1
|
Cheng A, Sadali NM, Rejab NA, Uludag A. Piece and parcel of gymnosperm organellar genomes. PLANTA 2024; 260:14. [PMID: 38829418 DOI: 10.1007/s00425-024-04449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
MAIN CONCLUSION Significant past, present, and potential future research into the organellar (plastid and mitochondrial) genomes of gymnosperms that can provide insight into the unknown origin and evolution of plants is highlighted. Gymnosperms are vascular seed plants that predominated the ancient world before their sister clade, angiosperms, took over during the Late Cretaceous. The divergence of gymnosperms and angiosperms took place around 300 Mya, with the latter evolving into the diverse group of flowering plants that dominate the plant kingdom today. Although gymnosperms have reportedly made some evolutionary innovations, the literature on their genome advances, particularly their organellar (plastid and mitochondrial) genomes, is relatively scattered and fragmented. While organellar genomes can shed light on plant origin and evolution, they are frequently overlooked, due in part to their limited contribution to gene expression and lack of evolutionary dynamics when compared to nuclear genomes. A better understanding of gymnosperm organellar genomes is critical because they reveal genetic changes that have contributed to their unique adaptations and ecological success, potentially aiding in plant survival, enhancement, and biodiversity conservation in the face of climate change. This review reveals significant information and gaps in the existing knowledge base of organellar genomes in gymnosperms, as well as the challenges and research needed to unravel their complexity.
Collapse
Affiliation(s)
- Acga Cheng
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Najiah Mohd Sadali
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nur Ardiyana Rejab
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ahmet Uludag
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Faculty of Agriculture, Canakkale Onsekiz Mart University, 17100, Canakkale, Türkiye
| |
Collapse
|
2
|
Hung TH, Wu ETY, Zeltiņš P, Jansons Ā, Ullah A, Erbilgin N, Bohlmann J, Bousquet J, Birol I, Clegg SM, MacKay JJ. Long-insert sequence capture detects high copy numbers in a defence-related beta-glucosidase gene βglu-1 with large variations in white spruce but not Norway spruce. BMC Genomics 2024; 25:118. [PMID: 38281030 PMCID: PMC10821269 DOI: 10.1186/s12864-024-09978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/05/2024] [Indexed: 01/29/2024] Open
Abstract
Conifers are long-lived and slow-evolving, thus requiring effective defences against their fast-evolving insect natural enemies. The copy number variation (CNV) of two key acetophenone biosynthesis genes Ugt5/Ugt5b and βglu-1 may provide a plausible mechanism underlying the constitutively variable defence in white spruce (Picea glauca) against its primary defoliator, spruce budworm. This study develops a long-insert sequence capture probe set (Picea_hung_p1.0) for quantifying copy number of βglu-1-like, Ugt5-like genes and single-copy genes on 38 Norway spruce (Picea abies) and 40 P. glauca individuals from eight and nine provenances across Europe and North America respectively. We developed local assemblies (Piabi_c1.0 and Pigla_c.1.0), full-length transcriptomes (PIAB_v1 and PIGL_v1), and gene models to characterise the diversity of βglu-1 and Ugt5 genes. We observed very large copy numbers of βglu-1, with up to 381 copies in a single P. glauca individual. We observed among-provenance CNV of βglu-1 in P. glauca but not P. abies. Ugt5b was predominantly single-copy in both species. This study generates critical hypotheses for testing the emergence and mechanism of extreme CNV, the dosage effect on phenotype, and the varying copy number of genes with the same pathway. We demonstrate new approaches to overcome experimental challenges in genomic research in conifer defences.
Collapse
Affiliation(s)
- Tin Hang Hung
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
| | - Ernest T Y Wu
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Pauls Zeltiņš
- Latvian State Forest Research Institute "Silava", Salaspils, 2169, Latvia
| | - Āris Jansons
- Latvian State Forest Research Institute "Silava", Salaspils, 2169, Latvia
| | - Aziz Ullah
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Sonya M Clegg
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - John J MacKay
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
3
|
Lu M, Cao M, Yang J, Swenson NG. Comparative transcriptomics reveals divergence in pathogen response gene families amongst 20 forest tree species. G3 (BETHESDA, MD.) 2023; 13:jkad233. [PMID: 37812763 PMCID: PMC10700026 DOI: 10.1093/g3journal/jkad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Forest trees provide critical ecosystem services for humanity that are under threat due to ongoing global change. Measuring and characterizing genetic diversity are key to understanding adaptive potential and developing strategies to mitigate negative consequences arising from climate change. In the area of forest genetic diversity, genetic divergence caused by large-scale changes at the chromosomal level has been largely understudied. In this study, we used the RNA-seq data of 20 co-occurring forest trees species from genera including Acer, Alnus, Amelanchier, Betula, Cornus, Corylus, Dirca, Fraxinus, Ostrya, Populus, Prunus, Quercus, Ribes, Tilia, and Ulmus sampled from Upper Peninsula of Michigan. These data were used to infer the origin and maintenance of gene family variation, species divergence time, as well as gene family expansion and contraction. We identified a signal of common whole genome duplication events shared by core eudicots. We also found rapid evolution, namely fast expansion or fast contraction of gene families, in plant-pathogen interaction genes amongst the studied diploid species. Finally, the results lay the foundation for further research on the genetic diversity and adaptive capacity of forest trees, which will inform forest management and conservation policies.
