1
|
Manavski N, Schwenkert S, Kunz HH, Leister D, Meurer J. Targeted translation inhibition of chloroplast and mitochondrial mRNAs by designer pentatricopeptide repeat proteins. Nucleic Acids Res 2025; 53:gkaf222. [PMID: 40138717 PMCID: PMC11941472 DOI: 10.1093/nar/gkaf222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are crucial for organellar gene expression. To establish a tool for gene expression manipulation in Arabidopsis plastids and genetically inaccessible mitochondria, we engineered designer (dPPR) proteins to specifically inhibit the translation of organellar mRNAs by masking their start codons. Unlike prior methods for targeted downregulation of gene expression, which rely on re-targeting native PPR proteins to RNA sequences closely related to their original targets, our approach employs a synthetic P-type PPR scaffold that can be designed to bind any RNA sequence of interest. Here, using dPPR-psbK and dPPR-nad7, we targeted the psbK mRNA in chloroplasts and the nad7 mRNA in mitochondria, respectively. dPPR-psbK effectively bound to psbK mRNA and inhibited its translation with high specificity, resulting in disrupted PSII supercomplexes and reduced photosynthetic efficiency. dPPR-nad7 suppressed nad7 translation, affecting NADH oxidase activity in complex I and growth retardation. Comparing phenotypes with tobacco psbK knockouts and nad7 knockdown bir6-2 mutants, along with quantitative proteomics, showed no clear evidence of physiologically relevant off-target effects. Our findings establish dPPR proteins as precise tools for targeted translation inhibition, facilitating functional studies of organellar genes and offering a novel approach with potential for manipulating organellar gene expression in diverse plant species.
Collapse
Affiliation(s)
- Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Serena Schwenkert
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Hans-Henning Kunz
- Plant Biochemistry, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Tang Q, Xu D, Lenzen B, Brachmann A, Yapa MM, Doroodian P, Schmitz-Linneweber C, Masuda T, Hua Z, Leister D, Kleine T. GENOMES UNCOUPLED PROTEIN1 binds to plastid RNAs and promotes their maturation. PLANT COMMUNICATIONS 2024; 5:101069. [PMID: 39169625 PMCID: PMC11671767 DOI: 10.1016/j.xplc.2024.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Plastid biogenesis and the coordination of plastid and nuclear genome expression through anterograde and retrograde signaling are essential for plant development. GENOMES UNCOUPLED1 (GUN1) plays a central role in retrograde signaling during early plant development. The putative function of GUN1 has been extensively studied, but its molecular function remains controversial. Here, we evaluate published transcriptome data and generate our own data from gun1 mutants grown under signaling-relevant conditions to show that editing and splicing are not relevant for GUN1-dependent retrograde signaling. Our study of the plastid (post)transcriptome of gun1 seedlings with white and pale cotyledons demonstrates that GUN1 deficiency significantly alters the entire plastid transcriptome. By combining this result with a pentatricopeptide repeat code-based prediction and experimental validation by RNA immunoprecipitation experiments, we identified several putative targets of GUN1, including tRNAs and RNAs derived from ycf1.2, rpoC1, and rpoC2 and the ndhH-ndhA-ndhI-ndhG-ndhE-psaC-ndhD gene cluster. The absence of plastid rRNAs and the significant reduction of almost all plastid transcripts in white gun1 mutants account for the cotyledon phenotype. Our study provides evidence for RNA binding and maturation as the long-sought molecular function of GUN1 and resolves long-standing controversies. We anticipate that our findings will serve as a basis for subsequent studies on mechanisms of plastid gene expression and will help to elucidate the function of GUN1 in retrograde signaling.
Collapse
Affiliation(s)
- Qian Tang
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany
| | - Duorong Xu
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany
| | - Benjamin Lenzen
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Andreas Brachmann
- Biocenter of the LMU Munich, Genetics Section, Grosshaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Madhura M Yapa
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - Paymon Doroodian
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | | | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku 153-8902, Tokyo, Japan
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany.
| |
Collapse
|
3
|
Kitashova A, Lehmann M, Schwenkert S, Münch M, Leister D, Nägele T. Insights into physiological roles of flavonoids in plant cold acclimation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2269-2285. [PMID: 39453687 PMCID: PMC11629739 DOI: 10.1111/tpj.17097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Flavonoids represent a diverse group of plant specialised metabolites which are also discussed in the context of dietary health and inflammatory response. Numerous studies have revealed that flavonoids play a central role in plant acclimation to abiotic factors like low temperature or high light, but their structural and functional diversity frequently prevents a detailed mechanistic understanding. Further complexity in analysing flavonoid metabolism arises from the different subcellular compartments which are involved in biosynthesis and storage. In the present study, non-aqueous fractionation of Arabidopsis leaf tissue was combined with metabolomics and proteomics analysis to reveal the effects of flavonoid deficiencies on subcellular metabolism during cold acclimation. During the first 3 days of a 2-week cold acclimation period, flavonoid deficiency was observed to affect pyruvate, citrate and glutamate metabolism which indicated a role in stabilising C/N metabolism and photosynthesis. Also, tetrahydrofolate metabolism was found to be affected, which had significant effects on the proteome of the photorespiratory pathway. In the late stage of cold acclimation, flavonoid deficiency was found to affect protein stability, folding and proteasomal degradation, which resulted in a significant decrease in total protein amounts in both mutants. In summary, these findings suggest that flavonoid metabolism plays different roles in the early and late stages of plant cold acclimation and significantly contributes to establishing a new protein homeostasis in a changing environment.
Collapse
Affiliation(s)
- Anastasia Kitashova
- Faculty of Biology, Plant Evolutionary Cell BiologyLMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
| | - Martin Lehmann
- Faculty of Biology, Plant Molecular BiologyLMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
- Faculty of Biology, MSBioLMULMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
| | - Serena Schwenkert
- Faculty of Biology, Plant Molecular BiologyLMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
- Faculty of Biology, MSBioLMULMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
| | - Maximilian Münch
- Faculty of Biology, Plant Molecular BiologyLMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
- Faculty of Biology, MSBioLMULMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
| | - Dario Leister
- Faculty of Biology, Plant Molecular BiologyLMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
- Faculty of Biology, MSBioLMULMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
| | - Thomas Nägele
- Faculty of Biology, Plant Evolutionary Cell BiologyLMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
| |
Collapse
|
4
|
Penzler JF, Naranjo B, Walz S, Marino G, Kleine T, Leister D. A pgr5 suppressor screen uncovers two distinct suppression mechanisms and links cytochrome b6f complex stability to PGR5. THE PLANT CELL 2024; 36:4245-4266. [PMID: 38781425 PMCID: PMC11449078 DOI: 10.1093/plcell/koae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/13/2024] [Indexed: 05/25/2024]
Abstract
PROTON GRADIENT REGULATION5 (PGR5) is thought to promote cyclic electron flow, and its deficiency impairs photosynthetic control and increases photosensitivity of photosystem (PS) I, leading to seedling lethality under fluctuating light (FL). By screening for Arabidopsis (Arabidopsis thaliana) suppressor mutations that rescue the seedling lethality of pgr5 plants under FL, we identified a portfolio of mutations in 12 different genes. These mutations affect either PSII function, cytochrome b6f (cyt b6f) assembly, plastocyanin (PC) accumulation, the CHLOROPLAST FRUCTOSE-1,6-BISPHOSPHATASE1 (cFBP1), or its negative regulator ATYPICAL CYS HIS-RICH THIOREDOXIN2 (ACHT2). The characterization of the mutants indicates that the recovery of viability can in most cases be explained by the restoration of PSI donor side limitation, which is caused by reduced electron flow to PSI due to defects in PSII, cyt b6f, or PC. Inactivation of cFBP1 or its negative regulator ACHT2 results in increased levels of the NADH dehydrogenase-like complex. This increased activity may be responsible for suppressing the pgr5 phenotype under FL conditions. Plants that lack both PGR5 and DE-ETIOLATION-INDUCED PROTEIN1 (DEIP1)/NEW TINY ALBINO1 (NTA1), previously thought to be essential for cyt b6f assembly, are viable and accumulate cyt b6f. We suggest that PGR5 can have a negative effect on the cyt b6f complex and that DEIP1/NTA1 can ameliorate this negative effect.
