1
|
Sweetlove LJ, Ratcliffe RG, Fernie AR. Non-canonical plant metabolism. NATURE PLANTS 2025; 11:696-708. [PMID: 40164785 DOI: 10.1038/s41477-025-01965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/01/2025] [Indexed: 04/02/2025]
Abstract
Metabolism is essential for plant growth and has become a major target for crop improvement by enhancing nutrient use efficiency. Metabolic engineering is also the basis for producing high-value plant products such as pharmaceuticals, biofuels and industrial biochemicals. An inherent problem for such engineering endeavours is the tendency to view metabolism as a series of distinct metabolic pathways-glycolysis, the tricarboxylic acid cycle, the Calvin-Benson cycle and so on. While these canonical pathways may represent a dominant or frequently occurring flux mode, systematic analyses of metabolism via computational modelling have emphasized the inherent flexibility of the metabolic network to carry flux distributions that are distinct from the canonical pathways. Recent experimental estimates of metabolic network fluxes using 13C-labelling approaches have revealed numerous instances in which non-canonical pathways occur under different conditions and in different tissues. In this Review, we bring these non-canonical pathways to the fore, summarizing the evidence for their occurrence and the context in which they operate. We also emphasize the importance of non-canonical pathways for metabolic engineering. We argue that the introduction of a high-flux pathway to a desired metabolic product will, by necessity, require non-canonical supporting fluxes in central metabolism to provide the necessary carbon skeletons, energy and reducing power. We illustrate this using the overproduction of isoprenoids and fatty acids as case studies.
Collapse
Affiliation(s)
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
2
|
Khan N, Choi SH, Lee CH, Qu M, Jeon JS. Photosynthesis: Genetic Strategies Adopted to Gain Higher Efficiency. Int J Mol Sci 2024; 25:8933. [PMID: 39201620 PMCID: PMC11355022 DOI: 10.3390/ijms25168933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The global challenge of feeding an ever-increasing population to maintain food security requires novel approaches to increase crop yields. Photosynthesis, the fundamental energy and material basis for plant life on Earth, is highly responsive to environmental conditions. Evaluating the operational status of the photosynthetic mechanism provides insights into plants' capacity to adapt to their surroundings. Despite immense effort, photosynthesis still falls short of its theoretical maximum efficiency, indicating significant potential for improvement. In this review, we provide background information on the various genetic aspects of photosynthesis, explain its complexity, and survey relevant genetic engineering approaches employed to improve the efficiency of photosynthesis. We discuss the latest success stories of gene-editing tools like CRISPR-Cas9 and synthetic biology in achieving precise refinements in targeted photosynthesis pathways, such as the Calvin-Benson cycle, electron transport chain, and photorespiration. We also discuss the genetic markers crucial for mitigating the impact of rapidly changing environmental conditions, such as extreme temperatures or drought, on photosynthesis and growth. This review aims to pinpoint optimization opportunities for photosynthesis, discuss recent advancements, and address the challenges in improving this critical process, fostering a globally food-secure future through sustainable food crop production.
Collapse
Affiliation(s)
- Naveed Khan
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
| | - Seok-Hyun Choi
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| | - Choon-Hwan Lee
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Mingnan Qu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| |
Collapse
|
3
|
Smith K, Strand DD, Kramer DM, Walker BJ. The role of photorespiration in preventing feedback regulation via ATP synthase in Nicotiana tabacum. PLANT, CELL & ENVIRONMENT 2024; 47:416-428. [PMID: 37937663 PMCID: PMC10842328 DOI: 10.1111/pce.14759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Photorespiration consumes substantial amounts of energy in the forms of adenosine triphosphate (ATP) and reductant making the pathway an important component in leaf energetics. Because of this high reductant demand, photorespiration is proposed to act as a photoprotective electron sink. However, photorespiration consumes more ATP relative to reductant than the C3 cycle meaning increased flux disproportionally increases ATP demand relative to reductant. Here we explore how energetic consumption from photorespiration impacts the flexibility of the light reactions in nicotiana tabacum. Specifically, we demonstrate that decreased photosynthetic efficiency (ϕII ) at low photorespiratory flux was related to feedback regulation at the chloroplast ATP synthase. Additionally, decreased ϕII at high photorespiratory flux resulted in the accumulation of photoinhibition at photosystem II centers. These results are contrary to the proposed role of photorespiration as a photoprotective electron sink. Instead, our results suggest a novel role of ATP consumption from photorespiration in maintaining ATP synthase activity, with implications for maintaining energy balance and preventing photodamage that will be critical for plant engineering strategies.
