1
|
Tan X, Li Y, Song M, Yuan L, Zhao Z, Liu Y, Meng Q, Huang X, Ma Y, Xu Z. The Molecular Mechanism of Interaction Between SEPALLATA3 and APETALA1 in Arabidopsis thaliana. PLANT DIRECT 2025; 9:e70052. [PMID: 40166359 PMCID: PMC11955279 DOI: 10.1002/pld3.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/31/2024] [Accepted: 02/06/2025] [Indexed: 04/02/2025]
Abstract
Flower formation has been a primary focus in botanical research, leading to the identification of multiple factors regulating flowering over the past 30 years. The MADS transcription factors SEPALLATA3 (SEP3) and APETALA1 (AP1) are essential for floral meristem development and organ identity. In Arabidopsis, SEP3 functions as a central integrator, combining MADS proteins into a tetrameric complex, with its interaction with AP1 playing a key role in sepal and petal formation. This research explores AtSEP3 and AtAP1, with particular emphasis on the Leu residue in the K1 subfunctional domain of AtSEP3, which is necessary for their interaction. A predicted structural model of AP1 was used, followed by protein docking with SEP3, which indicated that Leu residues at positions 115 and 116 are critical binding sites. Mutations at these position were examined through yeast two-hybrid assays and other techniques, identifying Leu 116 as a significant site. Subsequent purification and EMSA analysis revealed that mutations in the leucine zipper of SEP3 decreased its DNA binding ability. Observations of transgenic plants showed that disruption of AtSEP3 and AtAP1 interaction resulted in extended vegetative growth, increased size and number of rosette leaves, and modifications in floral structures. This study offers new insights into the interaction mechanism between AP1 and SEP3 during flowering.
Collapse
Affiliation(s)
- Xiao‐Min Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of BiotechnologyCollege of Life Sciences, Northwest UniversityXi'anShaanxiPeople's Republic of China
| | - Ya‐Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of BiotechnologyCollege of Life Sciences, Northwest UniversityXi'anShaanxiPeople's Republic of China
| | - Man‐Ru Song
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of BiotechnologyCollege of Life Sciences, Northwest UniversityXi'anShaanxiPeople's Republic of China
| | - Ling‐Na Yuan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of BiotechnologyCollege of Life Sciences, Northwest UniversityXi'anShaanxiPeople's Republic of China
| | - Zi‐Xin Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of BiotechnologyCollege of Life Sciences, Northwest UniversityXi'anShaanxiPeople's Republic of China
| | - Ye Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of BiotechnologyCollege of Life Sciences, Northwest UniversityXi'anShaanxiPeople's Republic of China
| | - Qi Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of BiotechnologyCollege of Life Sciences, Northwest UniversityXi'anShaanxiPeople's Republic of China
| | - Xuan Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of BiotechnologyCollege of Life Sciences, Northwest UniversityXi'anShaanxiPeople's Republic of China
| | - Ye‐Ye Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of BiotechnologyCollege of Life Sciences, Northwest UniversityXi'anShaanxiPeople's Republic of China
| | - Zi‐Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of BiotechnologyCollege of Life Sciences, Northwest UniversityXi'anShaanxiPeople's Republic of China
| |
Collapse
|
2
|
McCaig CD. Electrical Forces Improve Memory in Old Age. Rev Physiol Biochem Pharmacol 2025; 187:453-520. [PMID: 39838022 DOI: 10.1007/978-3-031-68827-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
This penultimate chapter is based on a single paper published in Nature in 2022. I have used it specifically as an exemplar, in this case to show that memory improvement in old age may be regulated by a multiplicity of electrical forces. However, I include it because I believe that one could pick almost any other substantial single paper and show that a completely disparate set of biological mechanisms similarly depend crucially on multiple electrical forces.