Collapse
Affiliation(s)
- Jan-Ferdinand Penzler
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried D-82152, Germany
| | - Belén Naranjo
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried D-82152, Germany
| | - Sabrina Walz
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried D-82152, Germany
| | - Giada Marino
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried D-82152, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried D-82152, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried D-82152, Germany
| |
Collapse
|
5
|
Persello A, Tadini L, Rotasperti L, Ballabio F, Tagliani A, Torricella V, Jahns P, Dalal A, Moshelion M, Camilloni C, Rosignoli S, Hansson M, Cattivelli L, Horner DS, Rossini L, Tondelli A, Salvi S, Pesaresi P. A missense mutation in the barley Xan-h gene encoding the Mg-chelatase subunit I leads to a viable pale green line with reduced daily transpiration rate. PLANT CELL REPORTS 2024; 43:246. [PMID: 39343835 PMCID: PMC11439855 DOI: 10.1007/s00299-024-03328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
KEY MESSAGE The barley mutant xan-h.chli-1 shows phenotypic features, such as reduced leaf chlorophyll content and daily transpiration rate, typical of wild barley accessions and landraces adapted to arid climatic conditions. The pale green trait, i.e. reduced chlorophyll content, has been shown to increase the efficiency of photosynthesis and biomass accumulation when photosynthetic microorganisms and tobacco plants are cultivated at high densities. Here, we assess the effects of reducing leaf chlorophyll content in barley by altering the chlorophyll biosynthesis pathway (CBP). To this end, we have isolated and characterised the pale green barley mutant xan-h.chli-1, which carries a missense mutation in the Xan-h gene for subunit I of Mg-chelatase (HvCHLI), the first enzyme in the CBP. Intriguingly, xan-h.chli-1 is the only known viable homozygous mutant at the Xan-h locus in barley. The Arg298Lys amino-acid substitution in the ATP-binding cleft causes a slight decrease in HvCHLI protein abundance and a marked reduction in Mg-chelatase activity. Under controlled growth conditions, mutant plants display reduced accumulation of antenna and photosystem core subunits, together with reduced photosystem II yield relative to wild-type under moderate illumination, and consistently higher than wild-type levels at high light intensities. Moreover, the reduced content of leaf chlorophyll is associated with a stable reduction in daily transpiration rate, and slight decreases in total biomass accumulation and water-use efficiency, reminiscent of phenotypic features of wild barley accessions and landraces that thrive under arid climatic conditions.
Collapse
Affiliation(s)
- Andrea Persello
- Department of Biosciences, University of Milan, 20133, Milan, Italy
- Department of Industrial Engineering, University of Padua, 35100, Padua, Italy
| | - Luca Tadini
- Department of Biosciences, University of Milan, 20133, Milan, Italy
| | - Lisa Rotasperti
- Department of Biosciences, University of Milan, 20133, Milan, Italy
| | | | - Andrea Tagliani
- Department of Biosciences, University of Milan, 20133, Milan, Italy
| | - Viola Torricella
- Department of Biosciences, University of Milan, 20133, Milan, Italy
| | - Peter Jahns
- Plant Biochemistry, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Ahan Dalal
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Carlo Camilloni
- Department of Biosciences, University of Milan, 20133, Milan, Italy
| | - Serena Rosignoli
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy
| | - Mats Hansson
- Department of Biology, Lund University, 22362, Lund, Sweden
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, 29017, Fiorenzuola d'Arda, Italy
| | - David S Horner
- Department of Biosciences, University of Milan, 20133, Milan, Italy
| | - Laura Rossini
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DiSAA), University of Milan, 20133, Milan, Italy
| | - Alessandro Tondelli
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, 29017, Fiorenzuola d'Arda, Italy
| | - Silvio Salvi
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, 20133, Milan, Italy.
| |
Collapse
|
6
|
Fujii S, Wada H, Kobayashi K. Orchestration of Photosynthesis-Associated Gene Expression and Galactolipid Biosynthesis during Chloroplast Differentiation in Plants. PLANT & CELL PHYSIOLOGY 2024; 65:1014-1028. [PMID: 38668647 PMCID: PMC11209550 DOI: 10.1093/pcp/pcae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 06/28/2024]
Abstract
The chloroplast thylakoid membrane is composed of membrane lipids and photosynthetic protein complexes, and the orchestration of thylakoid lipid biosynthesis and photosynthesis-associated protein accumulation is considered important for thylakoid development. Galactolipids consist of ∼80% of the thylakoid lipids, and their biosynthesis is fundamental for chloroplast development. We previously reported that the suppression of galactolipid biosynthesis decreased the expression of photosynthesis-associated nuclear-encoded genes (PhAPGs) and photosynthesis-associated plastid-encoded genes (PhAPGs). However, the mechanism for coordinative regulation between galactolipid biosynthesis in plastids and the expression of PhANGs and PhAPGs remains largely unknown. To elucidate this mechanism, we investigated the gene expression patterns in galactolipid-deficient Arabidopsis seedlings during the de-etiolation process. We found that galactolipids are crucial for inducing both the transcript accumulation of PhANGs and PhAPGs and the accumulation of plastid-encoded photosynthesis-associated proteins in developing chloroplasts. Genetic analysis indicates the contribution of the GENOMES UNCOUPLED1 (GUN1)-mediated plastid-to-nucleus signaling pathway to PhANG regulation in response to galactolipid levels. Previous studies suggested that the accumulation of GUN1 reflects the state of protein homeostasis in plastids and alters the PhANG expression level. Thus, we propose a model that galactolipid biosynthesis determines the protein homeostasis in plastids in the initial phase of de-etiolation and optimizes GUN1-dependent signaling to regulate the PhANG expression. This mechanism might contribute to orchestrating the biosynthesis of lipids and proteins for the biogenesis of functional chloroplasts in plants.
