1
|
Nishimura N, Tsuchiya W, Suzuki N, Hirayama T, Yamazaki T. Identification and characterization of functional DOG1 residues regulating the abscisic acid response in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70180. [PMID: 40287965 DOI: 10.1111/tpj.70180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/31/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
Abscisic acid (ABA) is an important phytohormone regulating seed dormancy and germination. DELAY OF GERMINATION 1 (DOG1) is a pivotal regulator of seed dormancy and regulates the ABA response by binding with ABA HYPERSENSITIVE GERMINATION 1 (AHG1) and heme. However, to date, the molecular function and regulatory mechanisms of DOG1 remain unclear, including the relationship between DOG1 and the ABA response. Here, we investigate the mechanism of DOG1 in the ABA response using RNA sequencing, genetics, and biochemistry experiments. Our data suggest that DOG1 and AHG1 regulate the expression of many common genes, including seed maturation and ABA response. Moreover, DOG1 acts upstream of ABA INSENSITIVE 5 (ABI5) and regulates ABI5 target genes including LATE EMBRYOGENESIS ABUNDANT 1 (EM1) and EM6. We therefore performed a genetic screen to isolate mutants that suppress the ABA hypersensitive phenotype of YFP-DOG1-overexpressing transgenic plants. Ten mutant alleles caused mutations in the DOG1 transgene region, including three premature stop codon mutations and seven single amino acid substitutions. One of these mutants, P178L, which contains an amino acid substitution, abolished the interaction with AHG1 and promoted the dimerization of DOG1. Furthermore, we identify a heme-binding residue, Cys96, that plays an important role in ABA response. Overall, these data suggest that DOG1 and AHG1 regulate ABA response via ABI5 and that the association between heme and AHG1 is critical for the function of DOG1 during the regulation of seed germination.
Collapse
Affiliation(s)
- Noriyuki Nishimura
- Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, 305-8602, Ibaraki, Japan
- Radiation Breeding Division, Institute of Crop Science, National Agriculture and Food Research Organization, 2425 Kamimurata, Hitachiohmiya, 319-2293, Ibaraki, Japan
| | - Wataru Tsuchiya
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, 305-8518, Ibaraki, Japan
| | - Nahomi Suzuki
- Radiation Breeding Division, Institute of Crop Science, National Agriculture and Food Research Organization, 2425 Kamimurata, Hitachiohmiya, 319-2293, Ibaraki, Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources, Advanced Research Field, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046, Okayama, Japan
| | - Toshimasa Yamazaki
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, 305-8518, Ibaraki, Japan
| |
Collapse
|
2
|
Yang Y, Feng T, Zheng X, Zheng H, Tang H, Yu X. Integrated analyses provide insights into the seed dormancy mechanisms of the endangered plant Sinojackia sarcocarpa. Genomics 2025; 117:110991. [PMID: 39848477 DOI: 10.1016/j.ygeno.2025.110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/25/2025]
Abstract
Sinojackia sarcocarpa, an endangered ornamental plant endemic to China, faces germination challenges that contribute to its endangered status. The mechanisms of its seed dormancy are not well understood. This study used morphological, physiological, transcriptomic, and gene function analyses to investigate these mechanisms. Our research shows that seed dormancy in Sinojackia sarcocarpa involves both physical and physiological factors. We found that removing the hard endocarp and applying gibberellic acid can effectively break dormancy. Transcriptomic analysis identified 2218 up-regulated and 374 down-regulated genes during germination. Notably, DOG1-domain genes SsDOGL4, SsTGA9, and SsTGA10 were significantly downregulated, while SsDOG1 was not. Additionally, overexpression of SsDOGL4 in Arabidopsis endosperm was found to enhance seed dormancy. Collectively, these findings offer significant insights into the mechanisms underlying seed dormancy in this endangered plant species.
Collapse
Affiliation(s)
- Yao Yang
- Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Tingting Feng
- Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Xianzhe Zheng
- Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Huifang Zheng
- Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Hao Tang
- Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Xiaobo Yu
- Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China.
| |
Collapse
|
3
|
Qiao H, Zhou X, Yi Y, Wei L, Xu X, Jin P, Su W, Weng Y, Yu D, He S, Fu M, Hou C, Pan X, Wang W, Zhang YY, Ming R, Ye C, Li QQ, Shen Y. Molecular mechanism of vivipary as revealed by the genomes of viviparous mangroves and non-viviparous relatives. Curr Biol 2024; 34:3707-3721.e7. [PMID: 39079534 DOI: 10.1016/j.cub.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
Vivipary is a prominent feature of mangroves, allowing seeds to complete germination while attached to the mother plant, and equips propagules to endure and flourish in challenging coastal intertidal wetlands. However, vivipary-associated genetic mechanisms remain largely elusive. Genomes of two viviparous mangrove species and a non-viviparous inland relative were sequenced and assembled at the chromosome level. Comparative genomic analyses between viviparous and non-viviparous genomes revealed that DELAY OF GERMINATION 1 (DOG1) family genes (DFGs), the proteins from which are crucial for seed dormancy, germination, and reserve accumulation, are either lost or dysfunctional in the entire lineage of true viviparous mangroves but are present and functional in their inland, non-viviparous relatives. Transcriptome dynamics at key stages of vivipary further highlighted the roles of phytohormonal homeostasis, proteins stored in mature seeds, and proanthocyanidins in vivipary under conditions lacking DFGs. Population genomic analyses elucidate dynamics of syntenic regions surrounding the missing DFGs. Our findings demonstrated the genetic foundation of constitutive vivipary in Rhizophoraceae mangroves.
Collapse
Affiliation(s)
- Hongmei Qiao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaoxuan Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Yuchong Yi
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Liufeng Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiuming Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Pengfei Jin
- Novogene Co. Ltd, Building 301, Zone A10 Jiuxianqiao North Road, Chaoyang District, Beijing 100006, China
| | - Wenyue Su
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Yulin Weng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Dingtian Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Shanshan He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Meiping Fu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Chengcheng Hou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaobao Pan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Wenqing Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China.
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China; Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA.