Collapse
Affiliation(s)
- Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
3
|
Thoris K, Correa Marrero M, Fiers M, Lai X, Zahn I, Jiang X, Mekken M, Busscher S, Jansma S, Nanao M, de Ridder D, van Dijk AJ, Angenent G, Immink RH, Zubieta C, Bemer M. Uncoupling FRUITFULL's functions through modification of a protein motif identified by co-ortholog analysis. Nucleic Acids Res 2024; 52:13290-13304. [PMID: 39475190 PMCID: PMC11602133 DOI: 10.1093/nar/gkae963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Many plant transcription factors (TFs) are multifunctional and regulate growth and development in more than one tissue. These TFs can generally associate with different protein partners depending on the tissue type, thereby regulating tissue-specific target gene sets. However, how interaction specificity is ensured is still largely unclear. Here, we examine protein-protein interaction specificity using subfunctionalized co-orthologs of the FRUITFULL (FUL) subfamily of MADS-domain TFs. In Arabidopsis, FUL is multifunctional, playing important roles in flowering and fruiting, whereas these functions have partially been divided in the tomato co-orthologs FUL1 and FUL2. By linking protein sequence and function, we discovered a key amino acid motif that determines interaction specificity of MADS-domain TFs, which in Arabidopsis FUL determines the interaction with AGAMOUS and SEPALLATA proteins, linked to the regulation of a subset of targets. This insight offers great opportunities to dissect the biological functions of multifunctional MADS TFs.
Collapse
Affiliation(s)
- Kai Thoris
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Miguel Correa Marrero
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Martijn Fiers
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Xuelei Lai
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, Université Grenoble Alpes, INRAE, IRIG, CEA, 38000 Grenoble, Grenoble, France
| | - Iris E Zahn
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Xiaobing Jiang
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Mark Mekken
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Stefan Busscher
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Stuart Jansma
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Max Nanao
- Structural Biology, European Synchrotron Radiation Facility, 71 ave. des Martyrs, 38000 Grenoble, France
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, Université Grenoble Alpes, INRAE, IRIG, CEA, 38000 Grenoble, Grenoble, France
| | - Marian Bemer
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
4
|
Bowman JL, Moyroud E. Reflections on the ABC model of flower development. THE PLANT CELL 2024; 36:1334-1357. [PMID: 38345422 PMCID: PMC11062442 DOI: 10.1093/plcell/koae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/07/2024] [Indexed: 05/02/2024]
Abstract
The formulation of the ABC model by a handful of pioneer plant developmental geneticists was a seminal event in the quest to answer a seemingly simple question: how are flowers formed? Fast forward 30 years and this elegant model has generated a vibrant and diverse community, capturing the imagination of developmental and evolutionary biologists, structuralists, biochemists and molecular biologists alike. Together they have managed to solve many floral mysteries, uncovering the regulatory processes that generate the characteristic spatio-temporal expression patterns of floral homeotic genes, elucidating some of the mechanisms allowing ABC genes to specify distinct organ identities, revealing how evolution tinkers with the ABC to generate morphological diversity, and even shining a light on the origins of the floral gene regulatory network itself. Here we retrace the history of the ABC model, from its genesis to its current form, highlighting specific milestones along the way before drawing attention to some of the unsolved riddles still hidden in the floral alphabet.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, VIC 3800, Australia
| | - Edwige Moyroud
- The Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
5
|
Käppel S, Rümpler F, Theißen G. Cracking the Floral Quartet Code: How Do Multimers of MIKC C-Type MADS-Domain Transcription Factors Recognize Their Target Genes? Int J Mol Sci 2023; 24:8253. [PMID: 37175955 PMCID: PMC10178880 DOI: 10.3390/ijms24098253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
MADS-domain transcription factors (MTFs) are involved in the control of many important processes in eukaryotes. They are defined by the presence of a unique and highly conserved DNA-binding domain, the MADS domain. MTFs bind to double-stranded DNA as dimers and recognize specific sequences termed CArG boxes (such as 5'-CC(A/T)6GG-3') and similar sequences that occur hundreds of thousands of times in a typical flowering plant genome. The number of MTF-encoding genes increased by around two orders of magnitude during land plant evolution, resulting in roughly 100 genes in flowering plant genomes. This raises the question as to how dozens of different but highly similar MTFs accurately recognize the cis-regulatory elements of diverse target genes when the core binding sequence (CArG box) occurs at such a high frequency. Besides the usual processes, such as the base and shape readout of individual DNA sequences by dimers of MTFs, an important sublineage of MTFs in plants, termed MIKCC-type MTFs (MC-MTFs), has evolved an additional mechanism to increase the accurate recognition of target genes: the formation of heterotetramers of closely related proteins that bind to two CArG boxes on the same DNA strand involving DNA looping. MC-MTFs control important developmental processes in flowering plants, ranging from root and shoot to flower, fruit and seed development. The way in which MC-MTFs bind to DNA and select their target genes is hence not only of high biological interest, but also of great agronomic and economic importance. In this article, we review the interplay of the different mechanisms of target gene recognition, from the ordinary (base readout) via the extravagant (shape readout) to the idiosyncratic (recognition of the distance and orientation of two CArG boxes by heterotetramers of MC-MTFs). A special focus of our review is on the structural prerequisites of MC-MTFs that enable the specific recognition of target genes.