Collapse
Affiliation(s)
- Kaila Smith
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Biotechnology for Health and Sustainability Program, Michigan State University, East Lansing, MI 48824, USA
| | - Deserah D Strand
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - David M. Kramer
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Berkley J. Walker
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Skiba E, Pietrzak M, Michlewska S, Gruszka J, Malejko J, Godlewska-Żyłkiewicz B, Wolf WM. Photosynthesis governed by nanoparticulate titanium dioxide. The Pisum sativum L. case study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122735. [PMID: 37848082 DOI: 10.1016/j.envpol.2023.122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Wide availability of anthropogenic TiO2 nanoparticles facilitates their penetration into environment and prompts interactions with plants. They alter plants growth and change their nutritional status. In particular, metabolic processes are affected. In this work the effect of nanometric TiO2 on photosynthesis efficiency in green pea (Pisum sativum L.) was studied. Hydroponic cultivations with three Ti levels (10; 50 and 100 mg L-1) were applied. At all concentrations nanoparticles penetrated into plant tissues and were detected by the single particle ICP-MS/MS method. Nanoparticles altered the CO2 assimilation rate and gas exchange parameters (i.e. transpiration, stomatal conductance, sub-stomatal CO2 concentration). The most pronounced effects were observed for Ti 50 mg L-1 cultivation where photosynthesis efficiency, transpiration and stomatal conductance were increased by 14.69%, 4.58% and 8.92%, respectively. They were further confirmed by high maximum ribulose 1,5-bisphosphate carboxylation rate (27.40% increase), maximum electron transport rate (21.51% increase) and the lowest CO2 compensation point (45.19% decrease). Furthermore, concentrations of Cu, Mn, Zn, Fe, Mg, Ca, K and P were examined with the most pronounced changes observed for elements directly involved in photosynthesis (Cu, Zn, Mn, and Fe). The Cu concentrations in roots, stems and leaves for Ti 50 mg L-1 cultivation were below the control by 33.15%, 38.28% and 10.76%, respectively. The Zn content in analogous treatment and organs decreased by 30.24%, 26.69% and 13.35%. The Mn and Fe levels in leaves were increased by 72.22% and 50.32%, respectively. Our results indicated that plant defence mechanisms which restrain the water uptake have been overcome in pea by photocatalytic activity of nanoparticulate TiO2 which stimulated photosynthesis. On the contrary to the substantial stomatal conductance, the transpiration has been reduced because exceptional part of water flow was already consumed in chloroplasts and could not have been freed to the atmosphere.
Collapse
Affiliation(s)
- Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, Poland.
| | - Monika Pietrzak
- Institute of General and Ecological Chemistry, Lodz University of Technology, Poland
| | - Sylwia Michlewska
- Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Lodz, Poland
| | - Jakub Gruszka
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Poland
| | - Julita Malejko
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Poland
| | | | - Wojciech M Wolf
- Institute of General and Ecological Chemistry, Lodz University of Technology, Poland
| |
Collapse
|
5
|
Segura Broncano L, Pukacz KR, Reichel-Deland V, Schlüter U, Triesch S, Weber APM. Photorespiration is the solution, not the problem. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153928. [PMID: 36780758 DOI: 10.1016/j.jplph.2023.153928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The entry of carbon dioxide from the atmosphere into the biosphere is mediated by the enzyme Rubisco, which catalyzes the carboxylation of ribulose 1,5-bisphosphate (RuBP) as the entry reaction of the Calvin Benson Bassham cycle (CBBC), leading to the formation of 2 molecules of 3-phosphoglyceric acid (3PGA) per CO2 fixed. 3PGA is reduced to triose phosphates at the expense of NADPH + H+ and ATP that are provided by the photosynthetic light reactions. Triose phosphates are the principal products of the CBBC and the precursors for almost any compound in the biosphere.
