1
|
Dvorianinova EM, Zinovieva OL, Pushkova EN, Zhernova DA, Rozhmina TA, Povkhova LV, Novakovskiy RO, Sigova EA, Turba AA, Borkhert EV, Krasnov GS, Ruan C, Dmitriev AA, Melnikova NV. Key FAD2, FAD3, and SAD Genes Involved in the Fatty Acid Synthesis in Flax Identified Based on Genomic and Transcriptomic Data. Int J Mol Sci 2023; 24:14885. [PMID: 37834335 PMCID: PMC10573214 DOI: 10.3390/ijms241914885] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
FAD (fatty acid desaturase) and SAD (stearoyl-ACP desaturase) genes play key roles in the synthesis of fatty acids (FA) and determination of oil composition in flax (Linum usitatissimum L.). We searched for FAD and SAD genes in the most widely used flax genome of the variety CDC Bethune and three available long-read assembled flax genomes-YY5, 3896, and Atlant. We identified fifteen FAD2, six FAD3, and four SAD genes. Of all the identified genes, 24 were present in duplicated pairs. In most cases, two genes from a pair differed by a significant number of gene-specific SNPs (single nucleotide polymorphisms) or even InDels (insertions/deletions), except for FAD2a-1 and FAD2a-2, where only seven SNPs distinguished these genes. Errors were detected in the FAD2a-1, FAD2a-2, FAD3c-1, and FAD3d-2 sequences in the CDC Bethune genome assembly but not in the long-read genome assemblies. Expression analysis of the available transcriptomic data for different flax organs/tissues revealed that FAD2a-1, FAD2a-2, FAD3a, FAD3b, SAD3-1, and SAD3-2 were specifically expressed in embryos/seeds/capsules and could play a crucial role in the synthesis of FA in flax seeds. In contrast, FAD2b-1, FAD2b-2, SAD2-1, and SAD2-2 were highly expressed in all analyzed organs/tissues and could be involved in FA synthesis in whole flax plants. FAD2c-2, FAD2d-1, FAD3c-1, FAD3c-2, FAD3d-1, FAD3d-2, SAD3-1, and SAD3-2 showed differential expression under stress conditions-Fusarium oxysporum infection and drought. The obtained results are essential for research on molecular mechanisms of fatty acid synthesis, FAD and SAD editing, and marker-assisted and genomic selection for breeding flax varieties with a determined fatty acid composition of oil.
Collapse
Affiliation(s)
| | - Olga L. Zinovieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Tatiana A. Rozhmina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Federal Research Center for Bast Fiber Crops, Torzhok 172002, Russia
| | - Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Anastasia A. Turba
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
2
|
Bengtsson JD, Wallis JG, Bai S, Browse J. The coexpression of two desaturases provides an optimized reduction of saturates in camelina oil. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:497-505. [PMID: 36382992 PMCID: PMC9946138 DOI: 10.1111/pbi.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Reducing the saturate content of vegetable oils is key to increasing their utility and adoption as a feedstock for the production of biofuels. Expression of either the FAT5 16 : 0-CoA desaturase from Caenorhabditis elegans, or an engineered cyanobacterial 16 : 0/18 : 0-glycerolipid desaturase, DES9*, in seeds of Arabidopsis (Arabidopsis thaliana) substantially lowered oil saturates. However, because pathway fluxes and regulation of oil synthesis are known to differ across species, translating this transgene technology from the model plant to crop species requires additional investigation. In the work reported here, we found that high expression of FAT5 in seeds of camelina (Camelina sativa) provided only a moderate decrease in saturates, from 12.9% of total oil fatty acids in untransformed controls to 8.6%. Expression of DES9* reduced saturates to 4.6%, but compromised seed physiology and oil content. However, the coexpression of the two desaturases together cooperatively reduced saturates to only 4.0%, less than one-third of the level in the parental line, without compromising oil yield or seedling germination and establishment. Our successful lowering of oil saturates in camelina identifies strategies that can now be integrated with genetic engineering approaches that reduce polyunsaturates to provide optimized oil composition for biofuels in camelina and other oil seed crops.
