1
|
Zhou B, Li J, Wu S, Zhang H, Luo Y, Chen J, Chen G. USP39/SMC4 promotes hepatoma cell proliferation and 5-FU resistance. Sci Rep 2025; 15:8869. [PMID: 40087331 PMCID: PMC11909175 DOI: 10.1038/s41598-025-93029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality, characterized by a high rate of postoperative recurrence and poor long-term survival outcomes. Structural maintenance of chromosome 4 (SMC4) is frequently overexpressed in various types of cancer and plays a pivotal role in tumor cell growth, migration, and invasion. Bioinformatics analysis has revealed a significant correlation between the tumor-node metastasis (TNM) stage (P < 0.01) and SMC4 expression (P < 0.05), and SMC4 was associated with poor prognosis in HCC. Furthermore, SMC4 was identified as an independent prognostic factor for HCC. Ubiquitin-specific peptidase 39 (USP39) was found whether the regulation was observed to affect protein synthesis or stability through bioinformatics analysis and immunoprecipitation. The expression levels and cellular localization of SMC4 and USP39 in hepatoma cells were evaluated using quantitative real-time PCR (qPCR), western blotting, and immunohistochemistry (IHC), all of which indicated significantly elevated expression of USP39 and SMC4 in HCC. The roles of the SMC4/USP39 were further investigated through several assays, including the 3-(4,5-Dimethylthiazol-2-yl) -2,5- diphenyltetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, and wound healing assay. The results demonstrated that USP39/SMC4 plays a crucial role in enhancing the viability and proliferation of HepG2 cells. Additionally, bioinformatics analysis identified ZNF207 and TIAL1 as potential target proteins of SMC4. Drug-resistant hepatoma cell lines were established, and both MTT and EdU assays were performed to assess cell viability and proliferation. The results demonstrated that HepG2/5-FU cells regained their sensitivity to 5-FU following the knockdown of SMC4. Additionally, the knockdown of either TIAL1 or ZNF207 also restored 5-FU sensitivity in HepG2/5-FU cells, effectively inhibiting cell viability and proliferation. Our study underscores the significant role of the USP39/SMC4 in HCC development and suggests that SMC4 may contribute to the regulation of drug resistance in hepatoma cell lines, potentially through interactions with TIAL1 and ZNF207.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, No. 10, Changjiang Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Jie Li
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, No. 10, Changjiang Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Shuai Wu
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, No. 10, Changjiang Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Haomiao Zhang
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, No. 10, Changjiang Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Yuanbo Luo
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, No. 10, Changjiang Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Jingxiang Chen
- Department of Hepatobiliary Surgery, The Ninth People's Hospital of Chongqing, No. 1 Yueya Village, Beibei District, Chongqing, 400700, China.
| | - Geng Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, No. 10, Changjiang Road, Daping, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
2
|
Zhang N, Liang Y, Meng YQ, Li YC, Lu X, Li L, Ye T. Analysis and identification of potential biomarkers for dysfunctional uterine bleeding. J Reprod Immunol 2025; 168:104427. [PMID: 39862473 DOI: 10.1016/j.jri.2025.104427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025]
Abstract
Clinical evidence increasingly suggests that traditional treatments for dysfunctional uterine bleeding (DUB) have limited success. In this study, blood samples from 10 DUB patients and 10 healthy controls were collected for transcriptome sequencing. Then, the differentially expressed genes (DEGs) were screened and crossed with the DUB-related module genes to obtain the target genes. These target genes were analyzed for functional enrichment. Further, the biomarkers were screened by protein-protein interaction (PPI) analysis and analyzed by the gene set enrichment analysis (GSEA) and ingenuity pathway analysis (IPA). To explore the pathogenesis of DUB, immune microenvironment analyses were also performed. Potential drugs targeting these biomarkers were predicted for clinical treatment. The expression of these biomarkers was validated using quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that, a total of 754 target genes were found to be related to cell proliferation and senescence. Five biomarkers-CENPE, KIF11, PIK3R1, SMC3, and SMC4-were identified, all of which were down-regulated in the DUB group, and most of these findings were confirmed by qRT-PCR. Notably, CENPE expression showed a negative association with activated NK cells and a positive association with resting NK cells. In addition, 44 potential drugs were predicted for DUB treatment. In conclusion, five DUB biomarkers were identified, enhancing understanding of gene regulation in DUB and providing a theoretical foundation for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- N Zhang
- Department of Pharmacy, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 50001, China
| | - Y Liang
- Department of Gynaecology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Y Q Meng
- Department of Gynaecology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Y C Li
- Department of Pharmacy, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 50001, China
| | - X Lu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - L Li
- Department of Pharmacy, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 50001, China.
| | - T Ye
- Department of Chinese Medicine Rehabilitation, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 50001, China.