Collapse
Affiliation(s)
- Mengmeng Lu
- Department of Biological Sciences, University of Notre Dame, 100 Galvin Life Sciences, Notre Dame, IN 46556, USA
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, 100 Galvin Life Sciences, Notre Dame, IN 46556, USA
- University of Notre Dame Environmental Research Center (UNDERC), 736 Flanner Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
4
|
Velasco VME, Ferreira A, Zaman S, Noordermeer D, Ensminger I, Wegrzyn JL. A long-read and short-read transcriptomics approach provides the first high-quality reference transcriptome and genome annotation for Pseudotsuga menziesii (Douglas-fir). G3 (BETHESDA, MD.) 2023; 13:jkac304. [PMID: 36454025 PMCID: PMC10468028 DOI: 10.1093/g3journal/jkac304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/13/2021] [Accepted: 10/19/2022] [Indexed: 12/02/2022]
Abstract
Douglas-fir (Pseudotsuga menziesii) is native to western North America. It grows in a wide range of environmental conditions and is an important timber tree. Although there are several studies on the gene expression responses of Douglas-fir to abiotic cues, the absence of high-quality transcriptome and genome data is a barrier to further investigation. Like for most conifers, the available transcriptome and genome reference dataset for Douglas-fir remains fragmented and requires refinement. We aimed to generate a highly accurate, and complete reference transcriptome and genome annotation. We deep-sequenced the transcriptome of Douglas-fir needles from seedlings that were grown under nonstress control conditions or a combination of heat and drought stress conditions using long-read (LR) and short-read (SR) sequencing platforms. We used 2 computational approaches, namely de novo and genome-guided LR transcriptome assembly. Using the LR de novo assembly, we identified 1.3X more high-quality transcripts, 1.85X more "complete" genes, and 2.7X more functionally annotated genes compared to the genome-guided assembly approach. We predicted 666 long noncoding RNAs and 12,778 unique protein-coding transcripts including 2,016 putative transcription factors. We leveraged the LR de novo assembled transcriptome with paired-end SR and a published single-end SR transcriptome to generate an improved genome annotation. This was conducted with BRAKER2 and refined based on functional annotation, repetitive content, and transcriptome alignment. This high-quality genome annotation has 51,419 unique gene models derived from 322,631 initial predictions. Overall, our informatics approach provides a new reference Douglas-fir transcriptome assembly and genome annotation with considerably improved completeness and functional annotation.
Collapse
Affiliation(s)
| | - Alyssa Ferreira
- Department of Evolution and Ecology, University of
Connecticut, Storrs, CT 06269, USA
| | - Sumaira Zaman
- Department of Evolution and Ecology, University of
Connecticut, Storrs, CT 06269, USA
| | - Devin Noordermeer
- Department of Biology, University of Toronto,
Mississauga, ON L5L 1C8, Canada
- Graduate Department of Cell and Systems Biology, University of
Toronto, Toronto, ON M5S, Canada
| | - Ingo Ensminger
- Department of Biology, University of Toronto,
Mississauga, ON L5L 1C8, Canada
- Graduate Department of Cell and Systems Biology, University of
Toronto, Toronto, ON M5S, Canada
- Graduate Department of Ecology and Evolutionary Biology, University of
Toronto, Toronto, ON M5S, Canada
| | - Jill L Wegrzyn
- Department of Evolution and Ecology, University of
Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
5
|
Gagalova KK, Warren RL, Coombe L, Wong J, Nip KM, Yuen MMS, Whitehill JGA, Celedon JM, Ritland C, Taylor GA, Cheng D, Plettner P, Hammond SA, Mohamadi H, Zhao Y, Moore RA, Mungall AJ, Boyle B, Laroche J, Cottrell J, Mackay JJ, Lamothe M, Gérardi S, Isabel N, Pavy N, Jones SJM, Bohlmann J, Bousquet J, Birol I. Spruce giga-genomes: structurally similar yet distinctive with differentially expanding gene families and rapidly evolving genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1469-1485. [PMID: 35789009 DOI: 10.1111/tpj.15889] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Spruces (Picea spp.) are coniferous trees widespread in boreal and mountainous forests of the northern hemisphere, with large economic significance and enormous contributions to global carbon sequestration. Spruces harbor very large genomes with high repetitiveness, hampering their comparative analysis. Here, we present and compare the genomes of four different North American spruces: the genome assemblies for Engelmann spruce (Picea engelmannii) and Sitka spruce (Picea sitchensis) together with improved and more contiguous genome assemblies for white spruce (Picea glauca) and for a naturally occurring introgress of these three species known as interior spruce (P. engelmannii × glauca × sitchensis). The genomes were structurally similar, and a large part of scaffolds could be anchored to a genetic map. The composition of the interior spruce genome indicated asymmetric contributions from the three ancestral genomes. Phylogenetic analysis of the nuclear and organelle genomes revealed a topology indicative of ancient reticulation. Different patterns of expansion of gene families among genomes were observed and related with presumed diversifying ecological adaptations. We identified