Collapse
Affiliation(s)
- Jesse D. Bengtsson
- Institute of Biological ChemistryWashington State UniversityPullmanWashingtonUSA
| | - James G. Wallis
- Institute of Biological ChemistryWashington State UniversityPullmanWashingtonUSA
| | - Shuangyi Bai
- Institute of Biological ChemistryWashington State UniversityPullmanWashingtonUSA
| | - John Browse
- Institute of Biological ChemistryWashington State UniversityPullmanWashingtonUSA
| |
Collapse
|
3
|
Bioengineering of Soybean Oil and Its Impact on Agronomic Traits. Int J Mol Sci 2023; 24:ijms24032256. [PMID: 36768578 PMCID: PMC9916542 DOI: 10.3390/ijms24032256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Soybean is a major oil crop and is also a dominant source of nutritional protein. The 20% seed oil content (SOC) of soybean is much lower than that in most oil crops and the fatty acid composition of its native oil cannot meet the specifications for some applications in the food and industrial sectors. Considerable effort has been expended on soybean bioengineering to tailor fatty acid profiles and improve SOC. Although significant advancements have been made, such as the creation of high-oleic acid soybean oil and high-SOC soybean, those genetic modifications have some negative impacts on soybean production, for instance, impaired germination or low protein content. In this review, we focus on recent advances in the bioengineering of soybean oil and its effects on agronomic traits.
Collapse
|
4
|
CRISPR/Cas9-Mediated Gene Editing of BnFAD2 and BnFAE1 Modifies Fatty Acid Profiles in Brassica napus. Genes (Basel) 2022; 13:genes13101681. [PMID: 36292566 PMCID: PMC9602045 DOI: 10.3390/genes13101681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Fatty acid (FA) composition determines the quality of oil from oilseed crops, and thus is a major target for genetic improvement. FAD2 (Fatty acid dehydrogenase 2) and FAE1 (fatty acid elongase 1) are critical FA synthetic genes, and have been the focus of genetic manipulation to alter fatty acid composition in oilseed plants. In this study, to improve the nutritional quality of rapeseed cultivar CY2 (about 50% oil content; of which 40% erucic acid), we generated novel knockout plants by CRISPR/Cas9 mediated genome editing of BnFAD2 and BnFAE1 genes. Two guide RNAs were designed to target one copy of the BnFAD2 gene and two copies of the BnFAE1 gene, respectively. A number of lines with mutations at three target sites of BnFAD2 and BnFAE1 genes were identified by sequence analysis. Three of these lines showed mutations in all three target sites of the BnFAD2 and BnFAE1 genes. Fatty acid composition analysis of seeds revealed that mutations at all three sites resulted in significantly increased oleic acid (70–80%) content compared with that of CY2 (20%), greatly reduced erucic acid levels and slightly decreased polyunsaturated fatty acids content. Our results confirmed that the CRISPR/Cas9 system is an effective tool for improving this important trait.
Collapse
|
5
|
Wallis JG, Bengtsson JD, Browse J. Molecular Approaches Reduce Saturates and Eliminate trans Fats in Food Oils. FRONTIERS IN PLANT SCIENCE 2022; 13:908608. [PMID: 35720592 PMCID: PMC9205222 DOI: 10.3389/fpls.2022.908608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 05/29/2023]
Abstract
Vegetable oils composed of triacylglycerols (TAG) are a major source of calories in human diets. However, the fatty acid compositions of these oils are not ideal for human nutrition and the needs of the food industry. Saturated fatty acids contribute to health problems, while polyunsaturated fatty acids (PUFA) can become rancid upon storage or processing. In this review, we first summarize the pathways of fatty acid metabolism and TAG synthesis and detail the problems with the oil compositions of major crops. Then we describe how transgenic expression of desaturases and downregulation of the plastid FatB thioesterase have provided the means to lower oil saturates. The traditional solution to PUFA rancidity uses industrial chemistry to reduce PUFA content by partial hydrogenation, but this results in the production of trans fats that are even more unhealthy than saturated fats. We detail the discoveries in the biochemistry and molecular genetics of oil synthesis that provided the knowledge and tools to lower oil PUFA content by blocking their synthesis during seed development. Finally, we describe the successes in breeding and biotechnology that are giving us new, high-oleic, low PUFA varieties of soybean, canola and other oilseed crops.
