1
|
Zhang Q, Yu X, Wu Y, Wang R, Zhang Y, Shi F, Zhao H, Yu P, Wang Y, Chen M, Chang J, Li Y, He G, Yang G. TaPP2C-a5 fine-tunes wheat seed dormancy and germination with a Triticeae-specific, alternatively spliced transcript. J Adv Res 2025:S2090-1232(25)00300-5. [PMID: 40345647 DOI: 10.1016/j.jare.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025] Open
Abstract
INTRODUCTION The sessile plants often experience environmental conditions not ideal for growth, and therefore have evolved strategies to survive and adapt to stress conditions. Abscisic acid (ABA) regulates plant development and abiotic stress response. Clade A type 2C protein phosphatases (PP2Cs), act as co-receptors of ABA, negatively regulate ABA signalling. However, the biological function and detailed molecular mechanism of clade A PP2Cs in ABA signalling pathway remain to be elucidated in wheat. OBJECTIVES To analyze the mechanisms of stress response and development mediated by ABA signal precisely regulated by TaPP2C-a5 at the post-transcriptional level in wheat, providing candidate genes for wheat improvement. METHODS Based on our previous results of TaPP2Cs gene family analysis, the function and detailed regulation mechanisms of TaPP2C-a5 gene in seed dormancy and germination as well as drought response mediated by ABA signaling pathway were explored through reverse genetics technology. RESULTS We found that class A TaPP2C-a5 underwent alternative splicing (AS) to produce two transcripts encoding TaPP2C-a5.1 and TaPP2C-a5.2, respectively. Both TaPP2C-a5.1 and TaPP2C-a5.2 were highly expressed in mature seeds, and were upregulated by exogenous ABA in seedlings. Overexpression of TaPP2C-a5.1 and TaPP2C-a5.2 coordinately negatively regulated seed dormancy and ABA-mediated seed germination as well as post-germination developmental arrest in wheat. TaPP2C-a5.1 negatively regulated drought stress response, while TaPP2C-a5.2 did not participate in drought stress response. The homologous genes of TaPP2C-a5 underwent the same AS as TaPP2C-a5 in tetraploid wheat, but not in rice. CONCLUSION Our results revealed that TaPP2C-a5 gene underwent AS and was involved in the regulation of seed dormancy and germination, as well as drought stress response mediated by the ABA signaling at the post-transcriptional level. Our work not only provide a potential target gene to improve PHS resistance, but also emphasize alternative splicing as a strategy with evolution contexts to fine-tune ABA signaling and its involvement in certain biological process.
Collapse
Affiliation(s)
- Qian Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaofen Yu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ya'nan Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruibin Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yufan Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fu Shi
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Puju Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Liu J, Li X, Wang K, Wang T, Meng Y, Peng Z, Huang J, Huo J, Zhu X, Yang J, Fan Y, Xu F, Zhang Q, Wang Z, Wang Y, Chen H, Xu W. The splicing auxiliary factor OsU2AF35a enhances thermotolerance via protein separation and promoting proper splicing of OsHSA32 pre-mRNA in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1308-1328. [PMID: 39844526 PMCID: PMC11933845 DOI: 10.1111/pbi.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025]
Abstract
Heat stress significantly impacts global rice production, highlighting the critical need to understand the genetic basis of heat resistance in rice. U2AF (U2 snRNP auxiliary factor) is an essential splicing complex with critical roles in recognizing the 3'-splice site of precursor messenger RNAs (pre-mRNAs). The U2AF small subunit (U2AF35) can bind to the 3'-AG intron border and promote U2 snRNP binding to the branch-point sequences of introns through interaction with the U2AF large subunit (U2AF65). However, the functions of U2AF35 in plants are poorly understood. In this study, we discovered that the OsU2AF35a gene was vigorously induced by heat stress and could positively regulate rice thermotolerance during both the seedling and reproductive growth stages. OsU2AF35a interacts with OsU2AF65a within the nucleus, and both of them can form condensates through liquid-liquid phase separation (LLPS) following heat stress. The intrinsically disordered regions (IDR) are accountable for their LLPS. OsU2AF35a condensation is indispensable for thermotolerance. RNA-seq analysis disclosed that, subsequent to heat treatment, the expression levels of several genes associated with water deficiency and oxidative stress in osu2af35a-1 were markedly lower than those in ZH11. In accordance with this, OsU2AF35a is capable of positively regulating the oxidative stress resistance of rice. The pre-mRNAs of a considerable number of genes in the osu2af35a-1 mutant exhibited defective splicing, among which was the OsHSA32 gene. Knocking out OsHSA32 significantly reduced the thermotolerance of rice, while overexpressing OsHSA32 could partially rescue the heat sensitivity of osu2af35a-1. Together, our findings uncovered the essential role of OsU2AF35a in rice heat stress response through protein separation and regulating alternative pre-mRNA splicing.