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
4
|
Carrera-Castaño G, Mira S, Fañanás-Pueyo I, Sánchez-Montesino R, Contreras Á, Weiste C, Dröge-Laser W, Gómez L, Oñate-Sánchez L. Complex control of seed germination timing by ERF50 involves RGL2 antagonism and negative feedback regulation of DOG1. THE NEW PHYTOLOGIST 2024; 242:2026-2042. [PMID: 38494681 DOI: 10.1111/nph.19681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Seed dormancy governs germination timing, with both evolutionary and applied consequences. Despite extensive studies on the hormonal and genetic control of these processes, molecular mechanisms directly linking dormancy and germination remain poorly understood. By screening a collection of lines overexpressing Arabidopsis transcription factors, we identified ERF50 as a key gene to control dormancy and germination. To study its regulation, we measured seed-related physiological parameters in loss-of-function mutants and carried out transactivation, protein interaction and ChIP-PCR analyses. We found direct ERF50-mediated repression of DOG1 and activation of EXPA2 transcription, which results in enhanced seed germination. Although ERF50 expression is increased by DOG1 in dormant seeds, ERF50 germination-promoting activity is blocked by RGL2. The physiological, genetic and molecular evidence gathered here supports that ERF50 controls germination timing by regulating DOG1 levels to leverage its role as enhancer of seed germination, via RGL2 antagonism on EXPA2 expression. Our results highlight the central role of ERF50 as a feedback regulator to couple and fine-tune seed dormancy and germination.
Collapse
Affiliation(s)
- Gerardo Carrera-Castaño
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Sara Mira
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| | - Iris Fañanás-Pueyo
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Rocío Sánchez-Montesino
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Ángela Contreras
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | - Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | - Luis Gómez
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, 28040, Madrid, Spain
- Centro para la Conservación de la Biodiversidad y el Desarrollo Sostenible, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| |
Collapse
|
5
|
Sajeev N, Koornneef M, Bentsink L. A commitment for life: Decades of unraveling the molecular mechanisms behind seed dormancy and germination. THE PLANT CELL 2024; 36:1358-1376. [PMID: 38215009 PMCID: PMC11062444 DOI: 10.1093/plcell/koad328] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
Seeds are unique time capsules that can switch between 2 complex and highly interlinked stages: seed dormancy and germination. Dormancy contributes to the survival of plants because it allows to delay germination to optimal conditions. The switch between dormancy and germination occurs in response to developmental and environmental cues. In this review we provide a comprehensive overview of studies that have helped to unravel the molecular mechanisms underlying dormancy and germination over the last decades. Genetic and physiological studies provided a strong foundation for this field of research and revealed the critical role of the plant hormones abscisic acid and gibberellins in the regulation of dormancy and germination, and later natural variation studies together with quantitative genetics identified previously unknown genetic components that control these processes. Omics technologies like transcriptome, proteome, and translatomics analysis allowed us to mechanistically dissect these processes and identify new components in the regulation of seed dormancy and germination.
Collapse
Affiliation(s)
- Nikita Sajeev
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University, 6708PB Wageningen, the Netherlands
- Max Planck Institute for Plant Breeding Research, Former Department of Plant Breeding and Genetics, Koeln 50829, Germany
| | - Leónie Bentsink
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, the Netherlands
| |
Collapse
|
6
|
Liu C, Chang J, Yang J, Li H, Wu J, Wu J, Dai X, Wei F, Zhang X, Su X, Xia Z. Overexpression of NtDOGL4 improves cadmium tolerance through abscisic acid signaling pathway in tobacco. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133462. [PMID: 38215520 DOI: 10.1016/j.jhazmat.2024.133462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
The DELAY OF GERMINATION1-LIKE (DOGL) genes play an essential role in diverse biological processes in plants. However, their exact involvement in the response to cadmium (Cd) stress via the ABA pathway remains unclear. Here, we focused on NtDOGL4, a tobacco DOGL gene whose expression is highly induced upon exposure to Cd. Overexpression of NtDOGL4 in tobacco resulted in elevated endogenous ABA levels, reduced Cd accumulation, and increased tolerance to Cd. Moreover, NtDOGL4 overexpression led to decreased accumulation of reactive oxygen species (ROS) and improved ROS scavenging capacity under Cd stress. Further analyses revealed the direct binding of the transcription factor ABSCISIC ACID-INSENSITIVE 5 (ABI5) to the NtDOGL4 promoter, positively regulating its expression in tobacco. Notably, NtDOGL4 overexpression promoted suberin formation and deposition, while suppressing the expression of Cd transporter genes in tobacco roots, as evidenced by histochemical staining, suberin fraction determination, and qRT-PCR assays. Collectively, our results demonstrate that NtDOGL4 overexpression reduces Cd accumulation, thereby improving Cd stress tolerance through the modulation of antioxidant system, transcription of Cd transporters, and suberin deposition. Notably, the NtABI5-NtDOGL4 module functions as a positive regulator in tobacco's Cd tolerance, underscoring its potential as a molecular target for developing low-Cd crops to ensure environmental safety.
Collapse
Affiliation(s)
- Can Liu
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China; College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianbo Chang
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Jianxin Yang
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Hongchen Li
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Jiang Wu
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Junlin Wu
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Xiaoyan Dai
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Fengjie Wei
- Henan Provincial Tobacco Company, Zhengzhou 450018, China.
| | - Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xinhong Su
- Henan Provincial Tobacco Company, Zhengzhou 450018, China.
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
7
|
Krzyszton M, Sacharowski SP, Manjunath VH, Muter K, Bokota G, Wang C, Plewczyński D, Dobisova T, Swiezewski S. Dormancy heterogeneity among Arabidopsis thaliana seeds is linked to individual seed size. PLANT COMMUNICATIONS 2024; 5:100732. [PMID: 37828740 PMCID: PMC10873894 DOI: 10.1016/j.xplc.2023.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
Production of morphologically and physiologically variable seeds is an important strategy that helps plants to survive in unpredictable natural conditions. However, the model plant Arabidopsis thaliana and most agronomically essential crops produce visually homogenous seeds. Using automated phenotype analysis, we observed that small seeds in Arabidopsis tend to have higher primary and secondary dormancy levels than large seeds. Transcriptomic analysis revealed distinct gene expression profiles between large and small seeds. Large seeds have higher expression of translation-related genes implicated in germination competence. By contrast, small seeds have elevated expression of many positive regulators of dormancy, including a key regulator of this process, the DOG1 gene. Differences in DOG1 expression are associated with differential production of its alternative cleavage and polyadenylation isoforms; in small seeds, the proximal poly(A) site is selected, resulting in a short mRNA isoform. Furthermore, single-seed RNA sequencing analysis demonstrated that large seeds resemble DOG1 knockout mutant seeds. Finally, on the single-seed level, expression of genes affected by seed size is correlated with expression of genes that position seeds on the path toward germination. Our results demonstrate an unexpected link between seed size and dormancy phenotypes in a species that produces highly homogenous seed pools, suggesting that the correlation between seed morphology and physiology is more widespread than initially assumed.