Collapse
Affiliation(s)
- Sho Fujii
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561 Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 Japan
| | - Koichi Kobayashi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531 Japan
- Faculty of Liberal Arts, Science and Global Education, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531 Japan
| |
Collapse
|
7
|
Su T, Zhang XF, Wu GZ. Functional conservation of GENOMES UNCOUPLED1 in plastid-to-nucleus retrograde signaling in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112053. [PMID: 38417718 DOI: 10.1016/j.plantsci.2024.112053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/20/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Retrograde signaling between plastids and the nucleus is vital for chloroplast biogenesis and environmental responses. GENOMES UNCOUPLED1 (GUN1) was proposed to be a central integrator of multiple retrograde signaling pathways in the model plant Arabidopsis thaliana (Arabidopsis). However, the function of GUN1 orthologs in other plant species has not been well studied. Here, we found that many GUN1 orthologs from the Solanaceae family have a short N-terminus before the first pentatricopeptide repeat (PPR) motif which is predicted as intrinsically disordered regions (IDRs). Functional analyses of tomato (Solanum lycopersicum L.) GUN1 (SlGUN1), which does not contain N-terminal IDRs, show that it can complement the GUN phenotype of the Arabidopsis gun1 mutant (Atgun1). However, in contrast to the AtGUN1 protein, which does contain the N-terminal IDRs, the SlGUN1 protein is highly accumulated even after chloroplast biogenesis is completed, suggesting that the N-terminal IDRs may determine the stability of the GUN1 protein. Furthermore, we generated tomato Slgun1 genome-edited mutants via the CRISPR-Cas9 system. The Slgun1 mutants exhibited a typical GUN phenotype under lincomycin (Lin) or norflurazon (NF) treatment. Moreover, Slgun1 mutants are hypersensitive to low concentrations of Lin or NF. Taken together, our results suggest that, although lacking the N-terminal IDRs, SlGUN1 plays conserved roles in plastid retrograde signaling in tomato plants.
Collapse
Affiliation(s)
- Tong Su
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Xiao-Fan Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
8
|
Schwenkert S, Lo WT, Szulc B, Yip CK, Pratt AI, Cusack SA, Brandt B, Leister D, Kunz HH. Probing the physiological role of the plastid outer-envelope membrane using the oemiR plasmid collection. G3 (BETHESDA, MD.) 2023; 13:jkad187. [PMID: 37572358 PMCID: PMC10542568 DOI: 10.1093/g3journal/jkad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Plastids are the site of complex biochemical pathways, most prominently photosynthesis. The organelle evolved through endosymbiosis with a cyanobacterium, which is exemplified by the outer envelope membrane that harbors more than 40 proteins in Arabidopsis. Their evolutionary conservation indicates high significance for plant cell function. While a few proteins are well-studied as part of the protein translocon complex the majority of outer envelope protein functions is unclear. Gaining a deeper functional understanding has been complicated by the lack of observable loss-of-function mutant phenotypes, which is often rooted in functional genetic redundancy. Therefore, we designed outer envelope-specific artificial micro RNAs (oemiRs) capable of downregulating transcripts from several loci simultaneously. We successfully tested oemiR function by performing a proof-of-concept screen for pale and cold-sensitive mutants. An in-depth analysis of pale mutant alleles deficient in the translocon component TOC75 using proteomics provided new insights into putative compensatory import pathways. The cold stress screen not only recapitulated 3 previously known phenotypes of cold-sensitive mutants but also identified 4 mutants of additional oemiR outer envelope loci. Altogether our study revealed a role of the outer envelope to tolerate cold conditions and showcasts the power of the oemiR collection to research the significance of outer envelope proteins.
Collapse
Affiliation(s)
- Serena Schwenkert
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany
| | - Wing Tung Lo
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany
| | - Beata Szulc
- Plant Biochemistry, Faculty of Biology, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany
| | - Chun Kwan Yip
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany
| | - Anna I Pratt
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | | | - Benjamin Brandt
- Plant Biochemistry, Faculty of Biology, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany
| | - Hans-Henning Kunz
- Plant Biochemistry, Faculty of Biology, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| |
Collapse
|
9
|
Bhattacharya O, Ortiz I, Hendricks N, Walling LL. The tomato chloroplast stromal proteome compendium elucidated by leveraging a plastid protein-localization prediction Atlas. FRONTIERS IN PLANT SCIENCE 2023; 14:1020275. [PMID: 37701797 PMCID: PMC10493611 DOI: 10.3389/fpls.2023.1020275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/22/2023] [Indexed: 09/14/2023]
Abstract
Tomato (Solanum lycopersicum) is a model species for studying fruit development, wounding, herbivory, and pathogen attack. Despite tomato's world-wide economic importance and the role of chloroplasts as metabolic hubs and integrators of environmental cues, little is known about the stromal proteome of tomato. Using a high-yielding protocol for chloroplast and stromal protein isolation, MudPIT nano-LC-MS/MS analyses, a robust in-house protein database (the Atlas) for predicting the plastid localization of tomato proteins, and rigorous selection criteria for inclusion/exclusion in the stromal proteome, we identified 1,278 proteins of the tomato stromal proteome. We provide one of the most robust stromal proteomes available to date with empirical evidence for 545 and 92 proteins not previously described for tomato plastids and the Arabidopsis stroma, respectively. The relative abundance of tomato stromal proteins was determined using the exponentially modified protein abundance index (emPAI). Comparison of the abundance of tomato and Arabidopsis stromal proteomes provided evidence for the species-specific nature of stromal protein homeostasis. The manual curation of the tomato stromal proteome classified proteins into ten functional categories resulting in an accessible compendium of tomato chloroplast proteins. After curation, only 91 proteins remained as unknown, uncharacterized or as enzymes with unknown functions. The curation of the tomato stromal proteins also indicated that tomato has a number of paralogous proteins, not present in Arabidopsis, which accumulated to different levels in chloroplasts. As some of these proteins function in key metabolic pathways or in perceiving or transmitting signals critical for plant adaptation to biotic and abiotic stress, these data suggest that tomato may modulate the bidirectional communication between chloroplasts and nuclei in a novel manner. The stromal proteome provides a fertile ground for future mechanistic studies in the field of tomato chloroplast-nuclear signaling and are foundational for our goal of elucidating the dynamics of the stromal proteome controlled by the solanaceous-specific, stromal, and wound-inducible leucine aminopeptidase A of tomato.
Collapse
Affiliation(s)
- Oindrila Bhattacharya
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Irma Ortiz
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Nathan Hendricks
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Linda L. Walling
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
10
|
Gao LL, Hong ZH, Wang Y, Wu GZ. Chloroplast proteostasis: A story of birth, life, and death. PLANT COMMUNICATIONS 2023; 4:100424. [PMID: 35964157 PMCID: PMC9860172 DOI: 10.1016/j.xplc.2022.100424] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 06/02/2023]
Abstract
Protein homeostasis (proteostasis) is a dynamic balance of protein synthesis and degradation. Because of the endosymbiotic origin of chloroplasts and the massive transfer of their genetic information to the nucleus of the host cell, many protein complexes in the chloroplasts are constituted from subunits encoded by both genomes. Hence, the proper function of chloroplasts relies on the coordinated expression of chloroplast- and nucleus-encoded genes. The biogenesis and maintenance of chloroplast proteostasis are dependent on synthesis of chloroplast-encoded proteins, import of nucleus-encoded chloroplast proteins from the cytosol, and clearance of damaged or otherwise undesired "old" proteins. This review focuses on the regulation of chloroplast proteostasis, its interaction with proteostasis of the cytosol, and its retrograde control over nuclear gene expression. We also discuss significant issues and perspectives for future studies and potential applications for improving the photosynthetic performance and stress tolerance of crops.