Collapse
Affiliation(s)
- Jianping Liu
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xin Li
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ke Wang
- Institute of Resources, Environment and Soil FertilizerFujian Academy of Agricultural SciencesFuzhouChina
| | - Tao Wang
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yang Meng
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhi Peng
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jinli Huang
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiaohan Huo
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaoqi Zhu
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jinyong Yang
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yongxi Fan
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| | - Feiyun Xu
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qian Zhang
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhengrui Wang
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ya Wang
- Cereal Crops Research InstituteHenan Academy of Agricultural SciencesZhengzhouChina
| | - Hao Chen
- Rice Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Weifeng Xu
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
3
|
Qiu R, Yao P, Yang J, Hou J, Xiao H, Wu Y, Tu D, Ma X, Zhao Y, Li L. OsIAA7 enhances heat stress tolerance by inhibiting the activity of OsARF6 in rice. Int J Biol Macromol 2025; 288:138746. [PMID: 39674487 DOI: 10.1016/j.ijbiomac.2024.138746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Heat stress (HS) severely affects the growth and yield of rice, necessitating a clear understanding of the molecular mechanisms underlying HS tolerance. In this study, we report that the Aux/IAA family gene, OsIAA7, whose expression is induced by HS and positively regulates HS tolerance in rice (Oryza sativa L.). The osiaa7 mutant exhibits reduced HS tolerance, whereas overexpression of OsIAA7 enhances it. Our findings suggest that OsIAA7 contributes to HS tolerance by reducing hydrogen peroxide accumulation and cell death. Physiological analysis indicates that OsIAA7 influences the levels of malondialdehyde, catalase, and chlorophyll A concentration in plants under HS conditions. RNA-seq analysis suggests that OsIAA7 modulates the expression of heat-responsive genes, contributing to HS tolerance. Further, biochemical analyses demonstrate a physical interaction between OsIAA7 and OsARF6, with OsIAA7 inhibiting the activity of OsARF6. RT-qPCR results support the notion that the positive regulatory factor OsIAA7 and the negative regulatory factor OsARF6 control HS tolerance by regulating the transcript levels of OsTT1 and OsTT3.1. Together, our results reveal the role of OsIAA7 in controlling HS tolerance through the modulation of physiological processes and the inhibition of OsARF6 activity, suggesting that some Aux/IAA family genes play a role in heat tolerance in rice.
