1
|
Helia O, Matúšová B, Havlová K, Hýsková A, Lyčka M, Beying N, Puchta H, Fajkus J, Fojtová M. Chromosome engineering points to the cis-acting mechanism of chromosome arm-specific telomere length setting and robustness of plant phenotype, chromatin structure and gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70024. [PMID: 39962352 PMCID: PMC11832813 DOI: 10.1111/tpj.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/20/2025]
Abstract
The study investigates the impact of targeted chromosome engineering on telomere dynamics, chromatin structure, gene expression, and phenotypic stability in Arabidopsis thaliana. Using precise CRISPR/Cas-based engineering, reciprocal translocations of chromosome arms were introduced between non-homologous chromosomes. The subsequent homozygous generations of plants were assessed for phenotype, transcriptomic changes and chromatin modifications near translocation breakpoints, and telomere length maintenance. Phenotypically, translocated lines were indistinguishable from wild-type plants, as confirmed through morphological assessments and principal component analysis. Gene expression profiling detected minimal differential expression, with affected genes dispersed across the genome, indicating negligible transcriptional impact. Similarly, ChIPseq analysis showed no substantial alterations in the enrichment of key histone marks (H3K27me3, H3K4me1, H3K56ac) near junction sites or across the genome. Finally, bulk and arm-specific telomere lengths remained stable across multiple generations, except for minor variations in one translocation line. These findings highlight the remarkable genomic and phenotypic robustness of A. thaliana despite large-scale chromosomal rearrangements. The study offers insights into the cis-acting mechanisms underlying chromosome arm-specific telomere length setting and establishes the feasibility of chromosome engineering for studies of plant genome evolution and crop improvement strategies.
Collapse
Affiliation(s)
- Ondřej Helia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
| | - Barbora Matúšová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
| | - Kateřina Havlová
- Department of Cell Biology and Radiobiology, Institute of BiophysicsAcademy of Sciences of the Czech RepublicBrnoCZ‐61200Czech Republic
| | - Anna Hýsková
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
| | - Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
| | - Natalja Beying
- Joseph Gottlieb Kölreuter Institute for Plant Sciences – Molecular BiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
| | - Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences – Molecular BiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
- Department of Cell Biology and Radiobiology, Institute of BiophysicsAcademy of Sciences of the Czech RepublicBrnoCZ‐61200Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
| |
Collapse
|
2
|
Kim T, Lee JH, Seo HH, Moh SH, Choi SS, Kim J, Kim SG. Genome assembly of Hibiscus sabdariffa L. provides insights into metabolisms of medicinal natural products. G3 (BETHESDA, MD.) 2024; 14:jkae134. [PMID: 38995814 PMCID: PMC11304979 DOI: 10.1093/g3journal/jkae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/09/2024] [Indexed: 07/14/2024]
Abstract
Hibiscus sabdariffa L. is a widely cultivated herbaceous plant with diverse applications in food, tea, fiber, and medicine. In this study, we present a high-quality genome assembly of H. sabdariffa using more than 33 Gb of high-fidelity (HiFi) long-read sequencing data, corresponding to ∼20× depth of the genome. We obtained 3 genome assemblies of H. sabdariffa: 1 primary and 2 partially haplotype-resolved genome assemblies. These genome assemblies exhibit N50 contig lengths of 26.25, 11.96, and 14.50 Mb, with genome coverage of 141.3, 86.0, and 88.6%, respectively. We also utilized 26 Gb of total RNA sequencing data to predict 154k, 79k, and 87k genes in the respective assemblies. The completeness of the primary genome assembly and its predicted genes was confirmed by the benchmarking universal single-copy ortholog analysis with a completeness rate of 99.3%. Based on our high-quality genomic resources, we constructed genetic networks for phenylpropanoid and flavonoid metabolism and identified candidate biosynthetic genes, which are responsible for producing key intermediates of roselle-specific medicinal natural products. Our comprehensive genomic and functional analysis opens avenues for further exploration and application of valuable natural products in H. sabdariffa.
