by discovering loci associated with important agronomic traits in wheat.
Collapse
Affiliation(s)
- Tomasz Mroz
- Department of Plant Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Jon Arne Dieseth
- Graminor, AS, Bjørke Gård, Hommelstadvegen 60, 2322, Ridabu, Norway
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway.
| |
Collapse
|
36
|
Yigider E, Taspinar MS, Agar G. Advances in bread wheat production through CRISPR/Cas9 technology: a comprehensive review of quality and other aspects. PLANTA 2023; 258:55. [PMID: 37522927 DOI: 10.1007/s00425-023-04199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
MAIN CONCLUSION This review provides a comprehensive overview of the CRISPR/Cas9 technique and the research areas of this gene editing tool in improving wheat quality. Wheat (Triticum aestivum L.), the basic nutrition for most of the human population, contributes 20% of the daily energy needed because of its, carbohydrate, essential amino acids, minerals, protein, and vitamin content. Wheat varieties that produce high yields and have enhanced nutritional quality will be required to fulfill future demands. Hexaploid wheat has A, B, and D genomes and includes three like but not identical copies of genes that influence important yield and quality. CRISPR/Cas9, which allows multiplex genome editing provides major opportunities in genome editing studies of plants, especially complicated genomes such as wheat. In this overview, we discuss the CRISPR/Cas9 technique, which is credited with bringing about a paradigm shift in genome editing studies. We also provide a summary of recent research utilizing CRISPR/Cas9 to investigate yield, quality, resistance to biotic/abiotic stress, and hybrid seed production. In addition, we provide a synopsis of the laboratory experience-based solution alternatives as well as the potential obstacles for wheat CRISPR studies. Although wheat's extensive genome and complicated polyploid structure previously slowed wheat genetic engineering and breeding progress, effective CRISPR/Cas9 systems are now successfully used to boost wheat development.
Collapse
Affiliation(s)
- Esma Yigider
- Faculty of Agriculture, Department of Agricultural Biotechnology, Atatürk University, 25240, Erzurum, Turkey
| | - Mahmut Sinan Taspinar
- Faculty of Agriculture, Department of Agricultural Biotechnology, Atatürk University, 25240, Erzurum, Turkey.
| | - Guleray Agar
- Faculty of Science, Department of Biology, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
37
|
Ahmad I, Zhu G, Zhou G, Younas MU, Suliman MSE, Liu J, Zhu YM, Salih EGI. Integrated approaches for increasing plant yield under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1215343. [PMID: 37534293 PMCID: PMC10393426 DOI: 10.3389/fpls.2023.1215343] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
Salt stress affects large cultivated areas worldwide, thus causing remarkable reductions in plant growth and yield. To reduce the negative effects of salt stress on plant growth and yield, plant hormones, nutrient absorption, and utilization, as well as developing salt-tolerant varieties and enhancing their morpho-physiological activities, are some integrative approaches to coping with the increasing incidence of salt stress. Numerous studies have been conducted to investigate the critical impacts of these integrative approaches on plant growth and yield. However, a comprehensive review of these integrative approaches, that regulate plant growth and yield under salt stress, is still in its early stages. The review focused on the major issues of nutrient absorption and utilization by plants, as well as the development of salt tolerance varieties under salt stress. In addition, we explained the effects of these integrative approaches on the crop's growth and yield, illustrated the roles that phytohormones play in improving morpho-physiological activities, and identified some relevant genes involve in these integrative approaches when the plant is subjected to salt stress. The current review demonstrated that HA with K enhance plant morpho-physiological activities and soil properties. In addition, NRT and NPF genes family enhance nutrients uptake, NHX1, SOS1, TaNHX, AtNHX1, KDML, RD6, and SKC1, maintain ion homeostasis and membrane integrity to cope with the adverse effects of salt stress, and sd1/Rht1, AtNHX1, BnaMAX1s, ipal-1D, and sft improve the plant growth and yield in different plants. The primary purpose of this investigation is to provide a comprehensive review of the performance of various strategies under salt stress, which might assist in further interpreting the mechanisms that plants use to regulate plant growth and yield under salt stress.