Collapse
Affiliation(s)
| | | | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|
6
|
Tang Y, Huang J, Ji H, Pan L, Hu C, Qiu X, Zhu H, Sui J, Wang J, Qiao L. Identification of AhFatB genes through genome-wide analysis and knockout of AhFatB reduces the content of saturated fatty acids in peanut (Arichis hypogaea L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111247. [PMID: 35487656 DOI: 10.1016/j.plantsci.2022.111247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Peanut (Arachis hypogaea L.) is an allotetraploid oilseed crop worldwide due to its abundant high-quality oil production. Peanut oil stability and quality are determined by the relative proportions of saturated fatty acids (SFAs) and unsaturated fatty acids (UFAs). The principle approach to minimize the content of SFAs in peanut is to reduce the content of palmitic acid, which is linked to cardiovascular disease. Acyl-acyl carrier protein thioesterases (FATs) determine the types and levels of fatty acids that are exported them from the plastids. Two different classes of FAT have been classified into two families in plants, FatA and FatB. Among them, AhFatB has become the primary objective to genetically reduce the content of palmitic acid in peanut. Here, we identified 18 AhFatB genes in A. hypogaea genome and grouped into four major subfamilies through gene structures and phylogenetic relationships. Expression profiling of AhFatB genes was assessed using the publicly available RNA-seq data and qRT-PCR in 22 tissues. Using the CRISPR/Cas9 system, we designed two sgRNAs to edit the homologs AhFatB genes Arahy.4E7QKU and Arahy.L4EP3N, and identified different types of mutations. Additionally, we discovered mutations at Arahy.4E7QKU exhibited low palmitic acid and high oleic acid phenotypes. The obtained peanut mutants with altered SFAs content have great potential for improving peanut oil quality for human health.
Collapse
Affiliation(s)
- Yanyan Tang
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Jianbin Huang
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Hongchang Ji
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Leilei Pan
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Changli Hu
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Xiaochen Qiu
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Jiongming Sui
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Jingshan Wang
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Lixian Qiao
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China.
| |
Collapse
|
7
|
Katral A, Muthusamy V, Zunjare RU, Chhabra R, Maman S, Yadava DK, Hossain F. Allelic Variation in Zmfatb Gene Defines Variability for Fatty Acids Composition Among Diverse Maize Genotypes. Front Nutr 2022; 9:845255. [PMID: 35600823 PMCID: PMC9120846 DOI: 10.3389/fnut.2022.845255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Edible oil with lower saturated fatty acids is desired for perceived quality and health benefits to humans and livestock. fatb gene encoding acyl-ACP thioesterase is a key player in the conversion of palmitic acid to oleic acid, thereby modifying the ratio of saturated to unsaturated fatty acids in maize kernels. The present investigation characterised the full-length sequence of the Zmfatb gene (4.63 kb) in two mutants (Zmfatb) and eight wild-types (ZmfatB) inbreds to study allelic variation, gene-based diversity, phylogenetic-relationship, protein-modelling, and molecular-docking to identify novel candidates for modification of fatty acid profile. Sequence alignment revealed wide genomic variability for Zmfatb among the inbreds; identified five novel SNPs and two InDels that clearly differentiated the wild-type and mutant genotypes. Gene-based diversity using 11-InDel markers categorised 48-diverse maize-inbreds into two-clusters. The majority of mutant and wild-type inbreds were grouped in separate clusters and led to the generation of 41 haplotypes. Genetic relationship of maize fatb gene with orthologues among 40 accessions of 12 oilseed-crops using both nucleotide and protein sequence clustered maize, soybean, sunflower, opium-poppy, Citrulus lanata, quinoa, and prunus species into one cluster; and brassica, camelina, and arabidopsis into the different cluster. The clustering pattern revealed that the plant oil with higher unsaturated fatty acids, particularly oleic, linoleic, and linolenic acids grouped together in one cluster and higher proportions of other fractions like arachidic, eicosenoic, and erucic acids grouped in another cluster. Physico-chemical properties highlighted more similarity between maize and 29 orthologue proteins, but orthologues were found to have better thermostability. Homology models have been developed for maize mutant and wild-type inbreds using Umbellularia californica (PDB ID: 5x04) as a template. Predicted protein models possessed optimum confidence-score and RMSD values and validated stability via., Ramachandran plots. Molecular docking indicated most of the interactions of protein-ligand were having similar binding-affinity due to the broader specificity of fatty acyl-ACP thioesterases and the presence of conserved-domains across crops. This is the first report on the comprehensive molecular characterisation of the fatb gene in maize and various orthologues. The information generated here provided new insights into the genetic diversity of fatb gene which can be utilised for the enhanced nutritive value of oil in the breeding programme.