Collapse
Affiliation(s)
| | | | - Günter Theißen
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, 07743 Jena, Germany; (S.K.); (F.R.)
| |
Collapse
|
6
|
Chahtane H, Lai X, Tichtinsky G, Rieu P, Arnoux-Courseaux M, Cancé C, Marondedze C, Parcy F. Flower Development in Arabidopsis. Methods Mol Biol 2023; 2686:3-38. [PMID: 37540352 DOI: 10.1007/978-1-0716-3299-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Like in other angiosperms, the development of flowers in Arabidopsis starts right after the floral transition, when the shoot apical meristem (SAM) stops producing leaves and makes flowers instead. On the flanks of the SAM emerge the flower meristems (FM) that will soon differentiate into the four main floral organs, sepals, petals, stamens, and pistil, stereotypically arranged in concentric whorls. Each phase of flower development-floral transition, floral bud initiation, and floral organ development-is under the control of specific gene networks. In this chapter, we describe these different phases and the gene regulatory networks involved, from the floral transition to the floral termination.
Collapse
Affiliation(s)
- Hicham Chahtane
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Institut de Recherche Pierre Fabre, Green Mission Pierre Fabre, Conservatoire Botanique Pierre Fabre, Soual, France
| | - Xuelei Lai
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Wuhan, China
| | | | - Philippe Rieu
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | | | - Coralie Cancé
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
| | - Claudius Marondedze
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Department of Biochemistry, Faculty of Medicine, Midlands State University, Senga, Gweru, Zimbabwe
| | - François Parcy
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France.
| |
Collapse
|
7
|
Chen TT, Yao XH, Liu H, Li YP, Qin W, Yan X, Wang XY, Peng BW, Zhang YJ, Shao J, Hu XY, Miao Q, Fu XQ, Wang YL, Li L, Tang KX. MADS-box gene AaSEP4 promotes artemisinin biosynthesis in Artemisia annua. FRONTIERS IN PLANT SCIENCE 2022; 13:982317. [PMID: 36119604 PMCID: PMC9473666 DOI: 10.3389/fpls.2022.982317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The plant Artemisia annua is well known for its production of artemisinin, a sesquiterpene lactone that is an effective antimalarial compound. Although remarkable progress has been made toward understanding artemisinin biosynthesis, the effect of MADS-box family transcription factors on artemisinin biosynthesis is still poorly understood. In this study, we identified a MADS transcription factor, AaSEP4, that was predominantly expressed in trichome. AaSEP4 acts as a nuclear-localized transcriptional activator activating the expression of AaGSW1 (GLANDULAR TRICHOME-SPECIFIC WRKY1). Dual-luciferase and Yeast one-hybrid assays revealed that AaSEP4 directly bound to the CArG motif in the promoter region of AaGSW1. Overexpression of AaSEP4 in A. annua significantly induced the expression of AaGSW1 and four artemisinin biosynthesis genes, including amorpha-4,11-diene synthase (ADS), cytochrome P450 monooxygenase (CYP71AV1), double-bond reductase 2 (DBR2) and aldehyde dehydrogenase 1 (ALDH1). Furthermore, the results of high-performance liquid chromatography (HPLC) showed that the artemisinin content was significantly increased in the AaSEP4-overexpressed plants. In addition, RT-qPCR results showed that AaSEP4 was induced by methyl jasmonic acid (MeJA) treatment. Taken together, these results explicitly demonstrate that AaSEP4 is a positive regulator of artemisinin biosynthesis, which can be used in the development of high-artemisinin yielding A. annua varieties.