Collapse
Affiliation(s)
- Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland.
| | - Sebastian P Sacharowski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland
| | - Veena Halale Manjunath
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland
| | - Katarzyna Muter
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland
| | - Grzegorz Bokota
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ce Wang
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland
| | - Dariusz Plewczyński
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland; Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | | | - Szymon Swiezewski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland.
| |
Collapse
|
8
|
Vollmeister E, Phokas A, Meyberg R, Böhm CV, Peter M, Kohnert E, Yuan J, Grosche C, Göttig M, Ullrich KK, Perroud PF, Hiltbrunner A, Kreutz C, Coates JC, Rensing SA. A DELAY OF GERMINATION 1 (DOG1)-like protein regulates spore germination in the moss Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:909-923. [PMID: 37953711 DOI: 10.1111/tpj.16537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
DELAY OF GERMINATION 1 is a key regulator of dormancy in flowering plants before seed germination. Bryophytes develop haploid spores with an analogous function to seeds. Here, we investigate whether DOG1 function during germination is conserved between bryophytes and flowering plants and analyse the underlying mechanism of DOG1 action in the moss Physcomitrium patens. Phylogenetic and in silico expression analyses were performed to identify and characterise DOG1 domain-containing genes in P. patens. Germination assays were performed to characterise a Ppdog1-like1 mutant, and replacement with AtDOG1 was carried out. Yeast two-hybrid assays were used to test the interaction of the PpDOG1-like protein with DELLA proteins from P. patens and A. thaliana. P. patens possesses nine DOG1 domain-containing genes. The DOG1-like protein PpDOG1-L1 (Pp3c3_9650) interacts with PpDELLAa and PpDELLAb and the A. thaliana DELLA protein AtRGA in yeast. Protein truncations revealed the DOG1 domain as necessary and sufficient for interaction with PpDELLA proteins. Spores of Ppdog1-l1 mutant germinate faster than wild type, but replacement with AtDOG1 reverses this effect. Our data demonstrate a role for the PpDOG1-LIKE1 protein in moss spore germination, possibly alongside PpDELLAs. This suggests a conserved DOG1 domain function in germination, albeit with differential adaptation of regulatory networks in seed and spore germination.
Collapse
Affiliation(s)
- Evelyn Vollmeister
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Alexandros Phokas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rabea Meyberg
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Clemens V Böhm
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Marlies Peter
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Eva Kohnert
- Institute of Medical Biometry and Statistics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79104, Germany
| | - Jinhong Yuan
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christopher Grosche
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Marco Göttig
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Kristian K Ullrich
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | | | - Andreas Hiltbrunner
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79104, Germany
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Zhong C, Liu Y, Li Z, Wang X, Jiang C, Zhao X, Kang S, Liu X, Zhao S, Wang J, Zhang H, Huang Y, Yu H, Xue R. Genome-wide analysis reveals regulatory mechanisms and expression patterns of TGA genes in peanut under abiotic stress and hormone treatments. FRONTIERS IN PLANT SCIENCE 2023; 14:1269200. [PMID: 38078104 PMCID: PMC10702600 DOI: 10.3389/fpls.2023.1269200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/06/2023] [Indexed: 04/30/2025]
Abstract
INTRODUCTION The TGA transcription factors, plays a crucial role in regulating gene expression. In cultivated peanut (Arachis hypogaea), which faces abiotic stress challenges, understanding the role of TGAs is important. METHODS In this study, we conducted a comprehensive in analysis of the TGA gene family in peanut to elucidate their regulatory mechanisms and expression patterns under abiotic stress and hormone treatments. Furthermore, functional studies on the representative AhTGA gene in peanut cultivars were conducted using transgenic Arabidopsis and soybean hair roots. RESULTS The genome-wide analysis revealed that a total of 20 AhTGA genes were identified and classified into five subfamilies. Collinearity analysis revealed that AhTGA genes lack tandem duplication, and their amplification in the cultivated peanut genome primarily relies on the whole-genome duplication of the diploid wild peanut to form tetraploid cultivated peanut, as well as segment duplication between the A and B subgenomes. Promoter and Protein-protein interaction analysis identified a wide range of cis-acting elements and potential interacting proteins associated with growth and development, hormones, and stress responses. Expression patterns of AhTGA genes in different tissues, under abiotic stress conditions for low temperature and drought, and in response to hormonal stimuli revealed that seven AhTGA genes from groups I (AhTGA04, AhTGA14 and AhTGA20) and II (AhTGA07, AhTGA11, AhTGA16 and AhTGA18) are involved in the response to abiotic stress and hormonal stimuli. The hormone treatment results indicate that these AhTGA genes primarily respond to the regulation of jasmonic acid and salicylic acid. Overexpressing AhTGA11 in Arabidopsis enhances resistance to cold and drought stress by increasing antioxidant activities and altering endogenous hormone levels, particularly ABA, SA and JA. DISCUSSION The AhTGA genes plays a crucial role in hormone regulation and stress response during peanut growth and development. The findings provide insights into peanut's abiotic stress tolerance mechanisms and pave the way for future functional studies.