Collapse
|
8
|
Plant monounsaturated fatty acids: Diversity, biosynthesis, functions and uses. Prog Lipid Res 2021; 85:101138. [PMID: 34774919 DOI: 10.1016/j.plipres.2021.101138] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
Monounsaturated fatty acids are straight-chain aliphatic monocarboxylic acids comprising a unique carbon‑carbon double bond, also termed unsaturation. More than 50 distinct molecular structures have been described in the plant kingdom, and more remain to be discovered. The evolution of land plants has apparently resulted in the convergent evolution of non-homologous enzymes catalyzing the dehydrogenation of saturated acyl chain substrates in a chemo-, regio- and stereoselective manner. Contrasted enzymatic characteristics and different subcellular localizations of these desaturases account for the diversity of existing fatty acid structures. Interestingly, the location and geometrical configuration of the unsaturation confer specific characteristics to these molecules found in a variety of membrane, storage, and surface lipids. An ongoing research effort aimed at exploring the links existing between fatty acid structures and their biological functions has already unraveled the importance of several monounsaturated fatty acids in various physiological and developmental contexts. What is more, the monounsaturated acyl chains found in the oils of seeds and fruits are widely and increasingly used in the food and chemical industries due to the physicochemical properties inherent in their structures. Breeders and plant biotechnologists therefore develop new crops with high monounsaturated contents for various agro-industrial purposes.
Collapse
|
9
|
Fu Y, Mason AS, Zhang Y, Yu H. Identification and Development of KASP Markers for Novel Mutant BnFAD2 Alleles Associated With Elevated Oleic Acid in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:715633. [PMID: 34381489 PMCID: PMC8350730 DOI: 10.3389/fpls.2021.715633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/21/2021] [Indexed: 05/25/2023]
Abstract
The fatty acid desaturase FAD2 genes are the main contributors to oleic acid content, and different FAD2 alleles can result in different oleic acid contents in rapeseed oil. Hence, identification of allelic variation in FAD2 is an extremely desirable breeding goal. By performing QTL mapping using 190 F2:3 lines genotyped by genome-wide single nucleotide polymorphism (SNP) markers assayed by the Brassica 60 K Infinium BeadChip Array, four quantitative trait loci (QTL) for C18:1 content were mapped on chromosomes A01, A05, A09 and C05 over 3 years in a population segregating for oleic acid content. Two BnFAD2 genes on A05 and C05 were anchored within the QTL intervals, explaining 45-52 and 15-44% of the observed variation for C18:1 content. Sequence polymorphisms between the corresponding coding regions of the parental lines found two single-nucleotide polymorphisms (SNPs) in BnFAD2.A05 and BnFAD2.C05, respectively, which led to the amino acid changes (C421T and G1073E) in the corresponding proteins. The mutation sites of Bnfad2.A05 and Bnfad2.C05 alleles were located within the second H-box and near the third H-box motif of the protein, respectively, and were found to be novel mutant alleles. Lines resulting from the combination of these two alleles contained up to 88% oleic acid in their seed oil, compared with 63% in wild-type controls. Two competitive allele-specific PCR (KASP) markers based on these two mutation sites were successfully developed and validated in segregating F2 populations. These markers will facilitate breeding for ultra-high seed oleic acid content in oilseed rape.
Collapse
Affiliation(s)
- Ying Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Yaofeng Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huasheng Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Production of the infant formula ingredient 1,3-olein-2-palmitin in Arabidopsis thaliana seeds. Metab Eng 2021; 67:67-74. [PMID: 34091040 DOI: 10.1016/j.ymben.2021.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/07/2021] [Accepted: 05/29/2021] [Indexed: 11/24/2022]
Abstract
In human milk fat, palmitic acid (16:0) is esterified to the middle (sn-2 or β) position on the glycerol backbone and oleic acid (18:1) predominantly to the outer positions, giving the triacylglycerol (TG) a distinctive stereoisomeric structure that is believed to assist nutrient absorption in the infant gut. However, the fat used in most infant formulas is derived from plants, which preferentially esterify 16:0 to the outer positions. We have previously showed that the metabolism of the model oilseed Arabidopsis thaliana can be engineered to incorporate 16:0 into the middle position of TG. However, the fatty acyl composition of Arabidopsis seed TG does not mimic human milk, which is rich in both 16:0 and 18:1 and is defined by the high abundance of the TG molecular species 1,3-olein-2-palmitin (OPO). Here we have constructed an Arabidopsis fatty acid biosynthesis 1-1 fatty acid desaturase 2 fatty acid elongase 1 mutant with around 20% 16:0 and 70% 18:1 in its seeds and we have engineered it to esterify more than 80% of the 16:0 to the middle position of TG, using heterologous expression of the human lysophosphatidic acid acyltransferase isoform AGPAT1, combined with suppression of LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE 2 and PHOSPHATIDYLCHOLINE:DIACYLGLYCEROL CHOLINEPHOSPHOTRANSFERASE. Our data show that oilseeds can be engineered to produce TG that is rich in OPO, which is a structured fat ingredient used in infant formulas.