rapidly evolving genes that harbored high rates of non-synonymous polymorphisms relative to synonymous ones, indicative of positive selection and its hitchhiking effects. These gene sets were mostly distinct between the genomes of ecologically contrasted species, and signatures of convergent balancing selection were detected. Stress and stimulus response was identified as the most frequent function assigned to expanding gene families and rapidly evolving genes. These two aspects of genomic evolution were complementary in their contribution to divergent evolution of presumed adaptive nature. These more contiguous spruce giga-genome sequences should strengthen our understanding of conifer genome structure and evolution, as their comparison offers clues into the genetic basis of adaptation and ecology of conifers at the genomic level. They will also provide tools to better monitor natural genetic diversity and improve the management of conifer forests. The genomes of four closely related North American spruces indicate that their high similarity at the morphological level is paralleled by the high conservation of their physical genome structure. Yet, the evidence of divergent evolution is apparent in their rapidly evolving genomes, supported by differential expansion of key gene families and large sets of genes under positive selection, largely in relation to stimulus and environmental stress response.
Collapse
Affiliation(s)
- Kristina K Gagalova
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - René L Warren
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Lauren Coombe
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Johnathan Wong
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Ka Ming Nip
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Macaire Man Saint Yuen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Justin G A Whitehill
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jose M Celedon
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Carol Ritland
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Greg A Taylor
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Dean Cheng
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Patrick Plettner
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - S Austin Hammond
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
- Next-Generation Sequencing Facility, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Hamid Mohamadi
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Yongjun Zhao
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Brian Boyle
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
| | - Jérôme Laroche
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
| | - Joan Cottrell
- Forest Research, U.K. Forestry Commission, Northern Research Station, Roslin, EH25 9SY, Midlothian, UK
| | - John J Mackay
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Manuel Lamothe
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
| | - Sébastien Gérardi
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nathalie Pavy
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jean Bousquet
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| |
Collapse
|
6
|
Lind BM, Lu M, Obreht Vidakovic D, Singh P, Booker TR, Aitken SN, Yeaman S. Haploid, diploid, and pooled exome capture recapitulate features of biology and paralogy in two non-model tree species. Mol Ecol Resour 2021; 22:225-238. [PMID: 34270863 PMCID: PMC9292622 DOI: 10.1111/1755-0998.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/18/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
Despite their suitability for studying evolution, many conifer species have large and repetitive giga‐genomes (16–31 Gbp) that create hurdles to producing high coverage SNP data sets that capture diversity from across the entirety of the genome. Due in part to multiple ancient whole genome duplication events, gene family expansion and subsequent evolution within Pinaceae, false diversity from the misalignment of paralog copies creates further challenges in accurately and reproducibly inferring evolutionary history from sequence data. Here, we leverage the cost‐saving benefits of pool‐seq and exome‐capture to discover SNPs in two conifer species, Douglas‐fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco, Pinaceae) and jack pine (Pinus banksiana Lamb., Pinaceae). We show, using minimal baseline filtering, that allele frequencies estimated from pooled individuals show a strong, positive correlation with those estimated by sequencing the same population as individuals (r > .948), on par with such comparisons made in model organisms. Further, we highlight the utility of haploid megagametophyte tissue for identifying sites that are probably due to misaligned paralogs. Together with additional minor filtering, we show that it is possible to remove many of the loci with large frequency estimate discrepancies between individual and pooled sequencing approaches, improving the correlation further (r > .973). Our work addresses bioinformatic challenges in non‐model organisms with large and complex genomes, highlights the use of megagametophyte tissue for the identification of paralogous artefacts, and suggests the combination of pool‐seq and exome capture to be robust for further evolutionary hypothesis testing in these systems.