Collapse
Affiliation(s)
- Chao Zhong
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yu Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Zhao Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xiaoguang Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Chunji Jiang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xinhua Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Shuli Kang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xibo Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Shuli Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jing Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - He Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yuning Huang
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Haiqiu Yu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Renfeng Xue
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Academy of Agricultural Sciences, Shenyang, China
| |
Collapse
|
10
|
Bizouerne E, Ly Vu J, Ly Vu B, Diouf I, Bitton F, Causse M, Verdier J, Buitink J, Leprince O. Genetic Variability in Seed Longevity and Germination Traits in a Tomato MAGIC Population in Contrasting Environments. PLANTS (BASEL, SWITZERLAND) 2023; 12:3632. [PMID: 37896095 PMCID: PMC10610530 DOI: 10.3390/plants12203632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
The stable production of high vigorous seeds is pivotal to crop yield. Also, a high longevity is essential to avoid progressive loss of seed vigour during storage. Both seed traits are strongly influenced by the environment during seed development. Here, we investigated the impact of heat stress (HS) during fruit ripening on tomato seed lifespan during storage at moderate relative humidity, speed (t50) and homogeneity of germination, using a MAGIC population that was produced under optimal and HS conditions. A plasticity index was used to assess the extent of the impact of HS for each trait. HS reduced the average longevity and germination homogeneity by 50% within the parents and MAGIC population. However, there was a high genetic variability in the seed response to heat stress. A total of 39 QTLs were identified, including six longevity QTLs for seeds from control (3) and HS (3) conditions, and six plasticity QTLs for longevity, with only one overlapping with a longevity QTL under HS. Four out of the six longevity QTL co-located with t50 QTL, revealing hotspots for seed quality traits. Twenty-one QTLs with intervals below 3 cM were analyzed using previous transcriptome and gene network data to propose candidate genes for seed vigour and longevity traits.
Collapse
Affiliation(s)
- Elise Bizouerne
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Joseph Ly Vu
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Benoît Ly Vu
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Isidore Diouf
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Frédérique Bitton
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Mathilde Causse
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Jérôme Verdier
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Julia Buitink
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Olivier Leprince
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| |
Collapse
|
11
|
Xia F, Liang X, Tan L, Sun W, Dai X, Yan H. Genome-Wide Identification, Evolution and Expression Profile Analysis of NAC Transcription Factor in Simmondsia chinensis. Curr Issues Mol Biol 2023; 45:5422-5436. [PMID: 37504260 PMCID: PMC10378596 DOI: 10.3390/cimb45070344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
NAC transcription factors (TFs) are one of the largest plant-specific gene families and play important roles in plant growth, development, and the biotic and abiotic stress response. Although the sequencing of Jojoba (Simmondsia chinensis) has been completed, the genome-wide identification and analysis of its NAC TFs has not been reported. In this study, a total of 57 genes were identified in Jojoba, which were divided into eight groups based on phylogenetic analysis. The genes clustered in the same groups have a similar gene structure and motif distribution. Based on the analysis of cis-elements in NAC TFs, nine cis-acting elements were identified in the promoter region that involved in light response, hormonal response, and stress response. Synteny analysis showed a greater collinearity between Jojoba and V. vinifera than Arabidopsis thaliana. The 24 genes in the Jojoba NAC TFs are derived from fragment replication, which may be the main source of NAC amplification. Gene expression analysis identified seven genes that were highly expressed in seeds. The differential expression analysis of NAC TFs in cotyledon and embryonic axis tissues showed that the expression of 10 genes was up-regulated and 1 gene was down-regulated. This study provides more information on the classification, gene structure, conserved motif, and evolution of NAC TFs in Jojoba, facilitating further exploration of their specific functional analysis in Jojoba seed development.
Collapse
Affiliation(s)
- Fan Xia
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Liang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Lina Tan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Wen Sun
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaogang Dai
- Key Laboratory of Tree Breeding & Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
12
|
Luo Y, Zhang Y, Jiang Y, Dai Z, Li Q, Mou J, Xu L, Deng S, Li J, Wang R, Liu J, Deng Z. iTRAQ-Based Proteomic and Physiological Analyses Reveal the Mechanisms of Dehydration and Cryopreservation Tolerance of Sophora tonkinensis Gagnep. Seeds. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091842. [PMID: 37176899 PMCID: PMC10180571 DOI: 10.3390/plants12091842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Sophora tonkinensi is a shrub of the genus Sophora in the family Fabaceae with anti-inflammatory and pain-relieving effects. While the cultivation, chemical makeup, and medicinal properties of S. tonkinensis have been reported, the physiological mechanisms governing its dehydration and cryopreservation tolerance of seeds remain unclear. In this study, we investigated the morphological, physiological, biochemical, and protein expression characteristics of S. tonkinensis seeds subjected to dehydration and cryopreservation techniques via the observation of cell microstructure, determination of antioxidant enzyme activity, and iTRAQ-based proteomic analysis, respectively. The results of the study demonstrated that the seeds possessed a certain level of tolerance to dehydration. The highest germination percentage of 83.0% was observed after 2 h of dehydration (10.1% water content), which was identified as the optimal time point for cryopreservation. However, the germination percentage was reduced to only 30.5% when the water content reached 5.4%, indicating that S. tonkinensis seeds exhibit intermediate storage behavior. Further investigation revealed that during seed dehydration and cryopreservation treatment, liposomes were gradually and highly fused, whereas the activities of ROS scavenging and stress defense were significantly enhanced. During dehydration, the seed tissues formed a protective mechanism of stress resistance based on protein processing in the endoplasmic reticulum and antioxidant system, which was related to the dehydration tolerance. Moreover, only three differentially expressed LEA proteins were identified, and it is speculated that the strengthening of intracellular metabolism and the absence of specific LEA and dehydrins could be crucial factors for the reduced germination percentage after excessive dehydration and cryopreservation.
Collapse
Affiliation(s)
- Yongjian Luo
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou 510640, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Yixin Zhang
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou 510640, China
| | - Yu Jiang
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Zhangyan Dai
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou 510640, China
| | - Qing Li
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou 510640, China
| | - Jiaolin Mou
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Li Xu
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Shiming Deng
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Jitao Li
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Ru Wang
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Jun Liu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou 510640, China
| | - Zhijun Deng
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
13
|
Tomaž Š, Gruden K, Coll A. TGA transcription factors-Structural characteristics as basis for functional variability. FRONTIERS IN PLANT SCIENCE 2022; 13:935819. [PMID: 35958211 PMCID: PMC9360754 DOI: 10.3389/fpls.2022.935819] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
TGA transcription factors are essential regulators of various cellular processes, their activity connected to different hormonal pathways, interacting proteins and regulatory elements. Belonging to the basic region leucine zipper (bZIP) family, TGAs operate by binding to their target DNA sequence as dimers through a conserved bZIP domain. Despite sharing the core DNA-binding sequence, the TGA paralogues exert somewhat different DNA-binding preferences. Sequence variability of their N- and C-terminal protein parts indicates their importance in defining TGA functional specificity through interactions with diverse proteins, affecting their DNA-binding properties. In this review, we provide a short and concise summary on plant TGA transcription factors from a structural point of view, including the relation of their structural characteristics to their functional roles in transcription regulation.