Collapse
|
11
|
Ma S, Du C, Taylor DC, Zhang M. Concerted increases of FAE1 expression level and substrate availability improve and singularize the production of very-long-chain fatty acids in Arabidopsis seeds. PLANT DIRECT 2021; 5:e00331. [PMID: 34179680 PMCID: PMC8209567 DOI: 10.1002/pld3.331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Our initial goal was to evaluate the contributions of high 18:1 phosphatidylcholine and the expression level of FAE1 to the accumulation of very-long-chain fatty acids (VLCFAs), which have wide applications as industrial feedstocks. Unexpectedly, VLCFAs were not improved by increasing the proportions of 18:1 in fad2-1 mutant, FAD2 artificial miRNA, and FAD2 co-suppression lines. Expressing Arabidopsis FAE1 resulted in co-suppression in 90% of transgenic lines, which was effectively released when it was expressed in the rdr6-11 mutant host. When FAE1 could be highly expressed, apart from its naturally preferred product, 20:1, other saturated and polyunsaturated VLCFAs also accumulated in seeds. We postulated that overabundant FAE1 might cause the diversified VLCFA profile. When FAE1 was highly expressed, knocking down FAD2 increased the content of 20:1, suggesting that the 18:1 availability in the acyl-CoA pool increased from the high 18:1-PC via acyl editing. Concurrent decreases of side products like 22:1 and 20:0 in these lines suggest that increasing availability of the preferred substrate could suppress the side elongation reactions and reverse the effect of VLCFA product diversification due to overabundant FAE1. Re-analysis of FAD2 knockdown lines indicated that increasing 18:1 led to a decrease of 22:1, which also supports the above hypothesis. These results demonstrate that 18:1 substrate could be increased by a downregulation of FAD2 and that a balance between the levels of enzyme and substrate may be crucial for engineering-specific VLCFA products.
Collapse
Affiliation(s)
- Shijie Ma
- College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Chang Du
- College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
- Present address:
School of Life SciencesSouth China Normal UniversityGuangzhouGuangdongChina
| | - David C. Taylor
- College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
- Present address:
retired and lives in SaskatoonSaskatoonSKCanada
| | - Meng Zhang
- College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
12
|
Affiliation(s)
- Andres Zambelli
- Facultad de Ciencias Agrarias Universidad Nacional de Mar del Plata Ruta Nacional 226 Km 73.5 Balcarce Provincia de Buenos Aires 7620 Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Ruta Nacional 226 Km 73.5 Balcarce 7620 Argentina
| |
Collapse
|
13
|
Matuszczak M, Spasibionek S, Gacek K, Bartkowiak-Broda I. Cleaved amplified polymorphic sequences (CAPS) marker for identification of two mutant alleles of the rapeseed BnaA.FAD2 gene. Mol Biol Rep 2020; 47:7607-7621. [PMID: 32979163 PMCID: PMC7588397 DOI: 10.1007/s11033-020-05828-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/07/2020] [Indexed: 11/30/2022]
Abstract
Two mutants of winter rapeseed (Brassica napus L. var. oleifera) with an increased amount of oleic acid in seeds were created by chemical mutagenesis (HOR3-M10453 and HOR4-M10464). The overall performance of the mutated plants was much lower than that of wild-type cultivars. Multiple rounds of crossing with high-yielding double-low ("00") cultivars and breeding lines having valuable agronomic traits, followed by selection of high oleic acid genotypes is then needed to obtain new "00" varieties of rapeseed having high oleic acid content in seeds. To perform such selection, the specific codominant cleaved amplified polymorphic sequences (CAPS) marker was used. This marker was designed to detect the presence of two relevant point mutations in the desaturase gene BnaA.FAD2, and it was previously described and patented. The specific polymerase chain reaction product (732 bp) was digested using FspBI restriction enzyme that recognizes the 5'-C↓TAG-3' sequence which is common to both mutated alleles, thereby yielding band patterns specific for those alleles. The method proposed in the patent was redesigned, adjusted to specific laboratory conditions, and thoroughly tested. Different DNA extraction protocols were tested to optimize the procedure. Two variants of the CAPS method (with and without purification of amplified product) were considered to choose the best option. In addition, the ability of the studied marker to detect heterozygosity in the BnaA.FAD2 locus was also tested. Finally, we also presented some examples for the use of the new CAPS marker in the marker-assisted selection (MAS) during our breeding programs. The standard CTAB method of DNA extraction and the simplified, two-step (amplification/digestion) procedure for the CAPS marker are recommended. The marker was found to be useful for the detection of two mutated alleles of the studied BnaA.FAD2 desaturase gene and can potentially assure the breeders of the purity of their HOLL lines. However, it was also shown that it could not detect any other alleles or genes that were revealed to play a role in the regulation of oleic acid level.