Collapse
Affiliation(s)
- Taein Kim
- Department of Biological Sciences, KAIST, Yuseong-gu, 34141 Daejeon, Republic of Korea
| | - Jeong Hun Lee
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, 21990 Incheon, Republic of Korea
| | - Hyo Hyun Seo
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, 21990 Incheon, Republic of Korea
| | - Sang Hyun Moh
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, 21990 Incheon, Republic of Korea
| | - Sung Soo Choi
- Daesang Holdings, Jung-gu, 04513 Seoul, Republic of Korea
| | - Jun Kim
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Yuseong-gu, 34134 Daejeon, Republic of Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, KAIST, Yuseong-gu, 34141 Daejeon, Republic of Korea
| |
Collapse
|
3
|
Závodník M, Pavlištová V, Machelová A, Lyčka M, Mozgová I, Caklová K, Dvořáčková M, Fajkus J. KU70 and CAF-1 in Arabidopsis: Divergent roles in rDNA stability and telomere homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1922-1936. [PMID: 38493352 DOI: 10.1111/tpj.16718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
Deficiency in chromatin assembly factor-1 (CAF-1) in plants through dysfunction of its components, FASCIATA1 and 2 (FAS1, FAS2), leads to the specific and progressive loss of rDNA and telomere repeats in plants. This loss is attributed to defective repair mechanisms for the increased DNA breaks encountered during replication, a consequence of impaired replication-dependent chromatin assembly. In this study, we explore the role of KU70 in these processes. Our findings reveal that, although the rDNA copy number is reduced in ku70 mutants when compared with wild-type plants, it is not markedly affected by diverse KU70 status in fas1 mutants. This is consistent with our previous characterisation of rDNA loss in fas mutants as a consequence part of the single-strand annealing pathway of homology-dependent repair. In stark contrast to rDNA, KU70 dysfunction fully suppresses the loss of telomeres in fas1 plants and converts telomeres to their elongated and heterogeneous state typical for ku70 plants. We conclude that the alternative telomere lengthening pathway, known to be activated in the absence of KU70, overrides progressive telomere loss due to CAF-1 dysfunction.
Collapse
Affiliation(s)
- Michal Závodník
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, CZ-61265, Czech Republic
| | - Veronika Pavlištová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| | - Adéla Machelová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| | - Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| | - Iva Mozgová
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Karolína Caklová
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, CZ-61265, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| |
Collapse
|
4
|
Bozděchová L, Rudolfová A, Hanáková K, Fojtová M, Fajkus J. Optimizing ChIRP-MS for Comprehensive Profiling of RNA-Protein Interactions in Arabidopsis thaliana: A Telomerase RNA Case Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:850. [PMID: 38592918 PMCID: PMC10975786 DOI: 10.3390/plants13060850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
The current repertoire of methods available for studying RNA-protein interactions in plants is somewhat limited. Employing an RNA-centric approach, particularly with less abundant RNAs, presents various challenges. Many of the existing methods were initially designed for different model systems, with their application in plants receiving limited attention thus far. The Comprehensive Identification of RNA-Binding Proteins by Mass Spectrometry (ChIRP-MS) technique, initially developed for mammalian cells, has been adapted in this study for application in Arabidopsis thaliana. The procedures have been meticulously modified and optimized for telomerase RNA, a notable example of a low-abundance RNA recently identified. Following these optimization steps, ChIRP-MS can serve as an effective screening method for identifying candidate proteins interacting with any target RNA of interest.
Collapse
Affiliation(s)
- Lucie Bozděchová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (L.B.); (K.H.); (M.F.)
| | - Anna Rudolfová
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
| | - Kateřina Hanáková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (L.B.); (K.H.); (M.F.)
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (L.B.); (K.H.); (M.F.)
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (L.B.); (K.H.); (M.F.)