| |
Collapse
|
3
|
Sun X, He L, Liu H, Thorne RF, Zeng T, Liu L, Zhang B, He M, Huang Y, Li M, Gao E, Ma M, Cheng C, Meng F, Lang C, Li H, Xiong W, Pan S, Ren D, Dang B, Yang Y, Wu M, Liu L. The diapause-like colorectal cancer cells induced by SMC4 attenuation are characterized by low proliferation and chemotherapy insensitivity. Cell Metab 2023; 35:1563-1579.e8. [PMID: 37543034 DOI: 10.1016/j.cmet.2023.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/12/2023] [Accepted: 07/12/2023] [Indexed: 08/07/2023]
Abstract
In response to adverse environmental conditions, embryonic development may reversibly cease, a process termed diapause. Recent reports connect this phenomenon with the non-genetic responses of tumors to chemotherapy, but the mechanisms involved are poorly understood. Here, we establish a multifarious role for SMC4 in the switching of colorectal cancer cells to a diapause-like state. SMC4 attenuation promotes the expression of three investment phase glycolysis enzymes increasing lactate production while also suppressing PGAM1. Resultant high lactate levels increase ABC transporter expression via histone lactylation, rendering tumor cells insensitive to chemotherapy. SMC4 acts as co-activator of PGAM1 transcription, and the coordinate loss of SMC4 and PGAM1 affects F-actin assembly, inducing cytokinesis failure and polyploidy, thereby inhibiting cell proliferation. These insights into the mechanisms underlying non-genetic chemotherapy resistance may have significant implications for the field, advancing our understanding of aerobic glycolysis functions in tumor and potentially informing future therapeutic strategies.
Collapse
Affiliation(s)
- Xuedan Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Lifang He
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230001 Anhui, China
| | - Hong Liu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China
| | - Rick Francis Thorne
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou, 450003 Henan, China
| | - Taofei Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Liu Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Bo Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Miao He
- Anhui Huaheng Biotechnology Co., Ltd., Hefei, 230001 Anhui, China
| | - Yabin Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Mingyue Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Enyi Gao
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan, China
| | - Mengyao Ma
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou, 450003 Henan, China
| | - Cheng Cheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Fanzheng Meng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Chuandong Lang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Hairui Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Wanxiang Xiong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Shixiang Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Delong Ren
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China
| | - Bingyi Dang
- Henan Wild Animals Rescue Center, Henan Forestry Administration, Zhengzhou, 450040 Henan, China
| | - Yi Yang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Mian Wu
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou, 450003 Henan, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001 Anhui, China.
| |
Collapse
|
4
|
Zhang Q, Dai X, Wang H, Wang F, Tang D, Jiang C, Zhang X, Guo W, Lei Y, Ma C, Zhang H, Li P, Zhao Y, Wang Z. Transcriptomic Profiling Provides Molecular Insights Into Hydrogen Peroxide-Enhanced Arabidopsis Growth and Its Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:866063. [PMID: 35463436 PMCID: PMC9019583 DOI: 10.3389/fpls.2022.866063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/28/2022] [Indexed: 05/05/2023]
Abstract
Salt stress is an important environmental factor limiting plant growth and crop production. Plant adaptation to salt stress can be improved by chemical pretreatment. This study aims to identify whether hydrogen peroxide (H2O2) pretreatment of seedlings affects the stress tolerance of Arabidopsis thaliana seedlings. The results show that pretreatment with H2O2 at appropriate concentrations enhances the salt tolerance ability of Arabidopsis seedlings, as revealed by lower Na+ levels, greater K+ levels, and improved K+/Na+ ratios in leaves. Furthermore, H2O2 pretreatment improves the membrane properties by reducing the relative membrane permeability (RMP) and malonaldehyde (MDA) content in addition to improving the activities of antioxidant enzymes, including superoxide dismutase, and glutathione peroxidase. Our transcription data show that exogenous H2O2 pretreatment leads to the induced expression of cell cycle, redox regulation, and cell wall organization-related genes in Arabidopsis, which may accelerate cell proliferation, enhance tolerance to osmotic stress, maintain the redox balance, and remodel the cell walls of plants in subsequent high-salt environments.