Collapse
|
8
|
Pi M, Hu S, Cheng L, Zhong R, Cai Z, Liu Z, Yao JL, Kang C. The MADS-box gene FveSEP3 plays essential roles in flower organogenesis and fruit development in woodland strawberry. HORTICULTURE RESEARCH 2021; 8:247. [PMID: 34848694 PMCID: PMC8632884 DOI: 10.1038/s41438-021-00673-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 05/02/2023]
Abstract
Flower and fruit development are two key steps for plant reproduction. The ABCE model for flower development has been well established in model plant species; however, the functions of ABCE genes in fruit crops are less understood. In this work, we identified an EMS mutant named R27 in woodland strawberry (Fragaria vesca), showing the conversion of petals, stamens, and carpels to sepaloid organs in a semidominant inheritance fashion. Mapping by sequencing revealed that the class E gene homolog FveSEP3 (FvH4_4g23530) possessed the causative mutation in R27 due to a G to E amino acid change in the conserved MADS domain. Additional fvesep3CR mutants generated by CRISPR/Cas9 displayed similar phenotypes to fvesep3-R27. Overexpressing wild-type or mutated FveSEP3 in Arabidopsis suggested that the mutation in R27 might cause a dominant-negative effect. Further analyses indicated that FveSEP3 physically interacted with each of the ABCE proteins in strawberry. Moreover, both R27 and fvesep3CR mutants exhibited parthenocarpic fruit growth and delayed fruit ripening. Transcriptome analysis revealed that both common and specific differentially expressed genes were identified in young fruit at 6-7 days post anthesis (DPA) of fvesep3 and pollinated wild type when compared to unpollinated wild type, especially those in the auxin pathway, a key hormone regulating fruit set in strawberry. Together, we provided compelling evidence that FveSEP3 plays predominant E functions compared to other E gene homologs in flower development and that FveSEP3 represses fruit growth in the absence of pollination and promotes fruit ripening in strawberry.
Collapse
Affiliation(s)
- Mengting Pi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shaoqiang Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Laichao Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruhan Zhong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhuoying Cai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
9
|
Li G, Kuijer HNJ, Yang X, Liu H, Shen C, Shi J, Betts N, Tucker MR, Liang W, Waugh R, Burton RA, Zhang D. MADS1 maintains barley spike morphology at high ambient temperatures. NATURE PLANTS 2021; 7:1093-1107. [PMID: 34183784 DOI: 10.1038/s41477-021-00957-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/02/2021] [Indexed: 05/05/2023]
Abstract
Temperature stresses affect plant phenotypic diversity. The developmental stability of the inflorescence, required for reproductive success, is tightly regulated by the interplay of genetic and environmental factors. However, the mechanisms underpinning how plant inflorescence architecture responds to temperature are largely unknown. We demonstrate that the barley SEPALLATA MADS-box protein HvMADS1 is responsible for maintaining an unbranched spike architecture at high temperatures, while the loss-of-function mutant forms a branched inflorescence-like structure. HvMADS1 exhibits increased binding to target promoters via A-tract CArG-box motifs, which change conformation with temperature. Target genes for high-temperature-dependent HvMADS1 activation are predominantly associated with inflorescence differentiation and phytohormone signalling. HvMADS1 directly regulates the cytokinin-degrading enzyme HvCKX3 to integrate temperature response and cytokinin homeostasis, which is required to repress meristem cell cycle/division. Our findings reveal a mechanism by which genetic factors direct plant thermomorphogenesis, extending the recognized role of plant MADS-box proteins in floral development.
Collapse
Affiliation(s)
- Gang Li
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia.
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China.
| | - Hendrik N J Kuijer
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Xiujuan Yang
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Huiran Liu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaoqun Shen
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Natalie Betts
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Robbie Waugh
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
- James Hutton Institute, Dundee, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
| | - Rachel A Burton
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Dabing Zhang
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia.