Collapse
Affiliation(s)
- Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guanglong Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Key Lab of Crop Genetics & Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Muhammad Usama Younas
- Department of Crop Genetics and Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Mohamed Suliman Eltyeb Suliman
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Faculty of Forestry, University of Khartoum, Khartoum North, Sudan
| | - Jiao Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yi ming Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Ebtehal Gabralla Ibrahim Salih
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
38
|
Patel A, Miles A, Strackhouse T, Cook L, Leng S, Patel S, Klinger K, Rudrabhatla S, Potlakayala SD. Methods of crop improvement and applications towards fortifying food security. Front Genome Ed 2023; 5:1171969. [PMID: 37484652 PMCID: PMC10361821 DOI: 10.3389/fgeed.2023.1171969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Agriculture has supported human life from the beginning of civilization, despite a plethora of biotic (pests, pathogens) and abiotic (drought, cold) stressors being exerted on the global food demand. In the past 50 years, the enhanced understanding of cellular and molecular mechanisms in plants has led to novel innovations in biotechnology, resulting in the introduction of desired genes/traits through plant genetic engineering. Targeted genome editing technologies such as Zinc-Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) have emerged as powerful tools for crop improvement. This new CRISPR technology is proving to be an efficient and straightforward process with low cost. It possesses applicability across most plant species, targets multiple genes, and is being used to engineer plant metabolic pathways to create resistance to pathogens and abiotic stressors. These novel genome editing (GE) technologies are poised to meet the UN's sustainable development goals of "zero hunger" and "good human health and wellbeing." These technologies could be more efficient in developing transgenic crops and aid in speeding up the regulatory approvals and risk assessments conducted by the US Departments of Agriculture (USDA), Food and Drug Administration (FDA), and Environmental Protection Agency (EPA).
Collapse
Affiliation(s)
- Aayushi Patel
- Penn State Harrisburg, Middletown, PA, United States
| | - Andrew Miles
- Penn State University Park, State College, University Park, PA, United States
| | | | - Logan Cook
- Penn State Harrisburg, Middletown, PA, United States
| | - Sining Leng
- Shanghai United Cell Biotechnology Co Ltd, Shanghai, China
| | - Shrina Patel
- Penn State Harrisburg, Middletown, PA, United States
| | | | | | | |
Collapse
|
39
|
Song C, Xie K, Hu X, Zhou Z, Liu A, Zhang Y, Du J, Jia J, Gao L, Mao H. Genome wide association and haplotype analyses for the crease depth trait in bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1203253. [PMID: 37465391 PMCID: PMC10350514 DOI: 10.3389/fpls.2023.1203253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023]
Abstract
Wheat grain has a complex structure that includes a crease on one side, and tissues within the crease region play an important role in nutrient transportation during wheat grain development. However, the genetic architecture of the crease region is still unclear. In this study, 413 global wheat accessions were resequenced and a method was developed for evaluating the phenotypic data of crease depth (CD). The CD values exhibited continuous and considerable large variation in the population, and the broad-sense heritability was 84.09%. CD was found to be positively correlated with grain-related traits and negatively with quality-related traits. Analysis of differentiation of traits between landraces and cultivars revealed that grain-related traits and CD were simultaneously improved during breeding improvement. Moreover, 2,150.8-Mb genetic segments were identified to fall within the selective sweeps between the landraces and cultivars; they contained some known functional genes for quality- and grain-related traits. Genome-wide association study (GWAS) was performed using around 10 million SNPs generated by genome resequencing and 551 significant SNPs and 18 QTLs were detected significantly associated with CD. Combined with cluster analysis of gene expression, haplotype analysis, and annotated information of candidate genes, two promising genes TraesCS3D02G197700 and TraesCS5A02G292900 were identified to potentially regulate CD. To the best of our knowledge, this is the first study to provide the genetic basis of CD, and the genetic loci identified in this study may ultimately assist in wheat breeding programs.