Collapse
Affiliation(s)
- Lin-Lin Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zheng-Hui Hong
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinsong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
11
|
Richter AS, Nägele T, Grimm B, Kaufmann K, Schroda M, Leister D, Kleine T. Retrograde signaling in plants: A critical review focusing on the GUN pathway and beyond. PLANT COMMUNICATIONS 2023; 4:100511. [PMID: 36575799 PMCID: PMC9860301 DOI: 10.1016/j.xplc.2022.100511] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Plastids communicate their developmental and physiological status to the nucleus via retrograde signaling, allowing nuclear gene expression to be adjusted appropriately. Signaling during plastid biogenesis and responses of mature chloroplasts to environmental changes are designated "biogenic" and "operational" controls, respectively. A prominent example of the investigation of biogenic signaling is the screen for gun (genomes uncoupled) mutants. Although the first five gun mutants were identified 30 years ago, the functions of GUN proteins in retrograde signaling remain controversial, and that of GUN1 is hotly disputed. Here, we provide background information and critically discuss recently proposed concepts that address GUN-related signaling and some novel gun mutants. Moreover, considering heme as a candidate in retrograde signaling, we revisit the spatial organization of heme biosynthesis and export from plastids. Although this review focuses on GUN pathways, we also highlight recent progress in the identification and elucidation of chloroplast-derived signals that regulate the acclimation response in green algae and plants. Here, stress-induced accumulation of unfolded/misassembled chloroplast proteins evokes a chloroplast-specific unfolded protein response, which leads to changes in the expression levels of nucleus-encoded chaperones and proteases to restore plastid protein homeostasis. We also address the importance of chloroplast-derived signals for activation of flavonoid biosynthesis leading to production of anthocyanins during stress acclimation through sucrose non-fermenting 1-related protein kinase 1. Finally, a framework for identification and quantification of intercompartmental signaling cascades at the proteomic and metabolomic levels is provided, and we discuss future directions of dissection of organelle-nucleus communication.
Collapse
Affiliation(s)
- Andreas S Richter
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
12
|
Leister D. Enhancing the light reactions of photosynthesis: Strategies, controversies, and perspectives. MOLECULAR PLANT 2023; 16:4-22. [PMID: 35996755 DOI: 10.1016/j.molp.2022.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Photosynthesis is central to life on Earth, employing sunlight, water, and carbon dioxide to produce chemical energy and oxygen. It is generally accepted that boosting its efficiency offers one promising way to increase crop yields under agronomically realistic conditions. Since the components, structure, and regulatory mechanisms of the light reactions of photosynthesis are well understood, concepts for enhancing the process have been suggested and partially tested. These approaches vary in complexity, from targeting single components to comprehensive redesign of the whole process on the scales from single cells or tissues to whole canopies. Attempts to enhance light utilization per leaf, by decreasing pigmentation, increasing levels of photosynthetic proteins, prolonging the lifespan of the photosynthetic machinery, or massive reconfiguration of the photosynthetic machinery and the incorporation of nanomaterials, are discussed in this review first. Secondly, strategies intended to optimize the acclimation of photosynthesis to changes in the environment are presented, including redesigning mechanisms to dissipate excess excitation energy (e.g., non-photochemical quenching) or reduction power (e.g., flavodiiron proteins). Moreover, schemes for improving acclimation, inspired by natural or laboratory-induced adaptation, are introduced. However, all these endeavors are still in an early exploratory phase and/or have not resulted in the desired outcome, largely because photosynthesis is embedded within large networks of closely interacting cellular and metabolic processes, which can vary among species and even cultivars. This explains why integrated, systems-wide approaches are required to achieve the breakthroughs required for effectively increasing crop yields.
Collapse
Affiliation(s)
- Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University (LMU) Munich, Martinsried-Planegg, D-82152 Munich, Germany.
| |
Collapse
|
13
|
Lasorella C, Fortunato S, Dipierro N, Jeran N, Tadini L, Vita F, Pesaresi P, de Pinto MC. Chloroplast-localized GUN1 contributes to the acquisition of basal thermotolerance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1058831. [PMID: 36618674 PMCID: PMC9813751 DOI: 10.3389/fpls.2022.1058831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Heat stress (HS) severely affects different cellular compartments operating in metabolic processes and represents a critical threat to plant growth and yield. Chloroplasts are crucial for heat stress response (HSR), signaling to the nucleus the environmental challenge and adjusting metabolic and biosynthetic functions accordingly. GENOMES UNCOUPLED 1 (GUN1), a chloroplast-localized protein, has been recognized as one of the main players of chloroplast retrograde signaling. Here, we investigate HSR in Arabidopsis wild-type and gun1 plantlets subjected to 2 hours of HS at 45°C. In wild-type plants, Reactive Oxygen Species (ROS) accumulate promptly after HS, contributing to transiently oxidize the cellular environment and acting as signaling molecules. After 3 hours of physiological recovery at growth temperature (22°C), the induction of enzymatic and non-enzymatic antioxidants prevents oxidative damage. On the other hand, gun1 mutants fail to induce the oxidative burst immediately after HS and accumulate ROS and oxidative damage after 3 hours of recovery at 22°C, thus resulting in enhanced sensitivity to HS. These data suggest that GUN1 is required to oxidize the cellular environment, participating in the acquisition of basal thermotolerance through the redox-dependent plastid-to-nucleus communication.
Collapse
Affiliation(s)
- Cecilia Lasorella
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Stefania Fortunato
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Nunzio Dipierro
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Nicolaj Jeran
- Department of Biosciences, University of Milano, Milano, Italy
| | - Luca Tadini
- Department of Biosciences, University of Milano, Milano, Italy
| | - Federico Vita
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Paolo Pesaresi
- Department of Biosciences, University of Milano, Milano, Italy
| | - Maria Concetta de Pinto
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
14
|
Penzler JF, Marino G, Reiter B, Kleine T, Naranjo B, Leister D. Commonalities and specialties in photosynthetic functions of PROTON GRADIENT REGULATION5 variants in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:1866-1882. [PMID: 35946785 PMCID: PMC9614465 DOI: 10.1093/plphys/kiac362] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/13/2022] [Indexed: 05/19/2023]
Abstract
The PROTON GRADIENT REGULATION5 (PGR5) protein is required for trans-thylakoid proton gradient formation and acclimation to fluctuating light (FL). PGR5 functionally interacts with two other thylakoid proteins, PGR5-like 1 (PGRL1) and 2 (PGRL2); however, the molecular details of these interactions are largely unknown. In the Arabidopsis (Arabidopsis thaliana) pgr5-1 mutant, the PGR5G130S protein accumulates in only small amounts. In this work, we generated a knockout allele of PGR5 (pgr5-Cas) using CRISPR-Cas9 technology. Like pgr5-1, pgr5-Cas is seedling-lethal under FL, but photosynthesis and particularly cyclic electron flow, as well as chlorophyll content, are less severely affected in both pgr5-Cas and pgrl1ab (which lacks PGRL1 and PGR5) than in pgr5-1. These differences are associated with changes in the levels of 260 proteins, including components of the Calvin-Benson cycle, photosystems II and I, and the NDH complex, in pgr5-1 relative to the wild type (WT), pgr5-Cas, and pgrl1ab. Some of the differences between pgr5-1 and the other mutant lines could be tentatively assigned to second-site mutations in the pgr5-1 line, identified by whole-genome sequencing. However, others, particularly the more pronounced photosynthetic defects and PGRL1 depletion (compared to pgr5-Cas), are clearly due to specific negative effects of the amino-acid substitution in PGR5G130S, as demonstrated by complementation analysis. Moreover, pgr5-1 and pgr5-Cas plants are less tolerant to long-term exposure to high light than pgrl1ab plants. These results imply that, in addition to the previously reported necessity of PGRL1 for optimal PGR5 function, PGR5 is required alongside PGRL1 to avoid harmful effects on plant performance.