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Shen G, Jia Y, Wang WL. Evolutionary divergence of motifs in B-class MADS-box proteins of seed plants. ACTA ACUST UNITED AC 2021; 28:12. [PMID: 34049600 PMCID: PMC8161959 DOI: 10.1186/s40709-021-00144-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022]
Abstract
Background MADS-box transcription factors function as homo- or heterodimers and regulate many aspects of plant development; moreover, MADS-box genes have undergone extensive duplication and divergence. For example, the morphological diversity of floral organs is closely related to the functional divergence of the MADS-box gene family. B-class genes (such as Arabidopsis thaliana APETALA3 [AP3] and PISTILLATA [PI]) belong to a subgroup of MADS-box genes. Here, we collected 97 MADS-box B protein sequences from 21 seed plant species and examined their motifs to better understand the functional evolution of B proteins. Results We used the MEME tool to identify conserved sequence motifs in these B proteins; unique motif arrangements and sequences were identified in these B proteins. The keratin-like domains of Malus domestica and Populus trichocarpa B proteins differed from those in other angiosperms, suggesting that a novel regulatory network might have evolved in these species. The MADS domains of Nelumbo nucifera, Glycine max, and Amborella trichopoda B-proteins contained motif 9; in contrast, those of other plants contained motif 1. Protein modelling analyses revealed that MADS domains with motif 9 may lack amino acid sites required for DNA-binding. These results suggested that the three species might share an alternative mechanism controlling floral development. Conclusions Amborella trichopoda has B proteins with either motif 1 or motif 9 MADS domains, suggesting that these two types of MADS domains evolved from the ancestral domain into two groups, those with motif 9 (N. nucifera and G. max), and those with motif 1. Moreover, our results suggest that the homodimer/heterodimer intermediate transition structure first appeared in A. trichopoda. Therefore, our systematic analysis of the motifs in B proteins sheds light on the evolution of these important transcription factors. Supplementary Information The online version contains supplementary material available at 10.1186/s40709-021-00144-7.
Collapse
Affiliation(s)
- Gangxu Shen
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, 84001, Taiwan. .,Department of Biology, National Changhua University of Education, Changhua, 500, Taiwan.
| | - Yong Jia
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia
| | - Wei-Lung Wang
- Department of Biology, National Changhua University of Education, Changhua, 500, Taiwan.
| |
Collapse
|
11
|
Käppel S, Eggeling R, Rümpler F, Groth M, Melzer R, Theißen G. DNA-binding properties of the MADS-domain transcription factor SEPALLATA3 and mutant variants characterized by SELEX-seq. PLANT MOLECULAR BIOLOGY 2021; 105:543-557. [PMID: 33486697 PMCID: PMC7892521 DOI: 10.1007/s11103-020-01108-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/11/2020] [Indexed: 05/13/2023]
Abstract
We studied the DNA-binding profile of the MADS-domain transcription factor SEPALLATA3 and mutant variants by SELEX-seq. DNA-binding characteristics of SEPALLATA3 mutant proteins lead us to propose a novel DNA-binding mode. MIKC-type MADS-domain proteins, which function as essential transcription factors in plant development, bind as dimers to a 10-base-pair AT-rich motif termed CArG-box. However, this consensus motif cannot fully explain how the abundant family members in flowering plants can bind different target genes in specific ways. The aim of this study was to better understand the DNA-binding specificity of MADS-domain transcription factors. Also, we wanted to understand the role of a highly conserved arginine residue for binding specificity of the MADS-domain transcription factor family. Here, we studied the DNA-binding profile of the floral homeotic MADS-domain protein SEPALLATA3 by performing SELEX followed by high-throughput sequencing (SELEX-seq). We found a diverse set of bound sequences and could estimate the in vitro binding affinities of SEPALLATA3 to a huge number of different sequences. We found evidence for the preference of AT-rich motifs as flanking sequences. Whereas different CArG-boxes can act as SEPALLATA3 binding sites, our findings suggest that the preferred flanking motifs are almost always the same and thus mostly independent of the identity of the central CArG-box motif. Analysis of SEPALLATA3 proteins with a single amino acid substitution at position 3 of the DNA-binding MADS-domain further revealed that the conserved arginine residue, which has been shown to be involved in a shape readout mechanism, is especially important for the recognition of nucleotides at positions 3 and 8 of the CArG-box motif. This leads us to propose a novel DNA-binding mode for SEPALLATA3, which is different from that of other MADS-domain proteins known.