Collapse
Affiliation(s)
- Chengxiang Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Kaidi Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhihua Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ankui Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yuwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jiale Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
40
|
Jabran M, Ali MA, Zahoor A, Muhae-Ud-Din G, Liu T, Chen W, Gao L. Intelligent reprogramming of wheat for enhancement of fungal and nematode disease resistance using advanced molecular techniques. FRONTIERS IN PLANT SCIENCE 2023; 14:1132699. [PMID: 37235011 PMCID: PMC10206142 DOI: 10.3389/fpls.2023.1132699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Wheat (Triticum aestivum L.) diseases are major factors responsible for substantial yield losses worldwide, which affect global food security. For a long time, plant breeders have been struggling to improve wheat resistance against major diseases by selection and conventional breeding techniques. Therefore, this review was conducted to shed light on various gaps in the available literature and to reveal the most promising criteria for disease resistance in wheat. However, novel techniques for molecular breeding in the past few decades have been very fruitful for developing broad-spectrum disease resistance and other important traits in wheat. Many types of molecular markers such as SCAR, RAPD, SSR, SSLP, RFLP, SNP, and DArT, etc., have been reported for resistance against wheat pathogens. This article summarizes various insightful molecular markers involved in wheat improvement for resistance to major diseases through diverse breeding programs. Moreover, this review highlights the applications of marker assisted selection (MAS), quantitative trait loci (QTL), genome wide association studies (GWAS) and the CRISPR/Cas-9 system for developing disease resistance against most important wheat diseases. We also reviewed all reported mapped QTLs for bunts, rusts, smuts, and nematode diseases of wheat. Furthermore, we have also proposed how the CRISPR/Cas-9 system and GWAS can assist breeders in the future for the genetic improvement of wheat. If these molecular approaches are used successfully in the future, they can be a significant step toward expanding food production in wheat crops.
Collapse
Affiliation(s)
- Muhammad Jabran
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Adil Zahoor
- Department of Biotechnology, Chonnam National University, Yeosu, Republic of Korea
| | - Ghulam Muhae-Ud-Din
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Gao
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
41
|
Ma Q, Niu C, Wang C, Chen C, Li Y, Wei M. Effects of differentially expressed microRNAs induced by rootstocks and silicon on improving chilling tolerance of cucumber seedlings (Cucumis sativus L.). BMC Genomics 2023; 24:250. [PMID: 37165319 PMCID: PMC10173649 DOI: 10.1186/s12864-023-09337-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Rootstocks can improve the chilling tolerance of grafted cucumbers, but their effectiveness varies. Rootstocks with strong de-blooming capacity may result in lower chilling tolerance of grafted cucumbers compared to those with weak de-blooming capacity, while also reducing the silicon absorption. However, it remains unclear whether this reduction in chilling tolerance is due to differences in rootstock genotypes or the reduction in silicon absorption. RESULTS The chilling tolerance of cucumber seedlings was improved by using rootstocks and silicon nutrition. Rootstocks had a more significant effect than silicon nutrition, and the weak de-blooming rootstock 'Yunnan figleaf gourd' was superior to the strong de-blooming rootstock 'Huangchenggen No. 2'. Compared to self-rooted cucumber, twelve miRNAs were regulated by two rootstocks, including seven identical miRNAs (novel-mir23, novel-mir26, novel-mir30, novel-mir37, novel-mir46, miR395a and miR398a-3p) and five different miRNAs (novel-mir32, novel-mir38, novel-mir65, novel-mir78 and miR397a). Notably, four of these miRNAs (novel-mir38, novel-mir65, novel-mir78 and miR397a) were only identified in 'Yunnan figleaf gourd'-grafted cucumbers. Furthermore, six miRNAs (miR168a-5p, miR390a-5p, novel-mir26, novel-mir55, novel-mir67 and novel-mir70) were found to be responsive to exogenous silicon. Target gene prediction for 20 miRNAs resulted in 520 genes. Functional analysis of these target genes showed that 'Yunnan figleaf gourd' improves the chilling tolerance of cucumber by regulating laccase synthesis and sulfate metabolism, while 'Huangchenggen No. 2' and exogenous silicon reduced chilling stress damage to cucumber by regulating ROS scavenging and protein protection, respectively. CONCLUSION Among the identified miRNAs, novel-mir46 and miR398a-3p were found in cucumbers in response to chilling stress and two types of rootstocks. However, no identical miRNAs were identified in response to chilling stress and silicon. In addition, the differential expression of novel-mir38, novel-mir65, novel-mir78 and miR397a may be one of the important reasons for the differences in chilling tolerance of grafted cucumbers caused by two types of rootstocks.
Collapse
Affiliation(s)
- Qiang Ma
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Chenxu Niu
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Chao Wang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China
- State Key Laboratory of Crop Biology, Taian, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China
| | - Chunhua Chen
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
- State Key Laboratory of Crop Biology, Taian, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China
| | - Yan Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China
- State Key Laboratory of Crop Biology, Taian, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China
| | - Min Wei
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China.
- State Key Laboratory of Crop Biology, Taian, 271018, China.