Collapse
Affiliation(s)
- Špela Tomaž
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
14
|
Iwasaki M, Penfield S, Lopez-Molina L. Parental and Environmental Control of Seed Dormancy in Arabidopsis thaliana. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:355-378. [PMID: 35138879 DOI: 10.1146/annurev-arplant-102820-090750] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Seed dormancy-the absence of seed germination under favorable germination conditions-is a plant trait that evolved to enhance seedling survival by avoiding germination under unsuitable environmental conditions. In Arabidopsis, dormancy levels are influenced by the seed coat composition, while the endosperm is essential to repress seed germination of dormant seeds upon their imbibition. Recent research has shown that the mother plant modulates its progeny seed dormancy in response to seasonal temperature changes by changing specific aspects of seed coat and endosperm development. This process involves genomic imprinting by means of epigenetic marks deposited in the seed progeny and regulators previously known to regulate flowering time. This review discusses and summarizes these discoveries and provides an update on our present understanding of the role of DOG1 and abscisic acid, two key contributors to dormancy.
Collapse
Affiliation(s)
- Mayumi Iwasaki
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland;
| | - Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Luis Lopez-Molina
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland;
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Zhang H, Zang J, Huo Y, Zhang Z, Chen H, Chen X, Liu J. Identification of the Potential Genes Regulating Seed Germination Speed in Maize. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040556. [PMID: 35214886 PMCID: PMC8879924 DOI: 10.3390/plants11040556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 05/02/2023]
Abstract
Seed germination is the crucial stage in plant life cycle. Rapid and uniform germination plays an essential role in plant development and grain yield improvement. However, the molecular mechanism underlying seed germination speed is largely unknown due to the complexity of the dynamic process and the difficulty in phenotyping. Here, we conducted a time-series comparative transcriptome study of two elite maize inbred lines, 72-3 and F9721, with striking difference in seed germination speed, and identified a major locus underlying maize germination speed through genome-wide association analysis (GWAS) of an F2 segregation population. Comparative transcriptome study identified 12 h after imbibition (HAI) as the critical stage responsible for the variation in germination speed. The differentially expressed genes (DEGs) between 72-3 and F9721 were mainly enriched in metabolic pathways, biosynthesis of secondary metabolites, oxidoreductase activity pathways, hormone signal transduction, and amino acid transporter activity pathways. GWAS revealed that germination speed was controlled by a major locus on chromosome 1 with the leading SNP as AX-91332814, explaining 10.63% of phenotypic variation. A total of 87 proposed protein-coding genes surrounding the locus were integrated with DEGs. Combined with evidence from the gene expression database and gene synteny with other model species, we finally anchored three genes as the likely candidates regulating germination speed in maize. This study provides clues for the further exploration of genes controlling the maize seed germination speed, thus facilitating breeding of rapid germinated elite lines through marker assistant selection.
Collapse
Affiliation(s)
- Huairen Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (J.Z.); (Y.H.); (Z.Z.); (H.C.)
| | - Jie Zang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (J.Z.); (Y.H.); (Z.Z.); (H.C.)
| | - Yanqing Huo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (J.Z.); (Y.H.); (Z.Z.); (H.C.)
| | - Zhaogui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (J.Z.); (Y.H.); (Z.Z.); (H.C.)
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (J.Z.); (Y.H.); (Z.Z.); (H.C.)
| | - Xunji Chen
- Institute of Biotech & Nuclear, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Correspondence: (X.C.); (J.L.); Tel.: +86-991-4527003 (X.C.); +86-010-64801561 (J.L.)
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (J.Z.); (Y.H.); (Z.Z.); (H.C.)
- Correspondence: (X.C.); (J.L.); Tel.: +86-991-4527003 (X.C.); +86-010-64801561 (J.L.)
| |
Collapse
|
16
|
Molecular Aspects of Seed Development Controlled by Gibberellins and Abscisic Acids. Int J Mol Sci 2022; 23:ijms23031876. [PMID: 35163798 PMCID: PMC8837179 DOI: 10.3390/ijms23031876] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Plants have evolved seeds to permit the survival and dispersion of their lineages by providing nutrition for embryo growth and resistance to unfavorable environmental conditions. Seed formation is a complicated process that can be roughly divided into embryogenesis and the maturation phase, characterized by accumulation of storage compound, acquisition of desiccation tolerance, arrest of growth, and acquisition of dormancy. Concerted regulation of several signaling pathways, including hormonal and metabolic signals and gene networks, is required to accomplish seed formation. Recent studies have identified the major network of genes and hormonal signals in seed development, mainly in maturation. Gibberellin (GA) and abscisic acids (ABA) are recognized as the main hormones that antagonistically regulate seed development and germination. Especially, knowledge of the molecular mechanism of ABA regulation of seed maturation, including regulation of dormancy, accumulation of storage compounds, and desiccation tolerance, has been accumulated. However, the function of ABA and GA during embryogenesis still remains elusive. In this review, we summarize the current understanding of the sophisticated molecular networks of genes and signaling of GA and ABA in the regulation of seed development from embryogenesis to maturation.
Collapse
|
17
|
Ali F, Qanmber G, Li F, Wang Z. Updated role of ABA in seed maturation, dormancy, and germination. J Adv Res 2022; 35:199-214. [PMID: 35003801 PMCID: PMC8721241 DOI: 10.1016/j.jare.2021.03.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/03/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022] Open
Abstract
Functional ABA biosynthesis genes show specific roles for ABA accumulation at different stages of seed development and seedling establishment. De novo ABA biosynthesis during embryogenesis is required for late seed development, maturation, and induction of primary dormancy. ABA plays multiple roles with the key LAFL hub to regulate various downstream signaling genes in seed and seedling development. Key ABA signaling genes ABI3, ABI4, and ABI5 play important multiple functions with various cofactors during seed development such as de-greening, desiccation tolerance, maturation, dormancy, and seed vigor. The crosstalk between ABA and other phytohormones are complicated and important for seed development and seedling establishment.