Collapse
Affiliation(s)
- Qikun Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiuru Dai
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai’an, China
| | - Huanpeng Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Fanhua Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Dongxue Tang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chunyun Jiang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
- Linyi Center for Disease Control and Prevention, Linyi, China
| | - Xiaoyan Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenjing Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuanyuan Lei
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Pinghua Li
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai’an, China
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zenglan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
5
|
Liffner B, Absalon S. Expansion Microscopy Reveals Plasmodium falciparum Blood-Stage Parasites Undergo Anaphase with A Chromatin Bridge in the Absence of Mini-Chromosome Maintenance Complex Binding Protein. Microorganisms 2021; 9:2306. [PMID: 34835432 PMCID: PMC8620465 DOI: 10.3390/microorganisms9112306] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
The malaria parasite Plasmodium falciparum undergoes closed mitosis, which occurs within an intact nuclear envelope, and differs significantly from its human host. Mitosis is underpinned by the dynamics of microtubules and the nuclear envelope. To date, our ability to study P. falciparum mitosis by microscopy has been hindered by the small size of the P. falciparum nuclei. Ultrastructure expansion microscopy (U-ExM) has recently been developed for P. falciparum, allowing the visualization of mitosis at the individual nucleus level. Using U-ExM, three intranuclear microtubule structures are observed: hemispindles, mitotic spindles, and interpolar spindles. A previous study demonstrated that the mini-chromosome maintenance complex binding-protein (MCMBP) depletion caused abnormal nuclear morphology and microtubule defects. To investigate the role of microtubules following MCMBP depletion and study the nuclear envelope in these parasites, we developed the first nuclear stain enabled by U-ExM in P. falciparum. MCMBP-deficient parasites show aberrant hemispindles and mitotic spindles. Moreover, anaphase chromatin bridges and individual nuclei containing multiple microtubule structures were observed following MCMBP knockdown. Collectively, this study refines our understanding of MCMBP-deficient parasites and highlights the utility of U-ExM coupled with a nuclear envelope stain for studying mitosis in P. falciparum.
Collapse
Affiliation(s)
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| |
Collapse
|
6
|
Li X, Song G, Zhao Y, Ren J, Li Q, Cui Z. Functions of SMC2 in the Development of Zebrafish Liver. Biomedicines 2021; 9:biomedicines9091240. [PMID: 34572426 PMCID: PMC8465584 DOI: 10.3390/biomedicines9091240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022] Open
Abstract
SMC2 (structural maintenance of chromosomes 2) is the core subunit of condensins, which play a central role in chromosome organization and segregation. However, the functions of SMC2 in embryonic development remain poorly understood, due to the embryonic lethality of homozygous SMC2−/− mice. Herein, we explored the roles of SMC2 in the liver development of zebrafish. The depletion of SMC2, with the CRISPR/Cas9-dependent gene knockout approach, led to a small liver phenotype. The specification of hepatoblasts was unaffected. Mechanistically, extensive apoptosis occurred in the liver of SMC2 mutants, which was mainly associated with the activation of the p53-dependent apoptotic pathway. Moreover, an aberrant activation of a series of apoptotic pathways in SMC2 mutants was involved in the defective chromosome segregation and subsequent DNA damage. Therefore, our findings demonstrate that SMC2 is necessary for zebrafish liver development.
Collapse
Affiliation(s)
- Xixi Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.L.); (J.R.)
| | - Guili Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.S.); (Y.Z.); (Q.L.)
| | - Yasong Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.S.); (Y.Z.); (Q.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Ren
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.L.); (J.R.)
| | - Qing Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.S.); (Y.Z.); (Q.L.)
| | - Zongbin Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.L.); (J.R.)
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.S.); (Y.Z.); (Q.L.)
- Correspondence: ; Tel.: +86-020-87137656
| |
Collapse
|
7
|
Yuxi Z, Yanchao Y, Zejun L, Tao Z, Feng L, Chunying L, Shupeng G. GA 3 is superior to GA 4 in promoting bud endodormancy release in tree peony (Paeonia suffruticosa) and their potential working mechanism. BMC PLANT BIOLOGY 2021; 21:323. [PMID: 34225663 PMCID: PMC8256580 DOI: 10.1186/s12870-021-03106-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/16/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Sufficient low temperature accumulation is the key strategy to break bud dormancy and promote subsequent flowering in tree peony anti-season culturing production. Exogenous gibberellins (GAs) could partially replace chilling to accelerate dormancy release, and different kinds of GAs showed inconsistent effects in various plants. To understand the effects of exogenous GA3 and GA4 on dormancy release and subsequent growth, the morphological changes were observed after exogenous GAs applications, the differentially expressed genes (DEGs) were identified, and the contents of endogenous phytohormones, starch and sugar were measured, respectively. RESULTS Morphological observation and photosynthesis measurements indicated that both GA3 and GA4 applications accelerated bud dormancy release, but GA3 feeding induced faster bud burst, higher shoot and more flowers per plant. Full-length transcriptome of dormant bud was used as the reference genome. Totally 124 110 459, 124 015 148 and 126 239 836 reads by illumina transcriptome sequencing were obtained in mock, GA3 and GA4 groups, respectively. Compared with the mock, there were 879 DEGs and 2 595 DEGs in GA3 and GA4 group, 1 179 DEGs in GA3 vs GA4, and 849 DEGs were common in these comparison groups. The significant enrichment KEGG pathways of 849 DEGs highlighted plant hormone signal transduction, starch and sucrose metabolism, cell cycle, DNA replication, etc. Interestingly, the contents of endogenous GA1, GA3, GA4, GA7 and IAA significantly increased, ABA decreased after GA3 and GA4 treatments by LC-MS/MS. Additionally, the soluble glucose, fructose and trehalose increased after exogenous GAs applications. Compared to GA4 treatment, GA3 induced higher GA1, GA3 and IAA level, more starch degradation to generate more monosaccharide for use, and promoted cell cycle and photosynthesis. Higher expression levels of dormancy-related genes, TFL, FT, EBB1, EBB3 and CYCD, and lower of SVP by GA3 treatment implied more efficiency of GA3. CONCLUSIONS Exogenous GA3 and GA4 significantly accelerated bud dormancy release and subsequent growth by increasing the contents of endogenous bioactive GAs, IAA, and soluble glucose such as fructose and trehalose, and accelerated cell cycle process, accompanied by decreasing ABA contents. GA3 was superior to GA4 in tree peony forcing culture, which might because tree peony was more sensitive to GA3 than GA4, and GA3 had a more effective ability to induce cell division and starch hydrolysis. These results provided the value data for understanding the mechanism of dormancy release in tree peony.