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China.
| |
Collapse
|
42
|
Hemalatha P, Abda EM, Shah S, Venkatesa Prabhu S, Jayakumar M, Karmegam N, Kim W, Govarthanan M. Multi-faceted CRISPR-Cas9 strategy to reduce plant based food loss and waste for sustainable bio-economy - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117382. [PMID: 36753844 DOI: 10.1016/j.jenvman.2023.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Currently, international development requires innovative solutions to address imminent challenges like climate change, unsustainable food system, food waste, energy crisis, and environmental degradation. All the same, addressing these concerns with conventional technologies is time-consuming, causes harmful environmental impacts, and is not cost-effective. Thus, biotechnological tools become imperative for enhancing food and energy resilience through eco-friendly bio-based products by valorisation of plant and food waste to meet the goals of circular bioeconomy in conjunction with Sustainable Developmental Goals (SDGs). Genome editing can be accomplished using a revolutionary DNA modification tool, CRISPR-Cas9, through its uncomplicated guided mechanism, with great efficiency in various organisms targeting different traits. This review's main objective is to examine how the CRISPR-Cas system, which has positive features, could improve the bioeconomy by reducing food loss and waste with all-inclusive food supply chain both at on-farm and off-farm level; utilising food loss and waste by genome edited microorganisms through food valorisation; efficient microbial conversion of low-cost substrates as biofuel; valorisation of agro-industrial wastes; mitigating greenhouse gas emissions through forestry plantation crops; and protecting the ecosystem and environment. Finally, the ethical implications and regulatory issues that are related to CRISPR-Cas edited products in the international markets have also been taken into consideration.
Collapse
Affiliation(s)
- Palanivel Hemalatha
- Department of Biotechnology, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Ebrahim M Abda
- Department of Biotechnology, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Shipra Shah
- Department of Forestry, College of Agriculture, Fisheries and Forestry, Fiji National University, Kings Road, Koronivia, P. O. Box 1544, Nausori, Republic of Fiji
| | - S Venkatesa Prabhu
- Department of Chemical Engineering, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - M Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia.
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
43
|
Ravikiran KT, Thribhuvan R, Sheoran S, Kumar S, Kushwaha AK, Vineeth TV, Saini M. Tailoring crops with superior product quality through genome editing: an update. PLANTA 2023; 257:86. [PMID: 36949234 DOI: 10.1007/s00425-023-04112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In this review, using genome editing, the quality trait alterations in important crops have been discussed, along with the challenges encountered to maintain the crop products' quality. The delivery of economic produce with superior quality is as important as high yield since it dictates consumer's acceptance and end use. Improving product quality of various agricultural and horticultural crops is one of the important targets of plant breeders across the globe. Significant achievements have been made in various crops using conventional plant breeding approaches, albeit, at a slower rate. To keep pace with ever-changing consumer tastes and preferences and industry demands, such efforts must be supplemented with biotechnological tools. Fortunately, many of the quality attributes are resultant of well-understood biochemical pathways with characterized genes encoding enzymes at each step. Targeted mutagenesis and transgene transfer have been instrumental in bringing out desired qualitative changes in crops but have suffered from various pitfalls. Genome editing, a technique for methodical and site-specific modification of genes, has revolutionized trait manipulation. With the evolution of versatile and cost effective CRISPR/Cas9 system, genome editing has gained significant traction and is being applied in several crops. The availability of whole genome sequences with the advent of next generation sequencing (NGS) technologies further enhanced the precision of these techniques. CRISPR/Cas9 system has also been utilized for desirable modifications in quality attributes of various crops such as rice, wheat, maize, barley, potato, tomato, etc. The present review summarizes salient findings and achievements of application of genome editing for improving product quality in various crops coupled with pointers for future research endeavors.
Collapse
Affiliation(s)
- K T Ravikiran
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, West Bengal, India
| | - Seema Sheoran
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, Haryana, India.