Collapse
Affiliation(s)
- Laia Segura Broncano
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Krzysztof Robin Pukacz
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vanessa Reichel-Deland
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Urte Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Sebastian Triesch
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
6
|
Bauwe H. Photorespiration - Rubisco's repair crew. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153899. [PMID: 36566670 DOI: 10.1016/j.jplph.2022.153899] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The photorespiratory repair pathway (photorespiration in short) was set up from ancient metabolic modules about three billion years ago in cyanobacteria, the later ancestors of chloroplasts. These prokaryotes developed the capacity for oxygenic photosynthesis, i.e. the use of water as a source of electrons and protons (with O2 as a by-product) for the sunlight-driven synthesis of ATP and NADPH for CO2 fixation in the Calvin cycle. However, the CO2-binding enzyme, ribulose 1,5-bisphosphate carboxylase (known under the acronym Rubisco), is not absolutely selective for CO2 and can also use O2 in a side reaction. It then produces 2-phosphoglycolate (2PG), the accumulation of which would inhibit and potentially stop the Calvin cycle and subsequently photosynthetic electron transport. Photorespiration removes the 2-PG and in this way prevents oxygenic photosynthesis from poisoning itself. In plants, the core of photorespiration consists of ten enzymes distributed over three different types of organelles, requiring interorganellar transport and interaction with several auxiliary enzymes. It goes together with the release and to some extent loss of freshly fixed CO2. This disadvantageous feature can be suppressed by CO2-concentrating mechanisms, such as those that evolved in C4 plants thirty million years ago, which enhance CO2 fixation and reduce 2PG synthesis. Photorespiration itself provided a pioneer variant of such mechanisms in the predecessors of C4 plants, C3-C4 intermediate plants. This article is a review and update particularly on the enzyme components of plant photorespiration and their catalytic mechanisms, on the interaction of photorespiration with other metabolism and on its impact on the evolution of photosynthesis. This focus was chosen because a better knowledge of the enzymes involved and how they are embedded in overall plant metabolism can facilitate the targeted use of the now highly advanced methods of metabolic network modelling and flux analysis. Understanding photorespiration more than before as a process that enables, rather than reduces, plant photosynthesis, will help develop rational strategies for crop improvement.
Collapse
Affiliation(s)
- Hermann Bauwe
- University of Rostock, Plant Physiology, Albert-Einstein-Straße 3, D-18051, Rostock, Germany.
| |
Collapse
|
7
|
Krämer K, Brock J, Heyer AG. Interaction of Nitrate Assimilation and Photorespiration at Elevated CO 2. FRONTIERS IN PLANT SCIENCE 2022; 13:897924. [PMID: 35845694 PMCID: PMC9284316 DOI: 10.3389/fpls.2022.897924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
It has been shown repeatedly that exposure to elevated atmospheric CO2 causes an increased C/N ratio of plant biomass that could result from either increased carbon or - in relation to C acquisition - reduced nitrogen assimilation. Possible reasons for diminished nitrogen assimilation are controversial, but an impact of reduced photorespiration at elevated CO2 has frequently been implied. Using a mutant defective in peroxisomal hydroxy-pyruvate reductase (hpr1-1) that is hampered in photorespiratory turnover, we show that indeed, photorespiration stimulates the glutamine-synthetase 2 (GS) / glutamine-oxoglutarate-aminotransferase (GOGAT) cycle, which channels ammonia into amino acid synthesis. However, mathematical flux simulations demonstrated that nitrate assimilation was not reduced at elevated CO2, pointing to a dilution of nitrogen containing compounds by assimilated carbon at elevated CO2. The massive growth reduction in the hpr1-1 mutant does not appear to result from nitrogen starvation. Model simulations yield evidence for a loss of cellular energy that is consumed in supporting high flux through the GS/GOGAT cycle that results from inefficient removal of photorespiratory intermediates. This causes a futile cycling of glycolate and hydroxy-pyruvate. In addition to that, accumulation of serine and glycine as well as carboxylates in the mutant creates a metabolic imbalance that could contribute to growth reduction.