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| |
Collapse
|
5
|
Závodník M, Fajkus P, Franek M, Kopecký D, Garcia S, Dodsworth S, Orejuela A, Kilar A, Ptáček J, Mátl M, Hýsková A, Fajkus J, Peška V. Telomerase RNA gene paralogs in plants - the usual pathway to unusual telomeres. THE NEW PHYTOLOGIST 2023; 239:2353-2366. [PMID: 37391893 DOI: 10.1111/nph.19110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023]
Abstract
Telomerase, telomeric DNA and associated proteins together represent a complex, finely tuned and functionally conserved mechanism that ensures genome integrity by protecting and maintaining chromosome ends. Changes in its components can threaten an organism's viability. Nevertheless, molecular innovation in telomere maintenance has occurred multiple times during eukaryote evolution, giving rise to species/taxa with unusual telomeric DNA sequences, telomerase components or telomerase-independent telomere maintenance. The central component of telomere maintenance machinery is telomerase RNA (TR) as it templates telomere DNA synthesis, its mutation can change telomere DNA and disrupt its recognition by telomere proteins, thereby leading to collapse of their end-protective and telomerase recruitment functions. Using a combination of bioinformatic and experimental approaches, we examine a plausible scenario of evolutionary changes in TR underlying telomere transitions. We identified plants harbouring multiple TR paralogs whose template regions could support the synthesis of diverse telomeres. In our hypothesis, formation of unusual telomeres is associated with the occurrence of TR paralogs that can accumulate mutations, and through their functional redundancy, allow for the adaptive evolution of the other telomere components. Experimental analyses of telomeres in the examined plants demonstrate evolutionary telomere transitions corresponding to TR paralogs with diverse template regions.
Collapse
Affiliation(s)
- Michal Závodník
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno, CZ-62500, Czech Republic
| | - Petr Fajkus
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno, CZ-62500, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, CZ-61265, Czech Republic
| | - Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno, CZ-62500, Czech Republic
| | - David Kopecký
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, CZ-779 00, Czech Republic
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC), Passeig del Migdia S/N, Barcelona, 08038, Catalonia, Spain
| | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry I St., Portsmouth, PO1 2DY, UK
| | - Andrés Orejuela
- Grupo de Investigación en Recursos Naturales Amazónicos - GRAM, Facultad de Ingenierías y Ciencias Básicas and Herbario Etnobotánico del Piedemonte Andino Amazónico (HEAA), Instituto Tecnológico del Putumayo - ITP, Mocoa, Putumayo, Colombia
| | - Agata Kilar
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno, CZ-62500, Czech Republic
| | - Jiří Ptáček
- Potato Research Institute Havlíčkův Brod Ltd, Havlíčkův Brod, CZ-58001, Czech Republic
| | - Martin Mátl
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, CZ-61265, Czech Republic
| | - Anna Hýsková
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno, CZ-62500, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, CZ-61265, Czech Republic
| | - Vratislav Peška
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, CZ-61265, Czech Republic
| |
Collapse
|
6
|
Teano G, Concia L, Wolff L, Carron L, Biocanin I, Adamusová K, Fojtová M, Bourge M, Kramdi A, Colot V, Grossniklaus U, Bowler C, Baroux C, Carbone A, Probst AV, Schrumpfová PP, Fajkus J, Amiard S, Grob S, Bourbousse C, Barneche F. Histone H1 protects telomeric repeats from H3K27me3 invasion in Arabidopsis. Cell Rep 2023; 42:112894. [PMID: 37515769 DOI: 10.1016/j.celrep.2023.112894] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/02/2022] [Accepted: 07/13/2023] [Indexed: 07/31/2023] Open
Abstract
While the pivotal role of linker histone H1 in shaping nucleosome organization is well established, its functional interplays with chromatin factors along the epigenome are just starting to emerge. Here we show that, in Arabidopsis, as in mammals, H1 occupies Polycomb Repressive Complex 2 (PRC2) target genes where it favors chromatin condensation and H3K27me3 deposition. We further show that, contrasting with its conserved function in PRC2 activation at genes, H1 selectively prevents H3K27me3 accumulation at telomeres and large pericentromeric interstitial telomeric repeat (ITR) domains by restricting DNA accessibility to Telomere Repeat Binding (TRB) proteins, a group of H1-related Myb factors mediating PRC2 cis recruitment. This study provides a mechanistic framework by which H1 avoids the formation of gigantic H3K27me3-rich domains at telomeric sequences and contributes to safeguard nucleus architecture.