Collapse
Affiliation(s)
- Marcin Matuszczak
- Research Division in Poznań, Plant Breeding and Acclimatization Institute, National Research Institute, Strzeszyńska 36, Poznań, Poland.
| | - Stanisław Spasibionek
- Research Division in Poznań, Plant Breeding and Acclimatization Institute, National Research Institute, Strzeszyńska 36, Poznań, Poland
| | - Katarzyna Gacek
- Research Division in Poznań, Plant Breeding and Acclimatization Institute, National Research Institute, Strzeszyńska 36, Poznań, Poland
| | - Iwona Bartkowiak-Broda
- Research Division in Poznań, Plant Breeding and Acclimatization Institute, National Research Institute, Strzeszyńska 36, Poznań, Poland
| |
Collapse
|
14
|
Huang H, Cui T, Zhang L, Yang Q, Yang Y, Xie K, Fan C, Zhou Y. Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2401-2411. [PMID: 32448919 DOI: 10.1007/s00122-020-03607-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/12/2020] [Indexed: 05/05/2023]
Abstract
Genomic editing with CRISPR/Cas9 system can simultaneously modify multiple copies of theBnaFAD2 gene to develop novel variations in fatty acids profiles in polyploidy rapeseed. Fatty acid composition affects edible and processing quality of vegetable oil and has been one of the primary targets for genetic modification in oilseed crops including rapeseed (Brassica napus). Fatty acid desaturase 2 gene, FAD2, is a key player that affects three major fatty acids, namely oleic, linoleic and linolenic acid, in oilseed plants. Previously, we showed that there are four copies of BnaFAD2 in allotetraploid rapeseed. In this study, we further established spatiotemporal expression pattern of each copy of BnaFAD2 using published RNA-seq data. Genomic editing technology based on CRISPR/Cas9 system was used to mutate all the copies of BnaFAD2 to create novel allelic variations in oleic acid and other fatty acid levels. A number of mutants at two targeting sites were identified, and the phenotypic variation in the mutants was systematically evaluated. The oleic acid content in the seed of the mutants increased significantly with the highest exceeding 80% compared with wild type of 66.43%, while linoleic and linolenic acid contents decreased accordingly. Mutations on BnaFAD2.A5 caused more dramatic changes of fatty acid profile than the mutations on BnaFAD2.C5 alleles that were identified with gene editing technique for the first time. Moreover, combining different mutated alleles of BnaFAD2 can even broaden the variation more dramatically. It was found that effects of different mutation types at BnaFAD2 alleles on oleic levels varied, indicating a possibility to manipulate fatty acid levels by precise mutation at specific region of a gene.
Collapse
Affiliation(s)
- Huibin Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingting Cui
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lili Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingyong Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Bai S, Wallis JG, Denolf P, Engelen S, Bengtsson JD, Van Thournout M, Dierickx J, Haesendonckx B, Browse J. The biochemistry of headgroup exchange during triacylglycerol synthesis in canola. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:83-94. [PMID: 31991038 PMCID: PMC7605783 DOI: 10.1111/tpj.14709] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 05/05/2023]
Abstract
Many pathways of primary metabolism are substantially conserved within and across plant families. However, significant differences in organization and fluxes through a reaction network may occur, even between plants in closely related genera. Assessing and understanding these differences is key to appreciating metabolic diversity, and to attempts to engineer plant metabolism for higher crop yields and desired product profiles. To better understand lipid metabolism and seed oil synthesis in canola (Brassica napus), we have characterized four canola homologues of the Arabidopsis (Arabidopsis thaliana) ROD1 gene. AtROD1 encodes phosphatidylcholine:diacylglycerol cholinephosphotransferase (PDCT), the enzyme that catalyzes a major flux of polyunsaturated fatty acids (PUFAs) in oil synthesis. Assays in yeast indicated that only two of the canola genes, BnROD1.A3 and BnROD1.C3, encode active isozymes of PDCT, and these genes are strongly expressed during the period of seed oil synthesis. Loss of expression of BnROD1.A3 and BnROD1.C3 in a double mutant, or by RNA interference, reduced the PUFA content of the oil to 26.6% compared with 32.5% in the wild type. These results indicate that ROD1 isozymes in canola are responsible for less than 20% of the PUFAs that accumulate in the seed oil compared with 40% in Arabidopsis. Our results demonstrate the care needed when translating results from a model species to crop plants.