Background Seed is vital for plant survival and dispersion, however, its development and germination are influenced by various internal and external factors. Abscisic acid (ABA) is one of the most important phytohormones that influence seed development and germination. Until now, impressive progresses in ABA metabolism and signaling pathways during seed development and germination have been achieved. At the molecular level, ABA biosynthesis, degradation, and signaling genes were identified to play important roles in seed development and germination. Additionally, the crosstalk between ABA and other hormones such as gibberellins (GA), ethylene (ET), Brassinolide (BR), and auxin also play critical roles. Although these studies explored some actions and mechanisms by which ABA-related factors regulate seed morphogenesis, dormancy, and germination, the complete network of ABA in seed traits is still unclear. Aim of review Presently, seed faces challenges in survival and viability. Due to the vital positive roles in dormancy induction and maintenance, as well as a vibrant negative role in the seed germination of ABA, there is a need to understand the mechanisms of various ABA regulators that are involved in seed dormancy and germination with the updated knowledge and draw a better network for the underlying mechanisms of the ABA, which would advance the understanding and artificial modification of the seed vigor and longevity regulation. Key scientific concept of review Here, we review functions and mechanisms of ABA in different seed development stages and seed germination, discuss the current progresses especially on the crosstalk between ABA and other hormones and signaling molecules, address novel points and key challenges (e.g., exploring more regulators, more cofactors involved in the crosstalk between ABA and other phytohormones, and visualization of active ABA in the plant), and outline future perspectives for ABA regulating seed associated traits.
Collapse
Affiliation(s)
- Faiza Ali
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Ghulam Qanmber
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
18
|
Lee BH, Wang R, Moberg IM, Reeder SH, Amom P, Tan MH, Amstutz K, Chandna P, Helton A, Andrianova EP, Zhulin IB, Dobritsa AA. A species-specific functional module controls formation of pollen apertures. NATURE PLANTS 2021; 7:966-978. [PMID: 34183783 PMCID: PMC8292223 DOI: 10.1038/s41477-021-00951-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/25/2021] [Indexed: 05/05/2023]
Abstract
Pollen apertures are an interesting model for the formation of specialized plasma-membrane domains. The plant-specific protein INP1 serves as a key aperture factor in such distantly related species as Arabidopsis, rice and maize. Although INP1 orthologues probably play similar roles throughout flowering plants, they show substantial sequence divergence and often cannot substitute for each other, suggesting that INP1 might require species-specific partners. Here, we present a new aperture factor, INP2, which satisfies the criteria for being a species-specific partner for INP1. Both INP proteins display similar structural features, including the plant-specific DOG1 domain, similar patterns of expression and mutant phenotypes, as well as signs of co-evolution. These proteins interact with each other in a species-specific manner and can restore apertures in a heterologous system when both are expressed but not when expressed individually. Our findings suggest that the INP proteins form a species-specific functional module that underlies formation of pollen apertures.
Collapse
Affiliation(s)
- Byung Ha Lee
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, OH, USA
| | - Rui Wang
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, OH, USA
| | - Ingrid M Moberg
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, OH, USA
- Norwegian Science and Technology University, Ålesund, Norway
| | - Sarah H Reeder
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, OH, USA
| | - Prativa Amom
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, OH, USA
| | - Michelle H Tan
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, OH, USA
| | - Katelyn Amstutz
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, OH, USA
| | - Pallavi Chandna
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, OH, USA
| | - Adam Helton
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, OH, USA
| | | | - Igor B Zhulin
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Anna A Dobritsa
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
19
|
Nishiyama E, Nonogaki M, Yamazaki S, Nonogaki H, Ohshima K. Ancient and recent gene duplications as evolutionary drivers of the seed maturation regulators DELAY OF GERMINATION1 family genes. THE NEW PHYTOLOGIST 2021; 230:889-901. [PMID: 33454982 DOI: 10.1111/nph.17201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The DELAY OF GERMINATION1 (DOG1) family genes (DFGs) in Arabidopsis thaliana are involved in seed dormancy, reserve accumulation, and desiccation tolerance. Decoding the molecular evolution of DFGs is key to understanding how these seed programs evolved. This article demonstrates that DFGs have diverged in the four lineages DOG1, DOG1-LIKE4 (DOGL4), DOGL5 and DOGL6, whereas DOGL1, DOGL2 and DOGL3 arose separately within the DOG1 lineage. The systematic DFG nomenclature proposed in this article addresses the current issues of inconsistent DFG annotation and highlights DFG genomic synteny in angiosperms. DFG pseudogenes, or collapsed coding sequences, hidden in the genomes of early-diverging angiosperms are documented here. They suggest ancient birth and loss of DFGs over the course of angiosperm evolution. The proposed models suggest that the origin of DFG diversification dates back to the most recent common ancestor of living angiosperms. The presence of a single form of DFG in nonflowering plants is discussed. Phylogenetic analysis of gymnosperm, lycophyte, and liverwort DFGs and similar genes found in mosses and algae suggests that DFGs diverged from the TGACG motif-binding transcription factor genes before the divergence of the bryophyte lineage.
Collapse
Affiliation(s)
- Eri Nishiyama
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Mariko Nonogaki
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| | - Satoru Yamazaki
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| | - Hiroyuki Nonogaki
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| | - Kazuhiko Ohshima
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| |
Collapse
|
20
|
Rolletschek H, Muszynska A, Borisjuk L. The process of seed maturation is influenced by mechanical constraints. THE NEW PHYTOLOGIST 2021; 229:19-23. [PMID: 32735708 DOI: 10.1111/nph.16815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland-Gatersleben, 06466, Germany
| | - Aleksandra Muszynska
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland-Gatersleben, 06466, Germany
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland-Gatersleben, 06466, Germany
| |
Collapse
|
21
|
Smolikova G, Leonova T, Vashurina N, Frolov A, Medvedev S. Desiccation Tolerance as the Basis of Long-Term Seed Viability. Int J Mol Sci 2020; 22:E101. [PMID: 33374189 PMCID: PMC7795748 DOI: 10.3390/ijms22010101] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Desiccation tolerance appeared as the key adaptation feature of photoautotrophic organisms for survival in terrestrial habitats. During the further evolution, vascular plants developed complex anatomy structures and molecular mechanisms to maintain the hydrated state of cell environment and sustain dehydration. However, the role of the genes encoding the mechanisms behind this adaptive feature of terrestrial plants changed with their evolution. Thus, in higher vascular plants it is restricted to protection of spores, seeds and pollen from dehydration, whereas the mature vegetative stages became sensitive to desiccation. During maturation, orthodox seeds lose up to 95% of water and successfully enter dormancy. This feature allows seeds maintaining their viability even under strongly fluctuating environmental conditions. The mechanisms behind the desiccation tolerance are activated at the late seed maturation stage and are associated with the accumulation of late embryogenesis abundant (LEA) proteins, small heat shock proteins (sHSP), non-reducing oligosaccharides, and antioxidants of different chemical nature. The main regulators of maturation and desiccation tolerance are abscisic acid and protein DOG1, which control the network of transcription factors, represented by LEC1, LEC2, FUS3, ABI3, ABI5, AGL67, PLATZ1, PLATZ2. This network is complemented by epigenetic regulation of gene expression via methylation of DNA, post-translational modifications of histones and chromatin remodeling. These fine regulatory mechanisms allow orthodox seeds maintaining desiccation tolerance during the whole period of germination up to the stage of radicle protrusion. This time point, in which seeds lose desiccation tolerance, is critical for the whole process of seed development.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Tatiana Leonova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia; (T.L.); (N.V.); (A.F.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Natalia Vashurina
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia; (T.L.); (N.V.); (A.F.)