Collapse
Affiliation(s)
- Gianluca Teano
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France; Université Paris-Saclay, 91190 Orsay, France
| | - Lorenzo Concia
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Léa Wolff
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Léopold Carron
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Ivona Biocanin
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France; Université Paris-Saclay, 91190 Orsay, France
| | - Kateřina Adamusová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michael Bourge
- Cytometry Facility, Imagerie-Gif, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Amira Kramdi
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Vincent Colot
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Chris Bowler
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Célia Baroux
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Aline V Probst
- CNRS UMR6293, Université Clermont Auvergne, INSERM U1103, GReD, CRBC, Clermont-Ferrand, France
| | - Petra Procházková Schrumpfová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Simon Amiard
- CNRS UMR6293, Université Clermont Auvergne, INSERM U1103, GReD, CRBC, Clermont-Ferrand, France
| | - Stefan Grob
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Clara Bourbousse
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Fredy Barneche
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
7
|
Kusová A, Steinbachová L, Přerovská T, Drábková LZ, Paleček J, Khan A, Rigóová G, Gadiou Z, Jourdain C, Stricker T, Schubert D, Honys D, Schrumpfová PP. Completing the TRB family: newly characterized members show ancient evolutionary origins and distinct localization, yet similar interactions. PLANT MOLECULAR BIOLOGY 2023; 112:61-83. [PMID: 37118559 PMCID: PMC10167121 DOI: 10.1007/s11103-023-01348-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/02/2023] [Indexed: 05/09/2023]
Abstract
Telomere repeat binding proteins (TRBs) belong to a family of proteins possessing a Myb-like domain which binds to telomeric repeats. Three members of this family (TRB1, TRB2, TRB3) from Arabidopsis thaliana have already been described as associated with terminal telomeric repeats (telomeres) or short interstitial telomeric repeats in gene promoters (telo-boxes). They are also known to interact with several protein complexes: telomerase, Polycomb repressive complex 2 (PRC2) E(z) subunits and the PEAT complex (PWOs-EPCRs-ARIDs-TRBs). Here we characterize two novel members of the TRB family (TRB4 and TRB5). Our wide phylogenetic analyses have shown that TRB proteins evolved in the plant kingdom after the transition to a terrestrial habitat in Streptophyta, and consequently TRBs diversified in seed plants. TRB4-5 share common TRB motifs while differing in several others and seem to have an earlier phylogenetic origin than TRB1-3. Their common Myb-like domains bind long arrays of telomeric repeats in vitro, and we have determined the minimal recognition motif of all TRBs as one telo-box. Our data indicate that despite the distinct localization patterns of TRB1-3 and TRB4-5 in situ, all members of TRB family mutually interact and also bind to telomerase/PRC2/PEAT complexes. Additionally, we have detected novel interactions between TRB4-5 and EMF2 and VRN2, which are Su(z)12 subunits of PRC2.
Collapse
Affiliation(s)
- Alžbeta Kusová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lenka Steinbachová
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Přerovská
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Lenka Záveská Drábková
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Paleček
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ahamed Khan
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Gabriela Rigóová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Zuzana Gadiou
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Claire Jourdain
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Tino Stricker
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Daniel Schubert
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
8
|
Vaquero-Sedas MI, Vega-Palas MA. Epigenetic nature of Arabidopsis thaliana telomeres. PLANT PHYSIOLOGY 2023; 191:47-55. [PMID: 36218957 PMCID: PMC9806604 DOI: 10.1093/plphys/kiac471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/22/2022] [Indexed: 05/15/2023]
Abstract
The epigenetic features of defined chromosomal domains condition their biochemical and functional properties. Therefore, there is considerable interest in studying the epigenetic marks present at relevant chromosomal loci. Telomeric regions, which include telomeres and subtelomeres, have been traditionally considered heterochromatic. However, whereas the heterochromatic nature of subtelomeres has been widely accepted, the epigenetic status of telomeres remains controversial. Here, we studied the epigenetic features of Arabidopsis (Arabidopsis thaliana) telomeres by analyzing multiple genome-wide ChIP-seq experiments. Our analyses revealed that Arabidopsis telomeres are not significantly enriched either in euchromatic marks like H3K4me2, H3K9ac, and H3K27me3 or in heterochromatic marks such as H3K27me1 and H3K9me2. Thus, telomeric regions in Arabidopsis have a bimodal chromatin organization with telomeres lacking significant levels of canonical euchromatic and heterochromatic marks followed by heterochromatic subtelomeres. Since heterochromatin is known to influence telomere function, the heterochromatic modifications present at Arabidopsis subtelomeres could play a relevant role in telomere biology.