Collapse
Affiliation(s)
- Shuangyi Bai
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA 99164-6340, USA
| | - James G. Wallis
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA 99164-6340, USA
| | - Peter Denolf
- BASF Innovation Center Gent, NV Technologiepark 101, B-9052, Ghent, Belgium
| | - Steven Engelen
- BASF Innovation Center Gent, NV Technologiepark 101, B-9052, Ghent, Belgium
| | - Jesse D. Bengtsson
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA 99164-6340, USA
| | | | - Jo Dierickx
- BASF Innovation Center Gent, NV Technologiepark 101, B-9052, Ghent, Belgium
| | - Boris Haesendonckx
- BASF Innovation Center Gent, NV Technologiepark 101, B-9052, Ghent, Belgium
| | - John Browse
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA 99164-6340, USA
- For correspondence ()
| |
Collapse
|
16
|
Contreras C, Mariotti R, Mousavi S, Baldoni L, Guerrero C, Roka L, Cultrera N, Pierantozzi P, Maestri D, Gentili L, Tivani M, Torres M. Characterization and validation of olive FAD and SAD gene families: expression analysis in different tissues and during fruit development. Mol Biol Rep 2020; 47:4345-4355. [PMID: 32468255 DOI: 10.1007/s11033-020-05554-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023]
Abstract
Stearoyl-ACP desaturases (SADs) and fatty acid desaturases (FADs) play a critical role in plant lipid metabolism and also affect oil fatty acid composition introducing double bonds into the hydrocarbon chains to produce unsaturated fatty acids. In the present study, the genomic sequences of three SAD and three FAD candidate genes were characterized in olive and their expression was evaluated in different plant tissues. OeSAD genes corresponded to olive SAD1 and SAD2 and to a newly identified OeSAD4, sharing the conserved protein structure with other plant species. On the other hand, the full-length genomic sequences of two microsomal OeFAD genes (FAD2-1 and FAD2-2) and the plastidial FAD6, were released. When the level of expression was tested on different tissues of cv. Leccino, OeSAD1 and OeSAD2 were mainly expressed in the fruits, while OeFAD genes showed the lowest expression in this tissue. The mRNA profiling of all genes was directly studied in fruits of Leccino and Coratina cultivars during fruit development. In both genotypes, the expression level of OeSAD1 and OeSAD2 had the highest value during and after the pit-hardening period, when oil accumulation in fruit mesocarp is intensively increasing. Furthermore, the expression level of both OeFAD2 genes, which were the main candidates for oleic acid desaturation, were almost negligible during fruit ripening. These results have made possible to define candidate genes of the machinery regulation of fatty acid composition in olive oil, providing information on their sequence, gene structure and chromosomal location.
Collapse
Affiliation(s)
- C Contreras
- Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Juan, Argentina
| | - R Mariotti
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy.
| | - S Mousavi
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - L Baldoni
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - C Guerrero
- Department of Molecular Biology and Biochemistry, Science Faculty, University of Malaga, Malaga, Spain
| | - L Roka
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - N Cultrera
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - P Pierantozzi
- Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Juan, Argentina
| | - D Maestri
- Instituto Multidisciplinario de Biología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - L Gentili
- Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Juan, Argentina
| | - M Tivani
- Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Juan, Argentina
| | - M Torres
- Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Juan, Argentina
| |
Collapse
|
17
|
Kaur H, Wang L, Stawniak N, Sloan R, van Erp H, Eastmond P, Bancroft I. The impact of reducing fatty acid desaturation on the composition and thermal stability of rapeseed oil. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:983-991. [PMID: 31553825 PMCID: PMC7061866 DOI: 10.1111/pbi.13263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023]
Abstract
Oilseed rape (Brassica napus) is the third largest source of vegetable oil globally. In addition to food uses, there are industrial applications that exploit the ability of the species to accumulate the very-long-chain fatty acid (VLCFA) erucic acid in its seed oil, controlled by orthologues of FATTY ACID ELONGASE 1 (Bna.FAE1.A8 and Bna.FAE1.C3). The proportion of polyunsaturated fatty acids (PUFAs) in rapeseed oil is predicted to affect its thermal stability and is controlled by orthologues of FATTY ACID DESATURASE 2, particularly Bna.FAD2.C5. Our aim was to develop rapeseed lines combining high erucic and low PUFA characters and to assess the impact on thermal stability of the oil they produce. The new type of rapeseed oil (high erucic low polyunsaturate; HELP) contained a substantially greater proportion of erucic acid (54%) compared with high erucic rapeseed oil (46%). Although the total VLCFA content was greater in oil from HELP lines (64%) than from high erucic rapeseed (57%), analysis of triacylglycerol composition showed negligible incorporation of VLCFAs into the sn-2 position. Rancimat analysis showed that the thermal stability of rapeseed oil was improved greatly as a consequence of reduction of PUFA content, from 3.8 and 4.2 h in conventional low erucic and high erucic rapeseed oils, respectively, to 11.3 and 16.4 h in high oleic low PUFA (HOLP) and HELP oils, respectively. Our results demonstrate that engineering of the lipid biosynthetic pathway of rapeseed, using traditional approaches, enables the production of renewable industrial oils with novel composition and properties.