| | - Sandeep Kumar
- ICAR-Indian Institute of Natural Resins and Gums, Ranchi, Jharkhand, India
| | - Amar Kant Kushwaha
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - T V Vineeth
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Bharuch, Gujarat, India
- Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India
| | - Manisha Saini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
44
|
Wang D, Li Y, Wang H, Xu Y, Yang Y, Zhou Y, Chen Z, Zhou Y, Gui L, Guo Y, Zhou C, Tang W, Zheng S, Wang L, Guo X, Zhang Y, Cui F, Lin X, Jiao Y, He Y, Li J, He F, Liu X, Xiao J. Boosting wheat functional genomics via an indexed EMS mutant library of KN9204. PLANT COMMUNICATIONS 2023:100593. [PMID: 36945776 PMCID: PMC10363553 DOI: 10.1016/j.xplc.2023.100593] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
A better understanding of wheat functional genomics can improve targeted breeding for better agronomic traits and environmental adaptation. However, the lack of gene-indexed mutants and the low transformation efficiency of wheat limit in-depth gene functional studies and genetic manipulation for breeding. In this study, we created a library for KN9204, a popular wheat variety in northern China, with a reference genome, transcriptome, and epigenome of different tissues, using ethyl methyl sulfonate (EMS) mutagenesis. This library contains a vast developmental diversity of critical tissues and transition stages. Exome capture sequencing of 2090 mutant lines using KN9204 genome-designed probes revealed that 98.79% of coding genes had mutations, and each line had an average of 1383 EMS-type SNPs. We identified new allelic variations for crucial agronomic trait-related genes such as Rht-D1, Q, TaTB1, and WFZP. We tested 100 lines with severe mutations in 80 NAC transcription factors (TFs) under drought and salinity stress and identified 13 lines with altered sensitivity. Further analysis of three lines using transcriptome and chromatin accessibility data revealed hundreds of direct NAC targets with altered transcription patterns under salt or drought stress, including SNAC1, DREB2B, CML16, and ZFP182, factors known to respond to abiotic stress. Thus, we have generated and indexed a KN9204 EMS mutant library that can facilitate functional genomics research and offer resources for genetic manipulation of wheat.
Collapse
Affiliation(s)
- Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongpeng Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China; Center for Agricultural Resources Research, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Haojie Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongxin Xu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuxin Zhou
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongxu Chen
- Department of Life Science, Tcuni, Inc, Chengdu 610000, China
| | - Yuqing Zhou
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixuan Gui
- Department of Life Science, Tcuni, Inc, Chengdu 610000, China
| | - Yi Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
| | - Chunjiang Zhou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
| | - Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
| | - Lei Wang
- Center for Agricultural Resources Research, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Xiulin Guo
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Yingjun Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, China
| | - Fa Cui
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai 264025, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Yuehui He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Junming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China; Center for Agricultural Resources Research, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China.
| | - Fei He
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing 100101, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing 100101, China.
| |
Collapse
|
45
|
Ma F, Xu Y, Wang R, Tong Y, Zhang A, Liu D, An D. Identification of major QTLs for yield-related traits with improved genetic map in wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1138696. [PMID: 37008504 PMCID: PMC10063875 DOI: 10.3389/fpls.2023.1138696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Introduction Identification of stable major quantitative trait loci (QTLs) for yield-related traits is important for yield potential improvement in wheat breeding. Methods In the present study, we genotyped a recombinant inbred line (RIL) population using the Wheat 660K SNP array and constructed a high-density genetic map. The genetic map showed high collinearity with the wheat genome assembly. Fourteen yield-related traits were evaluated in six environments for QTL analysis. Results and Discussion A total of 12 environmentally stable QTLs were identified in at least three environments, explaining up to 34.7% of the phenotypic variation. Of these, QTkw-1B.2 for thousand kernel weight (TKW), QPh-2D.1 (QSl-2D.2/QScn-2D.1) for plant height (PH), spike length (SL) and spikelet compactness (SCN), QPh-4B.1 for PH, and QTss-7A.3 for total spikelet number per spike (TSS) were detected in at least five environments. A set of Kompetitive Allele Specific PCR (KASP) markers were converted based on the above QTLs and used to genotype a diversity panel comprising of 190 wheat accessions across four growing seasons. QPh-2D.1 (QSl-2D.2/QScn-2D.1), QPh-4B.1 and QTss-7A.3 were successfully validated. Compared with previous studies, QTkw-1B.2 and QPh-4B.1 should be novel QTLs. These results provided a solid foundation for further positional cloning and marker-assisted selection of the targeted QTLs in wheat breeding programs.