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia; (T.L.); (N.V.); (A.F.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
22
|
de Vries J, Ischebeck T. Ties between Stress and Lipid Droplets Pre-date Seeds. TRENDS IN PLANT SCIENCE 2020; 25:1203-1214. [PMID: 32921563 DOI: 10.1016/j.tplants.2020.07.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 05/12/2023]
Abstract
Seeds were a key evolutionary innovation. These durable structures provide a concerted solution to two challenges on land: dispersal and stress. Lipid droplets (LDs) that act as nutrient storage reservoirs are one of the main cell-biological reasons for seed endurance. Although LDs are key structures in spermatophytes and are especially abundant in seeds, they are found across plants and algae, and increase during stress. Further, the proteins that underpin their form and function often have deep homologs. We propose an evolutionary scenario in which (i) the generation of LDs arose as a mechanism to mediate general drought and desiccation resilience, and (ii) the required protein framework was co-opted by spermatophytes for a seed-specific program.
Collapse
Affiliation(s)
- Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstrasse 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidtstrasse 1, 37077 Goettingen, Germany.
| | - Till Ischebeck
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), 37077 Goettingen, Germany; University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany.
| |
Collapse
|
23
|
Huarte HR, Puglia GD, Prjibelski AD, Raccuia SA. Seed Transcriptome Annotation Reveals Enhanced Expression of Genes Related to ROS Homeostasis and Ethylene Metabolism at Alternating Temperatures in Wild Cardoon. PLANTS 2020; 9:plants9091225. [PMID: 32961840 PMCID: PMC7570316 DOI: 10.3390/plants9091225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/20/2022]
Abstract
The association among environmental cues, ethylene response, ABA signaling, and reactive oxygen species (ROS) homeostasis in the process of seed dormancy release is nowadays well-established in many species. Alternating temperatures are recognized as one of the main environmental signals determining dormancy release, but their underlying mechanisms are scarcely known. Dry after-ripened wild cardoon achenes germinated poorly at a constant temperature of 20, 15, or 10 °C, whereas germination was stimulated by 80% at alternating temperatures of 20/10 °C. Using an RNA-Seq approach, we identified 23,640 and annotated 14,078 gene transcripts expressed in dry achenes and achenes exposed to constant or alternating temperatures. Transcriptional patterns identified in dry condition included seed reserve and response to dehydration stress genes (i.e., HSPs, peroxidases, and LEAs). At a constant temperature, we observed an upregulation of ABA biosynthesis genes (i.e., NCED9), ABA-responsive genes (i.e., ABI5 and TAP), as well as other genes previously related to physiological dormancy and inhibition of germination. However, the alternating temperatures were associated with the upregulation of ethylene metabolism (i.e., ACO1, 4, and ACS10) and signaling (i.e., EXPs) genes and ROS homeostasis regulators genes (i.e., RBOH and CAT). Accordingly, the ethylene production was twice as high at alternating than at constant temperatures. The presence in the germination medium of ethylene or ROS synthesis and signaling inhibitors reduced significantly, but not completely, germination at 20/10 °C. Conversely, the presence of methyl viologen and salicylhydroxamic acid (SHAM), a peroxidase inhibitor, partially increased germination at constant temperature. Taken together, the present study provides the first insights into the gene expression patterns and physiological response associated with dormancy release at alternating temperatures in wild cardoon (Cynara cardunculus var. sylvestris).
Collapse
Affiliation(s)
- Hector R. Huarte
- CONICET/Faculty of Agricultural Sciences, National University of Lomas de Zamora, 1836 Llavallol, Argentina;
| | - Giuseppe. D. Puglia
- Institute for Agricultural and Forestry Systems in the Mediterranean (ISAFoM), Department of Biology, Agriculture and Food Science (DiSBA), National Research Council (CNR), Via Empedocle, 58, 95128 Catania, Italy;
- Correspondence: ; Tel.: +39-0956139914
| | - Andrey D. Prjibelski
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, 199004 St. Petersburg, Russia;
| | - Salvatore A. Raccuia
- Institute for Agricultural and Forestry Systems in the Mediterranean (ISAFoM), Department of Biology, Agriculture and Food Science (DiSBA), National Research Council (CNR), Via Empedocle, 58, 95128 Catania, Italy;
| |
Collapse
|
24
|
Yang L, Liu S, Lin R. The role of light in regulating seed dormancy and germination. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1310-1326. [PMID: 32729981 DOI: 10.1111/jipb.13001] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/29/2020] [Indexed: 05/22/2023]
Abstract
Seed dormancy is an adaptive trait in plants. Breaking seed dormancy determines the timing of germination and is, thereby essential for ensuring plant survival and agricultural production. Seed dormancy and the subsequent germination are controlled by both internal cues (mainly hormones) and environmental signals. In the past few years, the roles of plant hormones in regulating seed dormancy and germination have been uncovered. However, we are only beginning to understand how light signaling pathways modulate seed dormancy and interaction with endogenous hormones. In this review, we summarize current views of the molecular mechanisms by which light controls the induction, maintenance and release of seed dormancy, as well as seed germination, by regulating hormone metabolism and signaling pathways.