Collapse
Affiliation(s)
- Ronghua Qiu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Yao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jin Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huangzhuo Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yequn Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Daoyi Tu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoci Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yating Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
4
|
Jin X, Lu Y, Liu J, Liu H, Wu N, Li M, Zhou W. Unraveling the role of OsSCL26 in transcriptional regulation in rice: Insights into grain shape, heading date, and carbohydrates. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17268. [PMID: 39968609 DOI: 10.1111/tpj.17268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025]
Abstract
Grain shape, heading date, and amylase content are pivotal traits influencing rice yield, quality, distribution, and regional adaptability. Through our investigation, we identified a mutant, characterized by slender grains, elevated amylose content, and early heading date. Histocytologic scrutiny unveiled heightened cell proliferation in the spikelet hull contributing to the slender grain morphology. The OsSCL26 gene, governing these significant traits, was meticulously cloned via fine-mapping. Phenotypic scrutiny of OsSCL26 knockout and overexpression lines validated its pivotal role in trait regulation. Further analysis disclosed a substitution in the OsSCL26 promoter region, creating a novel binding site for the transcript factor OsbZIP47, thereby modulating its expression in the osscl26 mutant. Functionally, OsSCL26, acting as a serine/arginine-rich SC35-like protein, interacted with U1-70K in vivo and in vitro. OsSCL26 exhibited direct binding to genes implicated in grain shape and carbohydrates, thereby regulating their splicing. Moreover, OsSCL26 showed direct and indirect associations with target RNAs involved in circadian rhythm. Overall, our findings elucidate the mechanism of OsSCL26, an RNA binding protein interacting with splicing factor, as a crucial member of the spliceosome, thereby impacting post-transcriptional splicing and regulating grain shape, heading date, and carbohydrates in rice.
Collapse
Affiliation(s)
- Xiaoli Jin
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang University, Hangzhou, 310058, China
| | - Yingying Lu
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang University, Hangzhou, 310058, China
| | - Jialin Liu
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang University, Hangzhou, 310058, China
| | - Hui Liu
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang University, Hangzhou, 310058, China
| | - Nan Wu
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang University, Hangzhou, 310058, China
| | - Mei Li
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weijun Zhou
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Chang Y, Fang Y, Liu J, Ye T, Li X, Tu H, Ye Y, Wang Y, Xiong L. Stress-induced nuclear translocation of ONAC023 improves drought and heat tolerance through multiple processes in rice. Nat Commun 2024; 15:5877. [PMID: 38997294 PMCID: PMC11245485 DOI: 10.1038/s41467-024-50229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Drought and heat are major abiotic stresses frequently coinciding to threaten rice production. Despite hundreds of stress-related genes being identified, only a few have been confirmed to confer resistance to multiple stresses in crops. Here we report ONAC023, a hub stress regulator that integrates the regulations of both drought and heat tolerance in rice. ONAC023 positively regulates drought and heat tolerance at both seedling and reproductive stages. Notably, the functioning of ONAC023 is obliterated without stress treatment and can be triggered by drought and heat stresses at two layers. The expression of ONAC023 is induced in response to stress stimuli. We show that overexpressed ONAC23 is translocated to the nucleus under stress and evidence from protoplasts suggests that the dephosphorylation of the remorin protein OSREM1.5 can promote this translocation. Under drought or heat stress, the nuclear ONAC023 can target and promote the expression of diverse genes, such as OsPIP2;7, PGL3, OsFKBP20-1b, and OsSF3B1, which are involved in various processes including water transport, reactive oxygen species homeostasis, and alternative splicing. These results manifest that ONAC023 is fine-tuned to positively regulate drought and heat tolerance through the integration of multiple stress-responsive processes. Our findings provide not only an underlying connection between drought and heat responses, but also a promising candidate for engineering multi-stress-resilient rice.