Collapse
Affiliation(s)
| | | | - Bennet Reiter
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | | | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
15
|
Honkanen S, Small I. The GENOMES UNCOUPLED1 protein has an ancient, highly conserved role but not in retrograde signalling. THE NEW PHYTOLOGIST 2022; 236:99-113. [PMID: 35708656 PMCID: PMC9545484 DOI: 10.1111/nph.18318] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/07/2022] [Indexed: 06/01/2023]
Abstract
The pentatricopeptide repeat protein GENOMES UNCOUPLED1 (GUN1) is required for chloroplast-to-nucleus signalling when plastid translation becomes inhibited during chloroplast development in Arabidopsis thaliana, but its exact molecular function remains unknown. We analysed GUN1 sequences in land plants and streptophyte algae. We tested functional conservation by complementation of the Arabidopsis gun1 mutant with GUN1 genes from the streptophyte alga Coleochate orbicularis or the liverwort Marchantia polymorpha. We also analysed the transcriptomes of M. polymorpha gun1 knockout mutant lines during chloroplast development. GUN1 evolved within the streptophyte algal ancestors of land plants and is highly conserved among land plants but missing from the Rafflesiaceae that lack chloroplast genomes. GUN1 genes from C. orbicularis and M. polymorpha suppress the cold-sensitive phenotype of the Arabidopsis gun1 mutant and restore typical retrograde responses to treatments with inhibitors of plastid translation, even though M. polymorpha responds very differently to such treatments. Our findings suggest that GUN1 is an ancient protein that evolved within the streptophyte algal ancestors of land plants before the first plants colonized land more than 470 million years ago. Its primary role is likely to be in chloroplast gene expression and its role in chloroplast retrograde signalling probably evolved more recently.
Collapse
Affiliation(s)
- Suvi Honkanen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular SciencesThe University of Western AustraliaCrawleyWA6009Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular SciencesThe University of Western AustraliaCrawleyWA6009Australia
| |
Collapse
|
16
|
Hernández‐Verdeja T, Vuorijoki L, Jin X, Vergara A, Dubreuil C, Strand Å. GENOMES UNCOUPLED1 plays a key role during the de-etiolation process in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:188-203. [PMID: 35322876 PMCID: PMC9324965 DOI: 10.1111/nph.18115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 05/25/2023]
Abstract
One of the most dramatic challenges in the life of a plant occurs when the seedling emerges from the soil and exposure to light triggers expression of genes required for establishment of photosynthesis. This process needs to be tightly regulated, as premature accumulation of light-harvesting proteins and photoreactive Chl precursors causes oxidative damage when the seedling is first exposed to light. Photosynthesis genes are encoded by both nuclear and plastid genomes, and to establish the required level of control, plastid-to-nucleus (retrograde) signalling is necessary to ensure correct gene expression. We herein show that a negative GENOMES UNCOUPLED1 (GUN1)-mediated retrograde signal restricts chloroplast development in darkness and during early light response by regulating the transcription of several critical transcription factors linked to light response, photomorphogenesis, and chloroplast development, and consequently their downstream target genes in Arabidopsis. Thus, the plastids play an essential role during skotomorphogenesis and the early light response, and GUN1 acts as a safeguard during the critical step of seedling emergence from darkness.
Collapse
Affiliation(s)
- Tamara Hernández‐Verdeja
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
- Present address:
Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| | - Linda Vuorijoki
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Xu Jin
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Alexander Vergara
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Carole Dubreuil
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Åsa Strand
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| |
Collapse
|
17
|
Veciana N, Martín G, Leivar P, Monte E. BBX16 mediates the repression of seedling photomorphogenesis downstream of the GUN1/GLK1 module during retrograde signalling. THE NEW PHYTOLOGIST 2022; 234:93-106. [PMID: 35043407 PMCID: PMC9305768 DOI: 10.1111/nph.17975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/05/2022] [Indexed: 05/03/2023]
Abstract
Plastid-to-nucleus retrograde signalling (RS) initiated by dysfunctional chloroplasts impact photomorphogenic development. We have previously shown that the transcription factor GLK1 acts downstream of the RS regulator GUN1 in photodamaging conditions to regulate not only the well established expression of photosynthesis-associated nuclear genes (PhANGs) but also to regulate seedling morphogenesis. Specifically, the GUN1/GLK1 module inhibits the light-induced phytochrome-interacting factor (PIF)-repressed transcriptional network to suppress cotyledon development when chloroplast integrity is compromised, modulating the area exposed to potentially damaging high light. However, how the GUN1/GLK1 module inhibits photomorphogenesis upon chloroplast damage remained undefined. Here, we report the identification of BBX16 as a novel direct target of GLK1. BBX16 is induced and promotes photomorphogenesis in moderate light and is repressed via GUN1/GLK1 after chloroplast damage. Additionally, we showed that BBX16 represents a regulatory branching point downstream of GUN1/GLK1 in the regulation of PhANG expression and seedling development upon RS activation. The gun1 phenotype in lincomycin and the gun1-like phenotype of GLK1OX are markedly suppressed in gun1bbx16 and GLK1OXbbx16. This study identified BBX16 as the first member of the BBX family involved in RS, and defines a molecular bifurcation mechanism operated by GLK1/BBX16 to optimise seedling de-etiolation, and to ensure photoprotection in unfavourable light conditions.
Collapse
Affiliation(s)
- Nil Veciana
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
| | - Guiomar Martín
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
| | - Pablo Leivar
- Laboratory of BiochemistryInstitut Químic de SarriàUniversitat Ramon Llull08017BarcelonaSpain
| | - Elena Monte
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
- Consejo Superior de Investigaciones Científicas (CSIC)08028BarcelonaSpain
| |
Collapse
|
18
|
Wu GZ, Bock R. GUN control in retrograde signaling: How GENOMES UNCOUPLED proteins adjust nuclear gene expression to plastid biogenesis. THE PLANT CELL 2021; 33:457-474. [PMID: 33955483 PMCID: PMC8136882 DOI: 10.1093/plcell/koaa048] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/03/2020] [Indexed: 05/08/2023]
Abstract
Communication between cellular compartments is vital for development and environmental adaptation. Signals emanating from organelles, so-called retrograde signals, coordinate nuclear gene expression with the developmental stage and/or the functional status of the organelle. Plastids (best known in their green photosynthesizing differentiated form, the chloroplasts) are the primary energy-producing compartment of plant cells, and the site for the biosynthesis of many metabolites, including fatty acids, amino acids, nucleotides, isoprenoids, tetrapyrroles, vitamins, and phytohormone precursors. Signals derived from plastids regulate the accumulation of a large set of nucleus-encoded proteins, many of which localize to plastids. A set of mutants defective in retrograde signaling (genomes uncoupled, or gun) was isolated over 25 years ago. While most GUN genes act in tetrapyrrole biosynthesis, resolving the molecular function of GUN1, the proposed integrator of multiple retrograde signals, has turned out to be particularly challenging. Based on its amino acid sequence, GUN1 was initially predicted to be a plastid-localized nucleic acid-binding protein. Only recently, mechanistic information on the function of GUN1 has been obtained, pointing to a role in plastid protein homeostasis. This review article summarizes our current understanding of GUN-related retrograde signaling and provides a critical appraisal of the various proposed roles for GUNs and their respective pathways.