Collapse
Affiliation(s)
- María I Vaquero-Sedas
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, IBVF (CSIC-US), Seville E41092, Spain
| | | |
Collapse
|
9
|
Lyčka M, Fajkus P, Jenner LP, Sýkorová E, Fojtová M, Peska V. Identification of the Sequence and the Length of Telomere DNA. Methods Mol Biol 2023; 2672:285-302. [PMID: 37335484 DOI: 10.1007/978-1-0716-3226-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Telomeres are essential nucleoprotein structures at the very ends of linear eukaryote chromosomes. They shelter the terminal genome territories against degradation and prevent the natural chromosome ends from being recognized by repair mechanisms as double-strand DNA breaks.There are two basic characteristics of telomeric DNA, its sequence and its length. The telomere sequence is important as a "landing area" for specific telomere-binding proteins, which function as signals and moderate the interactions required for correct telomere function. While the sequence forms the proper "landing surface" of telomeric DNA, its length is similarly important. Too short or exceptionally long telomere DNA cannot perform its function properly. In this chapter, methods for the investigation of these two basic telomere DNA characteristics are described, namely, telomere motif identification and telomere length measurement.
Collapse
Affiliation(s)
- Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Leon P Jenner
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Sýkorová
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
10
|
Konečná KP, Kilar A, Kováčiková P, Fajkus J, Sýkorová E, Fojtová M. Compromised function of ARM, the interactor of Arabidopsis telomerase, suggests its role in stress responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111453. [PMID: 36087885 DOI: 10.1016/j.plantsci.2022.111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
ARM was identified previously as an interaction partner of the telomerase protein subunit (TERT) in Arabidopsis thaliana. To investigate the interconnection between ARM and telomerase and to identify ARM cellular functions, we analyzed a set of arm mutant lines and arm/tert double mutants. Telomere length was not affected in arm single mutant plants, in contrast to double mutants. In the second generation of homozygous arm-1/tert double mutants following the heterozygous state during the double mutant construction, telomeres shortened dramatically, even below levels in tert plants displaying severe morphological defects. Intriguingly, homozygous arm-1/tert double mutants with short telomeres grew without obvious phenotypic changes for next two generations. Then, in agreement with the onset of phenotypic changes in tert, morphological defects were timed to the 5th arm-1/tert homozygous generation. RNAseq analyses of arm-1/tert and respective single mutants displayed markedly overlapping sets of differentially expressed genes in arm-1/tert double mutant and arm-1 single mutant lines, indicating a dominant effect of the ARM mutation. RNAseq data further implied ARM involvement in circadian rhythms, responses to drugs and to biotic and abiotic stimuli. In agreement with it, we observed sensitivity of arm-1 single mutant to the heat stress during germination. Altogether, our results suggest ARM involvement in crucial cellular processes without evidencing its role in the telomerase canonical function.
Collapse
Affiliation(s)
- Klára Přikrylová Konečná
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic; Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Agata Kilar
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Kováčiková
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Fajkus
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic; Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
11
|
Vijayanathan M, Trejo-Arellano MG, Mozgová I. Polycomb Repressive Complex 2 in Eukaryotes-An Evolutionary Perspective. EPIGENOMES 2022; 6:3. [PMID: 35076495 PMCID: PMC8788455 DOI: 10.3390/epigenomes6010003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) represents a group of evolutionarily conserved multi-subunit complexes that repress gene transcription by introducing trimethylation of lysine 27 on histone 3 (H3K27me3). PRC2 activity is of key importance for cell identity specification and developmental phase transitions in animals and plants. The composition, biochemistry, and developmental function of PRC2 in animal and flowering plant model species are relatively well described. Recent evidence demonstrates the presence of PRC2 complexes in various eukaryotic supergroups, suggesting conservation of the complex and its function. Here, we provide an overview of the current understanding of PRC2-mediated repression in different representatives of eukaryotic supergroups with a focus on the green lineage. By comparison of PRC2 in different eukaryotes, we highlight the possible common and diverged features suggesting evolutionary implications and outline emerging questions and directions for future research of polycomb repression and its evolution.