Collapse
Affiliation(s)
- Feifei Ma
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Yunfeng Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Ruifang Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Aimin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dongcheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
46
|
Halder J, Gill HS, Zhang J, Altameemi R, Olson E, Turnipseed B, Sehgal SK. Genome-wide association analysis of spike and kernel traits in the U.S. hard winter wheat. THE PLANT GENOME 2023; 16:e20300. [PMID: 36636831 DOI: 10.1002/tpg2.20300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/20/2022] [Indexed: 05/10/2023]
Abstract
A better understanding of the genetic control of spike and kernel traits that have higher heritability can help in the development of high-yielding wheat varieties. Here, we identified the marker-trait associations (MTAs) for various spike- and kernel-related traits in winter wheat (Triticum aestivum L.) through genome-wide association studies (GWAS). An association mapping panel comprising 297 hard winter wheat accessions from the U.S. Great Plains was evaluated for eight spike- and kernel-related traits in three different environments. A GWAS using 15,590 single-nucleotide polymorphisms (SNPs) identified a total of 53 MTAs for seven spike- and kernel-related traits, where the highest number of MTAs were identified for spike length (16) followed by the number of spikelets per spike (15) and spikelet density (11). Out of 53 MTAs, 14 were considered to represent stable quantitative trait loci (QTL) as they were identified in multiple environments. Five multi-trait MTAs were identified for various traits including the number of spikelets per spike (NSPS), spikelet density (SD), kernel width (KW), and kernel area (KA) that could facilitate the pyramiding of yield-contributing traits. Further, a significant additive effect of accumulated favorable alleles on the phenotype of four spike-related traits suggested that breeding lines and cultivars with a higher number of favorable alleles could be a valuable resource for breeders to improve yield-related traits. This study improves the understanding of the genetic basis of yield-related traits in hard winter wheat and provides reliable molecular markers that will facilitate marker-assisted selection (MAS) in wheat breeding programs.
Collapse
Affiliation(s)
- Jyotirmoy Halder
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57007, USA
| | - Harsimardeep S Gill
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57007, USA
| | - Jinfeng Zhang
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57007, USA
| | - Rami Altameemi
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57007, USA
| | - Eric Olson
- Dep. of Plant, Soil and Microbial Sciences, Michigan State Univ., East Lansing, MI, 48824, USA
| | - Brent Turnipseed
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57007, USA
| | - Sunish K Sehgal
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57007, USA
| |
Collapse
|
47
|
Hou X, Guo X, Zhang Y, Zhang Q. CRISPR/Cas genome editing system and its application in potato. Front Genet 2023; 14:1017388. [PMID: 36861125 PMCID: PMC9968925 DOI: 10.3389/fgene.2023.1017388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Potato is the largest non-cereal food crop worldwide and a vital substitute for cereal crops, considering its high yield and great nutritive value. It plays an important role in food security. The CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system has the advantages of easy operation, high efficiency, and low cost, which shows a potential in potato breeding. In this paper, the action mechanism and derivative types of the CRISPR/Cas system and the application of the CRISPR/Cas system in improving the quality and resistance of potatoes, as well as overcoming the self-incompatibility of potatoes, are reviewed in detail. At the same time, the application of the CRISPR/Cas system in the future development of the potato industry was analyzed and prospected.
Collapse
Affiliation(s)
- Xin Hou
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Xiaomeng Guo
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yan Zhang
- *Correspondence: Yan Zhang, ; Qiang Zhang,
| | | |
Collapse
|
48
|
May D, Paldi K, Altpeter F. Targeted mutagenesis with sequence-specific nucleases for accelerated improvement of polyploid crops: Progress, challenges, and prospects. THE PLANT GENOME 2023:e20298. [PMID: 36692095 DOI: 10.1002/tpg2.20298] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Many of the world's most important crops are polyploid. The presence of more than two sets of chromosomes within their nuclei and frequently aberrant reproductive biology in polyploids present obstacles to conventional breeding. The presence of a larger number of homoeologous copies of each gene makes random mutation breeding a daunting task for polyploids. Genome editing has revolutionized improvement of polyploid crops as multiple gene copies and/or alleles can be edited simultaneously while preserving the key attributes of elite cultivars. Most genome-editing platforms employ sequence-specific nucleases (SSNs) to generate DNA double-stranded breaks at their target gene. Such DNA breaks are typically repaired via the error-prone nonhomologous end-joining process, which often leads to frame shift mutations, causing loss of gene function. Genome editing has enhanced the disease resistance, yield components, and end-use quality of polyploid crops. However, identification of candidate targets, genotyping, and requirement of high mutagenesis efficiency remain bottlenecks for targeted mutagenesis in polyploids. In this review, we will survey the tremendous progress of SSN-mediated targeted mutagenesis in polyploid crop improvement, discuss its challenges, and identify optimizations needed to sustain further progress.