Collapse
Affiliation(s)
- Guo-Zhang Wu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
19
|
Kleine T, Nägele T, Neuhaus HE, Schmitz-Linneweber C, Fernie AR, Geigenberger P, Grimm B, Kaufmann K, Klipp E, Meurer J, Möhlmann T, Mühlhaus T, Naranjo B, Nickelsen J, Richter A, Ruwe H, Schroda M, Schwenkert S, Trentmann O, Willmund F, Zoschke R, Leister D. Acclimation in plants - the Green Hub consortium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:23-40. [PMID: 33368770 DOI: 10.1111/tpj.15144] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 05/04/2023]
Abstract
Acclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to 'smart breeding' methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast-related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted.
Collapse
Affiliation(s)
- Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | | | - Alisdair R Fernie
- Central Metabolism, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Peter Geigenberger
- Plant Metabolism, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - Bernhard Grimm
- Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Edda Klipp
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Torsten Möhlmann
- Plant Physiology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Belen Naranjo
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Jörg Nickelsen
- Molecular Plant Science, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - Andreas Richter
- Physiology of Plant Organelles, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Hannes Ruwe
- Molecular Genetics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Michael Schroda
- Molecular Biotechnology & Systems Biology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Serena Schwenkert
- Plant Biochemistry and Physiology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - Oliver Trentmann
- Plant Physiology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Reimo Zoschke
- Translational Regulation in Plants, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
20
|
Li P, Ma J, Sun X, Zhao C, Ma C, Wang X. RAB GTPASE HOMOLOG 8D is required for the maintenance of both the root stem cell niche and the meristem. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1225-1239. [PMID: 33258210 DOI: 10.1111/tpj.15106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Previous studies have suggested that the plastid translation elongation factor, elongation factor thermo unstable (EF-Tu), encoded by RAB GTPASE HOMOLOG 8D (RAB8D) is essential for plant growth. Here, through analyzing the root phenotypes of two knock-down alleles of RAB8D (rab8d-1 and rab8d-2), we further revealed a vital role for RAB8D in primary root development through the maintenance of both the stem cell niche (SCN) and the meristem. Our results showed that RAB8D deficiency affects the root auxin response and SCN maintenance signaling. RAB8D interacts with GENOMES UNCOUPLED 1 (GUN1) in vivo. Further analysis revealed that GUN1 is over-accumulated and is required for both stem cell death and maintenance of root architecture in rab8d Arabidopsis mutants. The ATAXIA-TELANGIECTASIA-MUTATED (ATM)-SUPPRESSOR OF GAMMA RESPONSE 1 pathway is involved in the regulation of root meristem size through upregulating SIAMESE-RELATED 5 expression in the rab8d-2 allele. Moreover, ETHYLENE RESPONSE FACTOR 115 is highly expressed in rab8d-2, which plays a role in further quiescent center division. Our observations not only characterized the role of RAB8D in root development, but also uncovered functions of GUN1 and ATM in response to plastid EF-Tu deficiency.
Collapse
Affiliation(s)
- Pengcheng Li
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Junjie Ma
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xueping Sun
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Chuanzhi Zhao
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xingjun Wang
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| |
Collapse
|
21
|
Du Y, Mo W, Ma T, Tang W, Tian L, Lin R. A pentatricopeptide repeat protein DUA1 interacts with sigma factor 1 to regulate chloroplast gene expression in Rice. PHOTOSYNTHESIS RESEARCH 2021; 147:131-143. [PMID: 33164144 DOI: 10.1007/s11120-020-00793-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Chloroplast gene expression is controlled by both plastid-encoded RNA polymerase (PEP) and nuclear-encoded RNA polymerase and is crucial for chloroplast development and photosynthesis. Environmental factors such as light and temperature can influence transcription in chloroplasts. In this study, we showed that mutation in DUA1, which encodes a pentatricopeptide repeat (PPR) protein in rice (Oryza sativa), led to deficiency in chloroplast development and chlorophyll biosynthesis, impaired photosystems, and reduced expression of PEP-dependent transcripts at low temperature especially under low-light conditions. Furthermore, we demonstrated that sigma factor OsSIG1 interacted with DUA1 in vitro and in vivo. Moreover, the levels of chlorophyll and PEP-dependent gene expression were significantly decreased in the Ossig1 mutants at low-temperature and low-light conditions. Our study reveals that the PPR protein DUA1 plays an important role in regulating PEP-mediated chloroplast gene expression through interacting with OsSIG1, thus modulates chloroplast development in response to environmental signals.
Collapse
Affiliation(s)
- Yanxin Du
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiping Mo
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Ma
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Weijiang Tang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Shimizu T, Masuda T. The Role of Tetrapyrrole- and GUN1-Dependent Signaling on Chloroplast Biogenesis. PLANTS 2021; 10:plants10020196. [PMID: 33494334 PMCID: PMC7911674 DOI: 10.3390/plants10020196] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Chloroplast biogenesis requires the coordinated expression of the chloroplast and nuclear genomes, which is achieved by communication between the developing chloroplasts and the nucleus. Signals emitted from the plastids, so-called retrograde signals, control nuclear gene expression depending on plastid development and functionality. Genetic analysis of this pathway identified a set of mutants defective in retrograde signaling and designated genomes uncoupled (gun) mutants. Subsequent research has pointed to a significant role of tetrapyrrole biosynthesis in retrograde signaling. Meanwhile, the molecular functions of GUN1, the proposed integrator of multiple retrograde signals, have not been identified yet. However, based on the interactions of GUN1, some working hypotheses have been proposed. Interestingly, GUN1 contributes to important biological processes, including plastid protein homeostasis, through transcription, translation, and protein import. Furthermore, the interactions of GUN1 with tetrapyrroles and their biosynthetic enzymes have been revealed. This review focuses on our current understanding of the function of tetrapyrrole retrograde signaling on chloroplast biogenesis.
Collapse
|
23
|
GUN1 and Plastid RNA Metabolism: Learning from Genetics. Cells 2020; 9:cells9102307. [PMID: 33081381 PMCID: PMC7602965 DOI: 10.3390/cells9102307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
GUN1 (genomes uncoupled 1), a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal small mutS-related (SMR) domain, plays a central role in the retrograde communication of chloroplasts with the nucleus. This flow of information is required for the coordinated expression of plastid and nuclear genes, and it is essential for the correct development and functioning of chloroplasts. Multiple genetic and biochemical findings indicate that GUN1 is important for protein homeostasis in the chloroplast; however, a clear and unified view of GUN1′s role in the chloroplast is still missing. Recently, GUN1 has been reported to modulate the activity of the nucleus-encoded plastid RNA polymerase (NEP) and modulate editing of plastid RNAs upon activation of retrograde communication, revealing a major role of GUN1 in plastid RNA metabolism. In this opinion article, we discuss the recently identified links between plastid RNA metabolism and retrograde signaling by providing a new and extended concept of GUN1 activity, which integrates the multitude of functional genetic interactions reported over the last decade with its primary role in plastid transcription and transcript editing.