Collapse
Affiliation(s)
- Sandra Käppel
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Ralf Eggeling
- Department of Computer Science, University of Helsinki, Pietari Kalmin katu 5, 00014, Helsinki, Finland
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Sand 14, 72076, Tübingen, Germany
- Institute for Biomedical Informatics, University of Tübingen, Tübingen, Germany
| | - Florian Rümpler
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Core Facility DNA Sequencing, Beutenbergstraße 11, 07745, Jena, Germany
| | - Rainer Melzer
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Günter Theißen
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany.
| |
Collapse
|
12
|
Dantas Machado AC, Cooper BH, Lei X, Di Felice R, Chen L, Rohs R. Landscape of DNA binding signatures of myocyte enhancer factor-2B reveals a unique interplay of base and shape readout. Nucleic Acids Res 2020; 48:8529-8544. [PMID: 32738045 PMCID: PMC7470950 DOI: 10.1093/nar/gkaa642] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023] Open
Abstract
Myocyte enhancer factor-2B (MEF2B) has the unique capability of binding to its DNA target sites with a degenerate motif, while still functioning as a gene-specific transcriptional regulator. Identifying its DNA targets is crucial given regulatory roles exerted by members of the MEF2 family and MEF2B's involvement in B-cell lymphoma. Analyzing structural data and SELEX-seq experimental results, we deduced the DNA sequence and shape determinants of MEF2B target sites on a high-throughput basis in vitro for wild-type and mutant proteins. Quantitative modeling of MEF2B binding affinities and computational simulations exposed the DNA readout mechanisms of MEF2B. The resulting binding signature of MEF2B revealed distinct intricacies of DNA recognition compared to other transcription factors. MEF2B uses base readout at its half-sites combined with shape readout at the center of its degenerate motif, where A-tract polarity dictates nuances of binding. The predominant role of shape readout at the center of the core motif, with most contacts formed in the minor groove, differs from previously observed protein-DNA readout modes. MEF2B, therefore, represents a unique protein for studies of the role of DNA shape in achieving binding specificity. MEF2B-DNA recognition mechanisms are likely representative for other members of the MEF2 family.
Collapse
Affiliation(s)
- Ana Carolina Dantas Machado
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendon H Cooper
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiao Lei
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Rosa Di Felice
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics & Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Lin Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Remo Rohs
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics & Astronomy, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
13
|
Meng N, Wei Y, Gao Y, Yu K, Cheng J, Li XY, Duan CQ, Pan QH. Characterization of Transcriptional Expression and Regulation of Carotenoid Cleavage Dioxygenase 4b in Grapes. FRONTIERS IN PLANT SCIENCE 2020; 11:483. [PMID: 32457771 PMCID: PMC7227400 DOI: 10.3389/fpls.2020.00483] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/31/2020] [Indexed: 05/23/2023]
Abstract
Norisoprenoids are important aromatic volatiles contributing to the pleasant floral/fruity odor in grapes and wine. They are produced from carotenoids through the cleavage of carotenoid cleavage dioxygenases (CCDs). However, the underlying mechanisms regulating VvCCD expression remain poorly understood. In this study, we showed that VvCCD4b expression was positively correlated with the accumulation of β-damascenone, β-ionone, 6-methyl-5-hepten-2-one, geranylacetone, dihydroedulan I, and total norisoprenoids in developing grapes in two vintages from two regions. VvCCD4b was found to be principally expressed in flowers, mature leaves, and berries. Abscisic acid strongly induced the expression of this gene. Additionally, the present study preliminarily indicated that the activity of the VvCCD4b promoter was dropped under 37°C treatment and also responded to the illumination change. VvCCD4b was expressed in parallel with VvMADS4 in developing grape berries. The latter is a MADS family transcription factor and nucleus-localized protein that was captured by yeast one-hybrid. A dual-luciferase reporter assay in tobacco leaves revealed that VvMADS4 downregulated the activity of the VvCCD4b promoter. VvMADS4 overexpression in grape calli and Vitis quinquangularis Rehd. leaves repressed the VvCCD4b expression. In summary, this work demonstrates that VvCCD4b expression is positively correlated with the accumulation of norisoprenoids, and VvMADS4 is a potential negative regulator of VvCCD4b. Our results provide a new perspective for understanding the regulation of VvCCD4b expression and norisoprenoid accumulation in grapes.