Collapse
|
8
|
Yu G, Xie Z, Zhang J, Lei S, Lin W, Xu B, Huang B. NOL-mediated functional stay-green traits in perennial ryegrass (Lolium perenne L.) involving multifaceted molecular factors and metabolic pathways regulating leaf senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1219-1232. [PMID: 33595908 DOI: 10.1111/tpj.15204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 05/24/2023]
Abstract
Loss of chlorophyll (Chl) is a hallmark of leaf senescence, which may be regulated by Chl catabolic genes, including NON-YELLOW COLORING 1 (NYC1)-like (NOL). The objective of this study was to determine molecular factors and metabolic pathways underlying NOL regulation of leaf senescence in perennial grass species. LpNOL was cloned from perennial ryegrass (Lolium perenne L.) and found to be highly expressed in senescent leaves. Transient overexpression of LpNOL accelerated leaf senescence and Chl b degradation in Nicotiana benthamiana. LpNOL RNA interference (NOLi) in perennial ryegrass not only significantly blocked Chl degradation in senescent leaves, but also delayed initiation and progression of leaf senescence. This study found that NOL, in addition to functioning as a Chl b reductase, could enact the functional stay-green phenotype in perennial grass species, as manifested by increased photosynthetic activities in NOLi plants. Comparative transcriptomic analysis revealed that NOL-mediated functional stay-green in perennial ryegrass was mainly achieved through the modulation of Chl catabolism, light harvesting for photosynthesis, photorespiration, cytochrome respiration, carbohydrate catabolism, oxidative detoxification, and abscisic acid biosynthesis and signaling pathways.
Collapse
Affiliation(s)
- Guohui Yu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
- Department of Plant Biology, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Zheni Xie
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jing Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shanshan Lei
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wenjing Lin
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Bin Xu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Bingru Huang
- Department of Plant Biology, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
9
|
Fernie AR, Bauwe H. Wasteful, essential, evolutionary stepping stone? The multiple personalities of the photorespiratory pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:666-677. [PMID: 31904886 DOI: 10.1111/tpj.14669] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/30/2019] [Accepted: 12/11/2019] [Indexed: 05/08/2023]
Abstract
The photorespiratory pathway, in short photorespiration, is a metabolic repair system that enables the CO2 fixation enzyme Rubisco to sustainably operate in the presence of oxygen, that is, during oxygenic photosynthesis of plants and cyanobacteria. Photorespiration is necessary because an auto-inhibitory metabolite, 2-phosphoglycolate (2PG), is produced when Rubisco binds oxygen instead of CO2 as a substrate and must be removed, to avoid collapse of metabolism, and recycled as efficiently as possible. The basic principle of recycling 2PG very likely evolved several billion years ago in connection with the evolution of oxyphotobacteria. It comprises the multi-step combination of two molecules of 2PG to form 3-phosphoglycerate. The biochemistry of this process dictates that one out of four 2PG carbons is lost as CO2 , which is a long-standing plant breeders' concern because it represents by far the largest fraction of respiratory processes that reduce gross-photosynthesis of major crops down to about 50% and less, lowering potential yields. In addition to the ATP needed for recycling of the 2PG carbon, extra energy is needed for the refixation of liberated equal amounts of ammonia. It is thought that the energy costs of photorespiration have an additional negative impact on crop yields in at least some environments. This paper discusses recent advances concerning the origin and evolution of photorespiration, and gives an overview of contemporary and envisioned strategies to engineer the biochemistry of, or even avoid, photorespiration.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Hermann Bauwe
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051, Rostock, Germany
| |
Collapse
|
10
|
Clark TJ, Guo L, Morgan J, Schwender J. Modeling Plant Metabolism: From Network Reconstruction to Mechanistic Models. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:303-326. [PMID: 32017600 DOI: 10.1146/annurev-arplant-050718-100221] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mathematical modeling of plant metabolism enables the plant science community to understand the organization of plant metabolism, obtain quantitative insights into metabolic functions, and derive engineering strategies for manipulation of metabolism. Among the various modeling approaches, metabolic pathway analysis can dissect the basic functional modes of subsections of core metabolism, such as photorespiration, and reveal how classical definitions of metabolic pathways have overlapping functionality. In the many studies using constraint-based modeling in plants, numerous computational tools are currently available to analyze large-scale and genome-scale metabolic networks. For 13C-metabolic flux analysis, principles of isotopic steady state have been used to study heterotrophic plant tissues, while nonstationary isotope labeling approaches are amenable to the study of photoautotrophic and secondary metabolism. Enzyme kinetic models explore pathways in mechanistic detail, and we discuss different approaches to determine or estimate kinetic parameters. In this review, we describe recent advances and challenges in modeling plant metabolism.