Collapse
|
24
|
Garcia-Molina A, Marino G, Lehmann M, Leister D. Systems biology of responses to simultaneous copper and iron deficiency in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2119-2138. [PMID: 32578228 DOI: 10.1111/tpj.14887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 06/09/2020] [Indexed: 05/29/2023]
Abstract
Plant responses to coincident nutrient deficiencies cannot be predicted from the responses to individual deficiencies. Although copper (Cu) and iron (Fe) are essential micronutrients for plant growth that are often and concurrently limited in soils, the combinatorial response to Cu-Fe deficiency remains elusive. In the present study, we characterised the responses of Arabidopsis thaliana plants deprived of Cu, Fe or both (-Cu-Fe) at the level of plant development, mineral composition, and reconfiguration of transcriptomes, proteomes and metabolomes. Compared to single deficiencies, simultaneous -Cu-Fe leads to a distinct pattern in leaf physiology and microelement concentration characterised by lowered protein content and enhanced manganese and zinc levels. Conditional networking analysis of molecular changes indicates that biological processes also display different co-expression patterns among single and double deficiencies. Indeed, the interaction between Cu and Fe deficiencies causes distinct expression profiles for 15% of all biomolecules, leading to specific enhancement of general stress responses and protein homeostasis mechanisms, at the same time as severely arresting photosynthesis. Accordingly, central carbon metabolites, in particular photosynthates, decrease especially under -Cu-Fe conditions, whereas the pool of free amino acids increases. Further meta-analysis of transcriptomes and proteomes corroborated that protein biosynthesis and folding capacity were readjusted during the combinatorial response and unveiled important rearrangements in the metabolism of organic acids. Consequently, our results demonstrate that the response to -Cu-Fe imposes a distinct reconfiguration of large sets of molecules, not triggered by single deficiencies, resulting into a switch from autotrophy to heterotrophy and involving organic acids such as fumaric acid as central mediators of the response.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Giada Marino
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Martin Lehmann
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Dario Leister
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| |
Collapse
|
25
|
Mielecki J, Gawroński P, Karpiński S. Retrograde Signaling: Understanding the Communication between Organelles. Int J Mol Sci 2020; 21:E6173. [PMID: 32859110 PMCID: PMC7503960 DOI: 10.3390/ijms21176173] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding how cell organelles and compartments communicate with each other has always been an important field of knowledge widely explored by many researchers. However, despite years of investigations, one point-and perhaps the only point that many agree on-is that our knowledge about cellular-signaling pathways still requires expanding. Chloroplasts and mitochondria (because of their primary functions in energy conversion) are important cellular sensors of environmental fluctuations and feedback they provide back to the nucleus is important for acclimatory responses. Under stressful conditions, it is important to manage cellular resources more efficiently in order to maintain a proper balance between development, growth and stress responses. For example, it can be achieved through regulation of nuclear and organellar gene expression. If plants are unable to adapt to stressful conditions, they will be unable to efficiently produce energy for growth and development-and ultimately die. In this review, we show the importance of retrograde signaling in stress responses, including the induction of cell death and in organelle biogenesis. The complexity of these pathways demonstrates how challenging it is to expand the existing knowledge. However, understanding this sophisticated communication may be important to develop new strategies of how to improve adaptability of plants in rapidly changing environments.
Collapse
Affiliation(s)
| | | | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.M.); (P.G.)
| |
Collapse
|
26
|
Hernández-Verdeja T, Vuorijoki L, Strand Å. Emerging from the darkness: interplay between light and plastid signaling during chloroplast biogenesis. PHYSIOLOGIA PLANTARUM 2020; 169:397-406. [PMID: 32222991 DOI: 10.1111/ppl.13100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 05/17/2023]
Abstract
Chloroplast biogenesis is a highly complex process that requires carefully coordinated communication between the nucleus and the chloroplast to integrate light signaling and information about the state of the plastid through retrograde signals. Most studies on plastid development have been performed using dark-grown seedlings and have focused on the transition from etioplast to chloroplast in response to light. Some advances are now also being made to understand the transition directly from proplastids to chloroplasts as it occurs in the shoot apical meristems. Recent reports have highlighted the importance of repressive mechanisms to block premature chloroplast development in dark, both at the transcriptional and post-transcriptional level. A group of new proteins with dual plastid and nuclear localization were shown to take part in the light triggered degradation of PHYTOCHROME INTERACTING FACTORs (PIFs) in the nucleus and thereby release the suppression of the nuclear photosynthesis associated genes. These dually localized proteins are also required to activate transcription of photosynthesis genes in the plastid in response to light, emphasizing the close link between the nucleus and the plastids during early light response. Furthermore, development of a fully functional chloroplast requires a plastid signal but the nature of this signal(s) is still unknown. GENOMES UNCOUPLED1 (GUN1) is a plastid protein pivotal for retrograde signal(s) during early seedling development, and recent reports have revealed multiple interactors of GUN1 from different plastid processes. These new GUN1 interactors could reveal the true molecular function of the enigmatic character, GUN1, under naturally occurring adverse growth conditions.