Collapse
Affiliation(s)
- Brandon M Lind
- Department of Forest and Conservation Sciences, Centre for Forest Conservation Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Mengmeng Lu
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Dragana Obreht Vidakovic
- Department of Forest and Conservation Sciences, Centre for Forest Conservation Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Pooja Singh
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Tom R Booker
- Department of Forest and Conservation Sciences, Centre for Forest Conservation Genetics, University of British Columbia, Vancouver, BC, Canada.,Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, Centre for Forest Conservation Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Greenhalgh R, Dermauw W, Glas JJ, Rombauts S, Wybouw N, Thomas J, Alba JM, Pritham EJ, Legarrea S, Feyereisen R, Van de Peer Y, Van Leeuwen T, Clark RM, Kant MR. Genome streamlining in a minute herbivore that manipulates its host plant. eLife 2020; 9:56689. [PMID: 33095158 PMCID: PMC7738191 DOI: 10.7554/elife.56689] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The tomato russet mite, Aculops lycopersici, is among the smallest animals on earth. It is a worldwide pest on tomato and can potently suppress the host's natural resistance. We sequenced its genome, the first of an eriophyoid, and explored whether there are genomic features associated with the mite's minute size and lifestyle. At only 32.5 Mb, the genome is the smallest yet reported for any arthropod and, reminiscent of microbial eukaryotes, exceptionally streamlined. It has few transposable elements, tiny intergenic regions, and is remarkably intron-poor, as more than 80% of coding genes are intronless. Furthermore, in accordance with ecological specialization theory, this defense-suppressing herbivore has extremely reduced environmental response gene families such as those involved in chemoreception and detoxification. Other losses associate with this species' highly derived body plan. Our findings accelerate the understanding of evolutionary forces underpinning metazoan life at the limits of small physical and genome size.
Collapse
Affiliation(s)
- Robert Greenhalgh
- School of Biological Sciences, University of Utah, Salt Lake City, United States
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Joris J Glas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jainy Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Juan M Alba
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Saioa Legarrea
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard M Clark
- School of Biological Sciences, University of Utah, Salt Lake City, United States.,Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, United States
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
De La Torre AR, Piot A, Liu B, Wilhite B, Weiss M, Porth I. Functional and morphological evolution in gymnosperms: A portrait of implicated gene families. Evol Appl 2020; 13:210-227. [PMID: 31892953 PMCID: PMC6935586 DOI: 10.1111/eva.12839] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/25/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Gymnosperms diverged from their sister plant clade of flowering plants 300 Mya. Morphological and functional divergence between the two major seed plant clades involved significant changes in their reproductive biology, water-conducting systems, secondary metabolism, stress defense mechanisms, and small RNA-mediated epigenetic silencing. The relatively recent sequencing of several gymnosperm genomes and the development of new genomic resources have enabled whole-genome comparisons within gymnosperms, and between angiosperms and gymnosperms. In this paper, we aim to understand how genes and gene families have contributed to the major functional and morphological differences in gymnosperms, and how this information can be used for applied breeding and biotechnology. In addition, we have analyzed the angiosperm versus gymnosperm evolution of the pleiotropic drug resistance (PDR) gene family with a wide range of functionalities in plants' interaction with their environment including defense mechanisms. Some of the genes reviewed here are newly studied members of gene families that hold potential for biotechnological applications related to commercial and pharmacological value. Some members of conifer gene families can also be exploited for their potential in phytoremediation applications.
Collapse
Affiliation(s)
| | - Anthony Piot
- Department of Wood and Forest SciencesLaval UniversityQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Laval UniversityQuebec CityQuebecCanada
- Centre for Forest Research (CEF)Laval UniversityQuebec CityQuebecCanada
| | - Bobin Liu
- School of ForestryNorthern Arizona UniversityFlagstaffAZUSA
- College of ForestryFujian Agricultural and Forestry UniversityFuzhouFujianChina
| | | | - Matthew Weiss
- School of ForestryNorthern Arizona UniversityFlagstaffAZUSA
| | - Ilga Porth
- Department of Wood and Forest SciencesLaval UniversityQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Laval UniversityQuebec CityQuebecCanada
- Centre for Forest Research (CEF)Laval UniversityQuebec CityQuebecCanada
| |
Collapse
|
9
|
Casola C. Resequencing of massive pine genomes helps to unlock the genetic underpinning of quantitative traits in conifer trees. THE NEW PHYTOLOGIST 2019; 221:1669-1671. [PMID: 30729581 DOI: 10.1111/nph.15655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Claudio Casola
- Department of Ecosystem Science and Management, Texas A&M University, 495 Horticulture Rd, College Station, TX, 77843-2138, USA
| |
Collapse
|