Collapse
Affiliation(s)
- Liwen Yang
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Shuangrong Liu
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
25
|
Nonogaki H, Nishiyama E, Ohshima K, Nonogaki M. Ancient Memories of Seeds: ABA-Dependent Growth Arrest and Reserve Accumulation. Trends Genet 2020; 36:464-473. [DOI: 10.1016/j.tig.2020.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022]
|
26
|
Carrillo-Barral N, Rodríguez-Gacio MDC, Matilla AJ. Delay of Germination-1 (DOG1): A Key to Understanding Seed Dormancy. PLANTS 2020; 9:plants9040480. [PMID: 32283717 PMCID: PMC7238029 DOI: 10.3390/plants9040480] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/19/2023]
Abstract
DELAY OF GERMINATION-1 (DOG1), is a master regulator of primary dormancy (PD) that acts in concert with ABA to delay germination. The ABA and DOG1 signaling pathways converge since DOG1 requires protein phosphatase 2C (PP2C) to control PD. DOG1 enhances ABA signaling through its binding to PP2C ABA HYPERSENSITIVE GERMINATION (AHG1/AHG3). DOG1 suppresses the AHG1 action to enhance ABA sensitivity and impose PD. To carry out this suppression, the formation of DOG1-heme complex is essential. The binding of DOG1-AHG1 to DOG1-Heme is an independent processes but essential for DOG1 function. The quantity of active DOG1 in mature and viable seeds is correlated with the extent of PD. Thus, dog1 mutant seeds, which have scarce endogenous ABA and high gibberellin (GAs) content, exhibit a non-dormancy phenotype. Despite being studied extensively in recent years, little is known about the molecular mechanism underlying the transcriptional regulation of DOG1. However, it is well-known that the physiological function of DOG1 is tightly regulated by a complex array of transformations that include alternative splicing, alternative polyadenylation, histone modifications, and a cis-acting antisense non-coding transcript (asDOG1). The DOG1 becomes modified (i.e., inactivated) during seed after-ripening (AR), and its levels in viable seeds do not correlate with germination potential. Interestingly, it was recently found that the transcription factor (TF) bZIP67 binds to the DOG1 promoter. This is required to activate DOG1 expression leading to enhanced seed dormancy. On the other hand, seed development under low-temperature conditions triggers DOG1 expression by increasing the expression and abundance of bZIP67. Together, current data indicate that DOG1 function is not strictly limited to PD process, but that it is also required for other facets of seed maturation, in part by also interfering with the ethylene signaling components. Otherwise, since DOG1 also affects other processes such us flowering and drought tolerance, the approaches to understanding its mechanism of action and control are, at this time, still inconclusive.
Collapse
Affiliation(s)
- Néstor Carrillo-Barral
- Departamento de Biología, Facultad de Ciencias, Universidad de A Coruña, Campus Zapateira, 15071-A Coruña, Spain;
| | - María del Carmen Rodríguez-Gacio
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Angel Jesús Matilla
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Correspondence: ; Tel.: +34-981-563-100
| |
Collapse
|
27
|
Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:25-54. [PMID: 31850654 DOI: 10.1111/jipb.12899] [Citation(s) in RCA: 776] [Impact Index Per Article: 155.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) is an important phytohormone regulating plant growth, development, and stress responses. It has an essential role in multiple physiological processes of plants, such as stomatal closure, cuticular wax accumulation, leaf senescence, bud dormancy, seed germination, osmotic regulation, and growth inhibition among many others. Abscisic acid controls downstream responses to abiotic and biotic environmental changes through both transcriptional and posttranscriptional mechanisms. During the past 20 years, ABA biosynthesis and many of its signaling pathways have been well characterized. Here we review the dynamics of ABA metabolic pools and signaling that affects many of its physiological functions.
Collapse
Affiliation(s)
- Kong Chen
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo-Jun Li
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| |
Collapse
|
28
|
Dai X, Wang Y, Chen Y, Li H, Xu S, Yang T, Zhang X, Su X, Xia Z. Overexpression of NtDOG1L-T Improves Heat Stress Tolerance by Modulation of Antioxidant Capability and Defense-, Heat-, and ABA-Related Gene Expression in Tobacco. FRONTIERS IN PLANT SCIENCE 2020; 11:568489. [PMID: 33193495 PMCID: PMC7661468 DOI: 10.3389/fpls.2020.568489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/08/2020] [Indexed: 05/09/2023]
Abstract
Drought and heat stresses are two major environmental stress factors that severely threaten crop growth and productivity. Plant delay of germination 1-like (DOG1L) family genes play important roles in various developmental processes and stress responses. In our previous study, a tobacco DOG1L gene (NtDOG1L-T) was found to regulate seedling growth and drought response. Unfortunately, the role of DOG1L genes in heat stress response is yet to be studied. Here, we present data supporting the role of DOG1L genes in heat stress and possible underlying molecular mechanisms. Transcript levels of NtDOG1L-T were rapidly induced by heat or abscisic acid (ABA) treatment. Furthermore, NtDOG1L-T promoter activity was markedly activated by ABA or heat stress, as revealed by histochemical staining in transgenic tobacco seedlings. Overexpression of NtDOG1L-T in transgenic lines improved heat stress tolerance. The NtDOG1L-T-transgenic plants exhibited lower levels of reactive oxygen species (ROS) and lipid peroxidation but higher antioxidant enzyme activities in response to heat stress. Furthermore, transcript abundance of some defense-, heat-, and ABA-responsive marker genes was significantly upregulated, as shown by reverse transcription quantitative PCR (qPCR) in these transgenic plants. In conclusion, NtDOG1L-T positively regulates heat stress tolerance possibly by modulation of antioxidant capability and defense-, heat-, and ABA-related gene expression in tobacco. This study may provide valuable resource for the potential exploitation of DOG1Ls in genetic improvement of heat stress tolerance in crops.
Collapse
Affiliation(s)
- Xiaoyan Dai
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Yingfeng Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | | | | | - Shixiao Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Tiezhao Yang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Xiaoquan Zhang,
| | - Xinhong Su
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
- Sanmenxia Tobacco Company, Sanmenxia, China
- Xinhong Su,
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, China
- Zongliang Xia,
| |
Collapse
|
29
|
Maron L. Seeding light into the regulation and evolution of seed development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:5-6. [PMID: 31557378 DOI: 10.1111/tpj.14525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|