Collapse
Affiliation(s)
- Harjeevan Kaur
- University of YorkHeslingtonYorkUK
- Present address:
Punjab Agricultural UniversityLudhianaIndia
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhao Q, Wu J, Cai G, Yang Q, Shahid M, Fan C, Zhang C, Zhou Y. A novel quantitative trait locus on chromosome A9 controlling oleic acid content in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2313-2324. [PMID: 31037811 PMCID: PMC6835171 DOI: 10.1111/pbi.13142] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 05/09/2023]
Abstract
One of the most important goals in the breeding of oilseed crops, including Brassica napus, is to improve the quality of edible vegetable oil, which is mainly determined by the seed fatty acid composition, particularly the C18:1 content. Previous studies have indicated that the C18:1 content is a polygenic trait, and no stable quantitative trait loci (QTLs) except for FAD2 have been reported. By performing a GWAS using 375 low erucic acid B. napus accessions genotyped with the Brassica 60K SNP array and constructing a high-density SNP-based genetic map of a 150 DH population, we identified a novel QTL on the A9 chromosome. The novel locus could explain 11.25%, 5.72% and 6.29% of phenotypic variation during three consecutive seasons and increased the C18:1 content by approximately 3%-5%. By fine mapping and gene expression analysis, we found three potential candidate genes and verified the fatty acids in a homologous gene mutant of Arabidopsis. A metal ion-binding protein was found to be the most likely candidate gene in the region. Thus, the C18:1 content can be further increased to about 80% with this novel locus together with FAD2 mutant allele without compromise of agronomic performance. A closely linked marker, BnA129, for this novel QTL (OLEA9) was developed so that we can effectively identify materials with high C18:1 content at an early growth stage by marker-assisted selection. Our results may also provide new insight for understanding the complex genetic mechanism of fatty acid metabolism.
Collapse
Affiliation(s)
- Qing Zhao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jian Wu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Present address:
Jiangsu Provincial Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhou225009JiangsuChina
| | - Guangqin Cai
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Qingyong Yang
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanHubeiChina
| | - Muhammad Shahid
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
19
|
Abstract
Human milk fat substitute (HMFS) is a class of structured lipid that is widely used as an ingredient in infant formulas. Like human milk fat, HMFS is characterized by enrichment of palmitoyl (C16:0) groups specifically at the middle (sn-2 or β) position on the glycerol backbone, and there is evidence that triacylglycerol (TAG) with this unusual stereoisomeric structure provides nutritional benefits. HMFS is currently made by in vitro enzyme-based catalysis because there is no appropriate biological alternative to human milk fat. Most of the fat currently used in infant formulas is obtained from plants, which exclude C16:0 from the middle position. In this study, we have modified the metabolic pathway for TAG biosynthesis in the model oilseed Arabidopsis thaliana to increase the percentage of C16:0 at the middle (vs. outer) positions by more than 20-fold (i.e., from ∼3% in wild type to >70% in our final iteration). This level of C16:0 enrichment is comparable to human milk fat. We achieved this by relocating the C16:0-specific chloroplast isoform of the enzyme lysophosphatidic acid acyltransferase (LPAT) to the endoplasmic reticulum so that it functions within the cytosolic glycerolipid biosynthetic pathway to esterify C16:0 to the middle position. We then suppressed endogenous LPAT activity to relieve competition and knocked out phosphatidylcholine:diacylglycerol cholinephosphotransferase activity to promote the flux of newly made diacylglycerol directly into TAG. Applying this technology to oilseed crops might provide a source of HMFS for infant formula.
Collapse
|