Collapse
Affiliation(s)
- Teresa J Clark
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA; ,
| | - Longyun Guo
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA; ,
| | - John Morgan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA; ,
| | - Jorg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA; ,
| |
Collapse
|
11
|
Martinez Henao J, Demers LE, Grosser K, Schedl A, van Dam NM, Bede JC. Fertilizer Rate-Associated Increase in Foliar Jasmonate Burst Observed in Wounded Arabidopsis thaliana Leaves is Attenuated at eCO 2. FRONTIERS IN PLANT SCIENCE 2020; 10:1636. [PMID: 32010155 PMCID: PMC6977439 DOI: 10.3389/fpls.2019.01636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/20/2019] [Indexed: 05/31/2023]
Abstract
The predicted future increase in tropospheric carbon dioxide (CO2) levels will have major effects on C3 plants and their interactions with other organisms in the biosphere. In response to attack by chewing arthropod herbivores or nectrotrophic pathogens, many plants mount a rapid and intense increase in jasmonate-related phytohormones that results in a robust defense response; however, previous studies have shown that C3 plants grown at elevated CO2 may have lower induced jasmonate levels, particularly in well nitrate-fertilized plants. Given the relationship between atmospheric CO2, photorespiration, cellular reductant and redox status, nitrogen assimilation and phytohormones, we compared wound-induced responses of the C3 plant Arabidopsis thaliana. These plants were fertilized at two different rates (1 or 10 mM) with nitrate or ammonium and grown at ambient or elevated CO2. In response to artificial wounding, an increase in cellular oxidative status leads to a strong increase in jasmonate phytohormones. At ambient CO2, increased oxidative state of nitrate-fertilized plants leads to a robust 7-iso-jasmonyl-L-isoleucine increase; however, the strong fertilizer rate-associated increase is alleviated in plants grown at elevated CO2. As well, the changes in ascorbate in response to wounding and wound-induced salicylic acid levels may also contribute to the suppression of the jasmonate burst. Understanding the mechanism underlying the attenuation of the jasmonate burst at elevated CO2 has important implications for fertilization strategies under future predicted climatic conditions.
Collapse
Affiliation(s)
| | - Louis Erik Demers
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Katharina Grosser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Friedrich-Schiller-University Jena, Leipzig, Germany
| | - Andreas Schedl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Friedrich-Schiller-University Jena, Leipzig, Germany
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Friedrich-Schiller-University Jena, Leipzig, Germany
| | - Jacqueline C. Bede
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
12
|
Simkin AJ, López-Calcagno PE, Raines CA. Feeding the world: improving photosynthetic efficiency for sustainable crop production. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1119-1140. [PMID: 30772919 PMCID: PMC6395887 DOI: 10.1093/jxb/ery445] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/27/2018] [Indexed: 05/18/2023]
Abstract
A number of recent studies have provided strong support demonstrating that improving the photosynthetic processes through genetic engineering can provide an avenue to improve yield potential. The major focus of this review is on improvement of the Calvin-Benson cycle and electron transport. Consideration is also given to how altering regulatory process may provide an additional route to increase photosynthetic efficiency. Here we summarize some of the recent successes that have been observed through genetic manipulation of photosynthesis, showing that, in both the glasshouse and the field, yield can be increased by >40%. These results provide a clear demonstration of the potential for increasing yield through improvements in photosynthesis. In the final section, we consider the need to stack improvement in photosynthetic traits with traits that target the yield gap in order to provide robust germplasm for different crops across the globe.
Collapse
Affiliation(s)
- Andrew J Simkin
- NIAB EMR, New Road, East Malling, Kent, UK
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| | | | - Christine A Raines
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| |
Collapse
|