Collapse
Affiliation(s)
- Mallika Vijayanathan
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic; (M.V.); (M.G.T.-A.)
| | - María Guadalupe Trejo-Arellano
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic; (M.V.); (M.G.T.-A.)
| | - Iva Mozgová
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic; (M.V.); (M.G.T.-A.)
- Faculty of Science, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic
| |
Collapse
|
12
|
Franek M, Kilar A, Fojtík P, Olšinová M, Benda A, Rotrekl V, Dvořáčková M, Fajkus J. Super-resolution microscopy of chromatin fibers and quantitative DNA methylation analysis of DNA fiber preparations. J Cell Sci 2021; 134:jcs258374. [PMID: 34350964 DOI: 10.1242/jcs.258374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Analysis of histone variants and epigenetic marks is dominated by genome-wide approaches in the form of chromatin immunoprecipitation-sequencing (ChIP-seq) and related methods. Although uncontested in their value for single-copy genes, mapping the chromatin of DNA repeats is problematic for biochemical techniques that involve averaging of cell populations or analysis of clusters of tandem repeats in a single-cell analysis. Extending chromatin and DNA fibers allows us to study the epigenetics of individual repeats in their specific chromosomal context, and thus constitutes an important tool for gaining a complete understanding of the epigenetic organization of genomes. We report that using an optimized fiber extension protocol is essential in order to obtain more reproducible data and to minimize the clustering of fibers. We also demonstrate that the use of super-resolution microscopy is important for reliable evaluation of the distribution of histone modifications on individual fibers. Furthermore, we introduce a custom script for the analysis of methylation levels on DNA fibers and apply it to map the methylation of telomeres, ribosomal genes and centromeres.
Collapse
Affiliation(s)
- Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Agata Kilar
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-61137 Brno, Czech Republic
| | - Petr Fojtík
- International Clinical Research Center (ICRC) at St. Anne's University Hospital, Pekařská 53, CZ-65691 Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Marie Olšinová
- Charles University, Faculty of Science, Biology Section, Imaging methods core facility at BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Aleš Benda
- Charles University, Faculty of Science, Biology Section, Imaging methods core facility at BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Vladimír Rotrekl
- International Clinical Research Center (ICRC) at St. Anne's University Hospital, Pekařská 53, CZ-65691 Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Jíří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-61137 Brno, Czech Republic
| |
Collapse
|
13
|
Konečná K, Sováková PP, Anteková K, Fajkus J, Fojtová M. Distinct Responses of Arabidopsis Telomeres and Transposable Elements to Zebularine Exposure. Int J Mol Sci 2021; 22:ijms22010468. [PMID: 33466545 PMCID: PMC7796508 DOI: 10.3390/ijms22010468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Involvement of epigenetic mechanisms in the regulation of telomeres and transposable elements (TEs), genomic regions with the protective and potentially detrimental function, respectively, has been frequently studied. Here, we analyzed telomere lengths in Arabidopsis thaliana plants of Columbia, Landsberg erecta and Wassilevskija ecotypes exposed repeatedly to the hypomethylation drug zebularine during germination. Shorter telomeres were detected in plants growing from seedlings germinated in the presence of zebularine with a progression in telomeric phenotype across generations, relatively high inter-individual variability, and diverse responses among ecotypes. Interestingly, the extent of telomere shortening in zebularine Columbia and Wassilevskija plants corresponded to the transcriptional activation of TEs, suggesting a correlated response of these genomic elements to the zebularine treatment. Changes in lengths of telomeres and levels of TE transcripts in leaves were not always correlated with a hypomethylation of cytosines located in these regions, indicating a cytosine methylation-independent level of their regulation. These observations, including differences among ecotypes together with distinct dynamics of the reversal of the disruption of telomere homeostasis and TEs transcriptional activation, reflect a complex involvement of epigenetic processes in the regulation of crucial genomic regions. Our results further demonstrate the ability of plant cells to cope with these changes without a critical loss of the genome stability.