Collapse
Affiliation(s)
- David May
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Katalin Paldi
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Fredy Altpeter
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
- Plant Cellular and Molecular Biology Program, Genetics Institute, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
| |
Collapse
|
49
|
Yu Y, Zhang T, Sun J, Jing T, Shen Y, Zhang K, Chen Y, Ding D, Wang G, Yang J, Tang J, Shi Z, Wang D, Gou M. Evolutionary characterization of miR396s in Poaceae exemplified by their genetic effects in wheat and maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111465. [PMID: 36155239 DOI: 10.1016/j.plantsci.2022.111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
MiR396s play important roles in regulating plant growth and stress response, and great potential for crop yield promotion was anticipated. For more comprehensive and precise understanding of miR396s in Poaceae, we analyzed the phylogenetic linkage, gene expression, and chromosomal distribution of miR396s in this study. Although the mature miR396s' sequences were mostly conserved, differential expression patterns and chromosomal distribution were found among Poaceae species including the major cereal crops rice, wheat, and maize. Consistently, in comparison with rice, wheat and maize plants transformed with the target mimicry construct of miR396 (MIM396) exhibited differential effects on grain size and disease resistance. While the TaMIM396 plants showed increased grain size, panicle length and sensitivity to B. graminis, the ZmMIM396 plants didn't show obvious changes in grain size and disease resistance. In Addition, several GROWTH-REGULATING FACTOR (GRF) genes in wheat and maize were repressed by miR396s, which could be reversed by MIM396, confirming the conserved regulatory roles of miR396 on GRFs. While providing new solution to enhance grain yield in wheat and revealing potential regulatory variations of miR396s in controlling grain size and disease resistance in different crops, this study gives clues to further explore miR396s' functions in other Poaceae species.
Collapse
Affiliation(s)
- Yanwen Yu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Tongxiang Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jingfan Sun
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Teng Jing
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanjie Shen
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kunpu Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yan Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dong Ding
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianping Yang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jihua Tang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; The Shennong Laboratory, Zhengzhou, Henan 450002, China
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
50
|
Yu H, Hao Y, Li M, Dong L, Che N, Wang L, Song S, Liu Y, Kong L, Shi S. Genetic architecture and candidate gene identification for grain size in bread wheat by GWAS. FRONTIERS IN PLANT SCIENCE 2022; 13:1072904. [PMID: 36531392 PMCID: PMC9748340 DOI: 10.3389/fpls.2022.1072904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Grain size is a key trait associated with bread wheat yield. It is also the most frequently selected trait during domestication. After the phenotypic characterization of 768 bread wheat accessions in three plots for at least two years, the present study shows that the improved variety showed significantly higher grain size but lower grain protein content than the landrace. Using 55K SNP assay genotyping and large-scale phenotyping population and GWAS data, we identified 5, 6, 6, and 6 QTLs associated with grain length, grain weight, grain area, and thousand grain weight, respectively. Seven of the 23 QTLs showed common association within different locations or years. Most significantly, the key locus associated with grain length, qGL-2D, showed the highest association after years of multi-plot testing. Haplotype and evolution analysis indicated that the superior allele of qGL-2D was mainly hidden in the improved variety rather than in landrace, which may contribute to the significant difference in grain length. A comprehensive analysis of transcriptome and homolog showed that TraesCS2D02G414800 could be the most likely candidate gene for qGL-2D. Overall, this study presents several reliable grain size QTLs and candidate gene for grain length associated with bread wheat yield.
Collapse
Affiliation(s)
- Haitao Yu
- College of Agriculture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
- Wheat Research Institute, Weifang Academy of Agricultural Sciences, Weifang, Shandong, China
| | - Yongchao Hao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Mengyao Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Luhao Dong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Naixiu Che
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Lijie Wang
- Wheat Research Institute, Weifang Academy of Agricultural Sciences, Weifang, Shandong, China
| | - Shun Song
- Wheat Research Institute, Weifang Academy of Agricultural Sciences, Weifang, Shandong, China
| | - Yanan Liu
- Wheat Research Institute, Weifang Academy of Agricultural Sciences, Weifang, Shandong, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Shubing Shi
- College of Agriculture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|