Collapse
Affiliation(s)
- Nan Meng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Yi Wei
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Yuan Gao
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Keji Yu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Jing Cheng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Xiang-Yi Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| |
Collapse
|
14
|
Abstract
Circadian gene expression oscillates over a 24-h period and regulates many genes critical for growth and development in plants. A key component of the circadian clock is the Evening Complex (EC), a transcriptional repressor complex that contains the proteins LUX ARRHYTHMO, EARLY FLOWERING 3, and EARLY FLOWERING 4 (ELF4). By repressing the expression of genes such as PHYTOCHROME INTERACTING FACTOR4 (PIF4), the EC reduces elongation growth. At warmer temperatures, EC activity is lost, promoting thermomorphogenesis via PIF4 expression. The molecular mechanisms underlying EC activity are not well understood. Here, we combined structural studies with extensive in vitro assays to determine the molecular mechanisms of the temperature-dependent EC binding to DNA and demonstrate the critical role of ELF4 in this activity. The Evening Complex (EC), composed of the DNA binding protein LUX ARRHYTHMO (LUX) and two additional proteins EARLY FLOWERING 3 (ELF3) and ELF4, is a transcriptional repressor complex and a core component of the plant circadian clock. In addition to maintaining oscillations in clock gene expression, the EC also participates in temperature and light entrainment, acting as an important environmental sensor and conveying this information to growth and developmental pathways. However, the molecular basis for EC DNA binding specificity and temperature-dependent activity were not known. Here, we solved the structure of the DNA binding domain of LUX in complex with DNA. Residues critical for high-affinity binding and direct base readout were determined and tested via site-directed mutagenesis in vitro and in vivo. Using extensive in vitro DNA binding assays of LUX alone and in complex with ELF3 and ELF4, we demonstrate that, while LUX alone binds DNA with high affinity, the LUX–ELF3 complex is a relatively poor binder of DNA. ELF4 restores binding to the complex. In vitro, the full EC is able to act as a direct thermosensor, with stronger DNA binding at 4 °C and weaker binding at 27 °C. In addition, an excess of ELF4 is able to restore EC binding even at 27 °C. Taken together, these data suggest that ELF4 is a key modulator of thermosensitive EC activity.
Collapse
|
15
|
Lai X, Stigliani A, Vachon G, Carles C, Smaczniak C, Zubieta C, Kaufmann K, Parcy F. Building Transcription Factor Binding Site Models to Understand Gene Regulation in Plants. MOLECULAR PLANT 2019; 12:743-763. [PMID: 30447332 DOI: 10.1016/j.molp.2018.10.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/20/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Transcription factors (TFs) are key cellular components that control gene expression. They recognize specific DNA sequences, the TF binding sites (TFBSs), and thus are targeted to specific regions of the genome where they can recruit transcriptional co-factors and/or chromatin regulators to fine-tune spatiotemporal gene regulation. Therefore, the identification of TFBSs in genomic sequences and their subsequent quantitative modeling is of crucial importance for understanding and predicting gene expression. Here, we review how TFBSs can be determined experimentally, how the TFBS models can be constructed in silico, and how they can be optimized by taking into account features such as position interdependence within TFBSs, DNA shape, and/or by introducing state-of-the-art computational algorithms such as deep learning methods. In addition, we discuss the integration of context variables into the TFBS modeling, including nucleosome positioning, chromatin states, methylation patterns, 3D genome architectures, and TF cooperative binding, in order to better predict TF binding under cellular contexts. Finally, we explore the possibilities of combining the optimized TFBS model with technological advances, such as targeted TFBS perturbation by CRISPR, to better understand gene regulation, evolution, and plant diversity.
Collapse
Affiliation(s)
- Xuelei Lai
- CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG-LPCV, 38000 Grenoble, France.
| | - Arnaud Stigliani
- CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Gilles Vachon
- CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Cristel Carles
- CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Cezary Smaczniak
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chloe Zubieta
- CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - François Parcy
- CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG-LPCV, 38000 Grenoble, France.
| |
Collapse
|