Collapse
Affiliation(s)
- Klára Konečná
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute for Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; (K.K.); (P.P.S.); (K.A.); (J.F.)
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Pavla Polanská Sováková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute for Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; (K.K.); (P.P.S.); (K.A.); (J.F.)
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Karin Anteková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute for Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; (K.K.); (P.P.S.); (K.A.); (J.F.)
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute for Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; (K.K.); (P.P.S.); (K.A.); (J.F.)
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-61265 Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute for Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; (K.K.); (P.P.S.); (K.A.); (J.F.)
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-61265 Brno, Czech Republic
- Correspondence: ; Tel.: +420-54949-8063
| |
Collapse
|
14
|
Santos AP, Gaudin V, Mozgová I, Pontvianne F, Schubert D, Tek AL, Dvořáčková M, Liu C, Fransz P, Rosa S, Farrona S. Tidying-up the plant nuclear space: domains, functions, and dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5160-5178. [PMID: 32556244 PMCID: PMC8604271 DOI: 10.1093/jxb/eraa282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/12/2020] [Indexed: 05/07/2023]
Abstract
Understanding how the packaging of chromatin in the nucleus is regulated and organized to guide complex cellular and developmental programmes, as well as responses to environmental cues is a major question in biology. Technological advances have allowed remarkable progress within this field over the last years. However, we still know very little about how the 3D genome organization within the cell nucleus contributes to the regulation of gene expression. The nuclear space is compartmentalized in several domains such as the nucleolus, chromocentres, telomeres, protein bodies, and the nuclear periphery without the presence of a membrane around these domains. The role of these domains and their possible impact on nuclear activities is currently under intense investigation. In this review, we discuss new data from research in plants that clarify functional links between the organization of different nuclear domains and plant genome function with an emphasis on the potential of this organization for gene regulation.
Collapse
Affiliation(s)
- Ana Paula Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova
de Lisboa, Oeiras, Portugal
| | - Valérie Gaudin
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université
Paris-Saclay, Versailles, France
| | - Iva Mozgová
- Biology Centre of the Czech Academy of Sciences, České
Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České
Budějovice, Czech Republic
| | - Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), Université de
Perpignan Via Domitia, Perpignan, France
| | - Daniel Schubert
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Ahmet L Tek
- Agricultural Genetic Engineering Department, Niğde Ömer Halisdemir
University, Niğde, Turkey
| | | | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of
Tübingen, Tübingen, Germany
- Institute of Biology, University of Hohenheim, Stuttgart,
Germany
| | - Paul Fransz
- University of Amsterdam, Amsterdam, The
Netherlands
| | - Stefanie Rosa
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, NUI Galway,
Galway, Ireland
| |
Collapse
|
15
|
Achrem M, Szućko I, Kalinka A. The epigenetic regulation of centromeres and telomeres in plants and animals. COMPARATIVE CYTOGENETICS 2020; 14:265-311. [PMID: 32733650 PMCID: PMC7360632 DOI: 10.3897/compcytogen.v14i2.51895] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 05/10/2023]
Abstract
The centromere is a chromosomal region where the kinetochore is formed, which is the attachment point of spindle fibers. Thus, it is responsible for the correct chromosome segregation during cell division. Telomeres protect chromosome ends against enzymatic degradation and fusions, and localize chromosomes in the cell nucleus. For this reason, centromeres and telomeres are parts of each linear chromosome that are necessary for their proper functioning. More and more research results show that the identity and functions of these chromosomal regions are epigenetically determined. Telomeres and centromeres are both usually described as highly condensed heterochromatin regions. However, the epigenetic nature of centromeres and telomeres is unique, as epigenetic modifications characteristic of both eu- and heterochromatin have been found in these areas. This specificity allows for the proper functioning of both regions, thereby affecting chromosome homeostasis. This review focuses on demonstrating the role of epigenetic mechanisms in the functioning of centromeres and telomeres in plants and animals.
Collapse
Affiliation(s)
- Magdalena Achrem
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| | - Izabela Szućko
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| | - Anna Kalinka
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| |
Collapse
|