Collapse
Affiliation(s)
- Tamara Hernández-Verdeja
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 901 87, Sweden
| | - Linda Vuorijoki
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 901 87, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 901 87, Sweden
| |
Collapse
|
27
|
Garcia-Molina A, Kleine T, Schneider K, Mühlhaus T, Lehmann M, Leister D. Translational Components Contribute to Acclimation Responses to High Light, Heat, and Cold in Arabidopsis. iScience 2020; 23:101331. [PMID: 32679545 PMCID: PMC7364123 DOI: 10.1016/j.isci.2020.101331] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/26/2020] [Accepted: 06/28/2020] [Indexed: 12/27/2022] Open
Abstract
Plant metabolism is broadly reprogrammed during acclimation to abiotic changes. Most previous studies have focused on transitions from standard to single stressful conditions. Here, we systematically analyze acclimation processes to levels of light, heat, and cold stress that subtly alter physiological parameters and assess their reversibility during de-acclimation. Metabolome and transcriptome changes were monitored at 11 different time points. Unlike transcriptome changes, most alterations in metabolite levels did not readily return to baseline values, except in the case of cold acclimation. Similar regulatory networks operate during (de-)acclimation to high light and cold, whereas heat and high-light responses exhibit similar dynamics, as determined by surprisal and conditional network analyses. In all acclimation models tested here, super-hubs in conditional transcriptome networks are enriched for components involved in translation, particularly ribosomes. Hence, we suggest that the ribosome serves as a common central hub for the control of three different (de-)acclimation responses.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany
| | - Kevin Schneider
- Computational Systems Biology, TU Kaiserslautern, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, TU Kaiserslautern, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | - Martin Lehmann
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
28
|
Richter AS, Tohge T, Fernie AR, Grimm B. The genomes uncoupled-dependent signalling pathway coordinates plastid biogenesis with the synthesis of anthocyanins. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190403. [PMID: 32362259 DOI: 10.1098/rstb.2019.0403] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In recent years, it has become evident that plants perceive, integrate and communicate abiotic stress signals through chloroplasts. During the process of acclimation plastid-derived, retrograde signals control nuclear gene expression in response to developmental and environmental cues leading to complex genetic and metabolic reprogramming to preserve cellular homeostasis under challenging environmental conditions. Upon stress-induced dysfunction of chloroplasts, GENOMES UNCOUPLED (GUN) proteins participate in the repression of PHOTOSYNTHESIS-ASSOCIATED NUCLEAR GENES (PHANGs). Here, we show that the retrograde signal emitted by, or communicated through, GUN-proteins is also essential to induce the accumulation of photoprotective anthocyanin pigments when chloroplast development is attenuated. Comparative whole transcriptome sequencing and genetic analysis reveal GUN1 and GUN5-dependent signals as a source for the regulation of genes involved in anthocyanin biosynthesis. The signal transduction cascade includes well-known transcription factors for the control of anthocyanin biosynthesis, which are deregulated in gun mutants. We propose that regulation of PHANGs and genes contributing to anthocyanin biosynthesis are two, albeit oppositely, co-regulated processes during plastid biogenesis. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Andreas S Richter
- Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany.,Physiology of Plant Cell Organelles, Institute of Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Bernhard Grimm
- Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany
| |
Collapse
|
29
|
Pfannschmidt T, Terry MJ, Van Aken O, Quiros PM. Retrograde signals from endosymbiotic organelles: a common control principle in eukaryotic cells. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190396. [PMID: 32362267 DOI: 10.1098/rstb.2019.0396] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Endosymbiotic organelles of eukaryotic cells, the plastids, including chloroplasts and mitochondria, are highly integrated into cellular signalling networks. In both heterotrophic and autotrophic organisms, plastids and/or mitochondria require extensive organelle-to-nucleus communication in order to establish a coordinated expression of their own genomes with the nuclear genome, which encodes the majority of the components of these organelles. This goal is achieved by the use of a variety of signals that inform the cell nucleus about the number and developmental status of the organelles and their reaction to changing external environments. Such signals have been identified in both photosynthetic and non-photosynthetic eukaryotes (known as retrograde signalling and retrograde response, respectively) and, therefore, appear to be universal mechanisms acting in eukaryotes of all kingdoms. In particular, chloroplasts and mitochondria both harbour crucial redox reactions that are the basis of eukaryotic life and are, therefore, especially susceptible to stress from the environment, which they signal to the rest of the cell. These signals are crucial for cell survival, lifespan and environmental adjustment, and regulate quality control and targeted degradation of dysfunctional organelles, metabolic adjustments, and developmental signalling, as well as induction of apoptosis. The functional similarities between retrograde signalling pathways in autotrophic and non-autotrophic organisms are striking, suggesting the existence of common principles in signalling mechanisms or similarities in their evolution. Here, we provide a survey for the newcomers to this field of research and discuss the importance of retrograde signalling in the context of eukaryotic evolution. Furthermore, we discuss commonalities and differences in retrograde signalling mechanisms and propose retrograde signalling as a general signalling mechanism in eukaryotic cells that will be also of interest for the specialist. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Thomas Pfannschmidt
- Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Matthew J Terry
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | | |
Collapse
|
30
|
Page MT, Garcia-Becerra T, Smith AG, Terry MJ. Overexpression of chloroplast-targeted ferrochelatase 1 results in a genomes uncoupled chloroplast-to-nucleus retrograde signalling phenotype. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190401. [PMID: 32362255 DOI: 10.1098/rstb.2019.0401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chloroplast development requires communication between the progenitor plastids and the nucleus, where most of the genes encoding chloroplast proteins reside. Retrograde signals from the chloroplast to the nucleus control the expression of many of these genes, but the signalling pathway is poorly understood. Tetrapyrroles have been strongly implicated as mediators of this signal with the current hypothesis being that haem produced by the activity of ferrochelatase 1 (FC1) is required to promote nuclear gene expression. We have tested this hypothesis by overexpressing FC1 and specifically targeting it to either chloroplasts or mitochondria, two possible locations for this enzyme. Our results show that targeting of FC1 to chloroplasts results in increased expression of the nuclear-encoded chloroplast genes GUN4, CA1, HEMA1, LHCB2.1, CHLH after treatment with Norflurazon (NF) and that this increase correlates to FC1 gene expression and haem production measured by feedback inhibition of protochlorophyllide synthesis. Targeting FC1 to mitochondria did not enhance the expression of nuclear-encoded chloroplast genes after NF treatment. The overexpression of FC1 also increased nuclear gene expression in the absence of NF treatment, demonstrating that this pathway is operational in the absence of a stress treatment. Our results therefore support the hypothesis that haem synthesis is a promotive chloroplast-to-nucleus retrograde signal. However, not all FC1 overexpression lines enhanced nuclear gene expression, suggesting there is still a lot we do not understand about the role of FC1 in this signalling pathway. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Mike T Page
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Tania Garcia-Becerra
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Matthew J Terry
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| |
Collapse
|
31
|
Abstract
The signaling pathway between chloroplasts and the nucleus (retrograde signaling) is important for the correct development of the photosynthetic apparatus of plant seedlings. The pathway is still not understood, but the majority of mutants with altered signaling (gun mutants) implicate the tetrapyrrole molecule heme in this process. In this article, we have demonstrated that the major retrograde signaling protein GUN1 can bind tetrapyrroles and regulate the flow through the tetrapyrrole biosynthesis pathway. The results support a role for tetrapyrroles in mediating retrograde signaling and open up the opportunity to develop a unifying hypothesis for this pathway that takes account of all identified gun mutants. The biogenesis of the photosynthetic apparatus in developing seedlings requires the assembly of proteins encoded on both nuclear and chloroplast genomes. To coordinate this process there needs to be communication between these organelles, but the retrograde signals by which the chloroplast communicates with the nucleus at this time are still essentially unknown. The Arabidopsis thaliana genomes uncoupled (gun) mutants, that show elevated nuclear gene expression after chloroplast damage, have formed the basis of our understanding of retrograde signaling. Of the 6 reported gun mutations, 5 are in tetrapyrrole biosynthesis proteins and this has led to the development of a model for chloroplast-to-nucleus retrograde signaling in which ferrochelatase 1 (FC1)-dependent heme synthesis generates a positive signal promoting expression of photosynthesis-related genes. However, the molecular consequences of the strongest of the gun mutants, gun1, are poorly understood, preventing the development of a unifying hypothesis for chloroplast-to-nucleus signaling. Here, we show that GUN1 directly binds to heme and other porphyrins, reduces flux through the tetrapyrrole biosynthesis pathway to limit heme and protochlorophyllide synthesis, and can increase the chelatase activity of FC1. These results raise the possibility that the signaling role of GUN1 may be manifested through changes in tetrapyrrole metabolism, supporting a role for tetrapyrroles as mediators of a single biogenic chloroplast-to-nucleus retrograde signaling pathway.
Collapse
|