Collapse
Affiliation(s)
- Zhang Yuxi
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Yuan Yanchao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Liu Zejun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Zhang Tao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Li Feng
- College of Landscape Architecture and Forestry, Qingdao Agriculture University, Qingdao, 266109 Shandong China
| | - Liu Chunying
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Gai Shupeng
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| |
Collapse
|
8
|
Li Y, Qi D, Zhu B, Ye X. Analysis of m6A RNA Methylation-Related Genes in Liver Hepatocellular Carcinoma and Their Correlation with Survival. Int J Mol Sci 2021; 22:ijms22031474. [PMID: 33540684 PMCID: PMC7867233 DOI: 10.3390/ijms22031474] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
N6-methyladenosine (m6A) modification on RNA plays an important role in tumorigenesis and metastasis, which could change gene expression and even function at multiple levels such as RNA splicing, stability, translocation, and translation. In this study, we aim to conduct a comprehensive analysis on m6A RNA methylation-related genes, including m6A RNA methylation regulators and m6A RNA methylation-modified genes, in liver hepatocellular carcinoma, and their relationship with survival and clinical features. Data, which consist of the expression of widely reported m6A RNA methylation-related genes in liver hepatocellular carcinoma from The Cancer Genome Atlas (TCGA), were analyzed by one-way ANOVA, Univariate Cox regression, a protein–protein interaction network, gene enrichment analysis, feature screening, a risk prognostic model, correlation analysis, and consensus clustering analysis. In total, 405 of the m6A RNA methylation-related genes were found based on one-way ANOVA. Among them, DNA topoisomerase 2-alpha (TOP2A), exodeoxyribonuclease 1 (EXO1), ser-ine/threonine-protein kinase Nek2 (NEK2), baculoviral IAP repeat-containing protein 5 (BIRC5), hyaluronan mediated motility receptor (HMMR), structural maintenance of chromosomes protein 4 (SMC4), bloom syndrome protein (BLM), ca-sein kinase I isoform epsilon (CSNK1E), cytoskeleton-associated protein 5 (CKAP5), and inner centromere protein (INCENP), which were m6A RNA methylation-modified genes, were recognized as the hub genes based on the protein–protein interaction analysis. The risk prognostic model showed that gender, AJCC stage, grade, T, and N were significantly different between the subgroup with the high and low risk groups. The AUC, the evaluation parameter of the prediction model which was built by RandomForest, was 0.7. Furthermore, two subgroups were divided by consensus clustering analysis, in which stage, grade, and T differed. We identified the important genes expressed significantly among two clusters, including uridine-cytidine kinase 2 (UCK2), filensin (BFSP1), tubulin-specific chaperone D (TBCD), histone-lysine N-methyltransferase PRDM16 (PRDM16), phosphorylase b ki-nase regulatory subunit alpha (PHKA2), serine/threonine-protein kinase BRSK2 (BRSK2), Arf-GAP with coiled-coil (ACAP3), general transcription factor 3C polypep-tide 2 (GTF3C2), and guanine nucleotide exchange factor MSS4 (RABIF). In our study, the m6A RNA methylation-related genes in liver hepatocellular carcinoma were analyzed systematically, including the expression, interaction, function, and prognostic values, which provided an important theoretical basis for m6A RNA methylation in liver cancer. The nine important m6A-related genes could be prognostic markers in the survival time of patients.
Collapse
Affiliation(s)
- Yong Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.L.); (B.Z.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Dandan Qi
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Baoli Zhu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.L.); (B.Z.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Xin Ye
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.L.); (B.Z.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China;
- Correspondence: ; Tel.: +86-010-6480-7513
| |
Collapse
|