Collapse
Affiliation(s)
- Yu Chang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yujie Fang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Jiahan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tiantian Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haifu Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Sun Q, Sun Y, Liu X, Li M, Li Q, Xiao J, Xu P, Zhang S, Ding X. Regulation of plant resistance to salt stress by the SnRK1-dependent splicing factor SRRM1L. THE NEW PHYTOLOGIST 2024; 242:2093-2114. [PMID: 38511255 DOI: 10.1111/nph.19699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Most splicing factors are extensively phosphorylated but their physiological functions in plant salt resistance are still elusive. We found that phosphorylation by SnRK1 kinase is essential for SRRM1L nuclear speckle formation and its splicing factor activity in plant cells. In Arabidopsis, loss-of-function of SRRM1L leads to the occurrence of alternative pre-mRNA splicing events and compromises plant resistance to salt stress. In Arabidopsis srrm1l mutant line, we identified an intron-retention Nuclear factor Y subunit A 10 (NFYA10) mRNA variant by RNA-Seq and found phosphorylation-dependent RNA-binding of SRRM1L is indispensable for its alternative splicing activity. In the wild-type Arabidopsis, salt stress can activate SnRK1 to phosphorylate SRRM1L, triggering enrichment of functional NFYA10.1 variant to enhance plant salt resistance. By contrast, the Arabidopsis srrm1l mutant accumulates nonfunctional NFYA10.3 variant, sensitizing plants to salt stress. In summary, this work deciphered the molecular mechanisms and physiological functions of SnRK1-SRRM1L-NFYA10 module, shedding light on a regulatory pathway to fine-tune plant adaptation to abiotic stress at the post-transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Qi Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Yixin Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xin Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Minglong Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Pengfei Xu
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
7
|
Sonsungsan P, Suratanee A, Buaboocha T, Chadchawan S, Plaimas K. Identification of Salt-Sensitive and Salt-Tolerant Genes through Weighted Gene Co-Expression Networks across Multiple Datasets: A Centralization and Differential Correlation Analysis. Genes (Basel) 2024; 15:316. [PMID: 38540375 PMCID: PMC10970189 DOI: 10.3390/genes15030316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 06/14/2024] Open
Abstract
Salt stress is a significant challenge that severely hampers rice growth, resulting in decreased yield and productivity. Over the years, researchers have identified biomarkers associated with salt stress to enhance rice tolerance. However, the understanding of the mechanism underlying salt tolerance in rice remains incomplete due to the involvement of multiple genes. Given the vast amount of genomics and transcriptomics data available today, it is crucial to integrate diverse datasets to identify key genes that play essential roles during salt stress in rice. In this study, we propose an integration of multiple datasets to identify potential key transcription factors. This involves utilizing network analysis based on weighted co-expression networks, focusing on gene-centric measurement and differential co-expression relationships among genes. Consequently, our analysis reveals 86 genes located in markers from previous meta-QTL analysis. Moreover, six transcription factors, namely LOC_Os03g45410 (OsTBP2), LOC_Os07g42400 (OsGATA23), LOC_Os01g13030 (OsIAA3), LOC_Os05g34050 (OsbZIP39), LOC_Os09g29930 (OsBIM1), and LOC_Os10g10990 (transcription initiation factor IIF), exhibited significantly altered co-expression relationships between salt-sensitive and salt-tolerant rice networks. These identified genes hold potential as crucial references for further investigation into the functions of salt stress response in rice plants and could be utilized in the development of salt-resistant rice cultivars. Overall, our findings shed light on the complex genetic regulation underlying salt tolerance in rice and contribute to the broader understanding of rice's response to salt stress.
Collapse
Affiliation(s)
- Pajaree Sonsungsan
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology (CEEPP), Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kitiporn Plaimas
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Alhabsi A, Butt H, Kirschner GK, Blilou I, Mahfouz MM. SCR106 splicing factor modulates abiotic stress responses by maintaining RNA splicing in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:802-818. [PMID: 37924151 PMCID: PMC10837019 DOI: 10.1093/jxb/erad433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Plants employ sophisticated molecular machinery to fine-tune their responses to growth, developmental, and stress cues. Gene expression influences plant cellular responses through regulatory processes such as transcription and splicing. Pre-mRNA is alternatively spliced to increase the genome coding potential and further regulate expression. Serine/arginine-rich (SR) proteins, a family of pre-mRNA splicing factors, recognize splicing cis-elements and regulate both constitutive and alternative splicing. Several studies have reported SR protein genes in the rice genome, subdivided into six subfamilies based on their domain structures. Here, we identified a new splicing factor in rice with an RNA recognition motif (RRM) and SR-dipeptides, which is related to the SR proteins, subfamily SC. OsSCR106 regulates pre-mRNA splicing under abiotic stress conditions. It localizes to the nuclear speckles, a major site for pre-mRNA splicing in the cell. The loss-of-function scr106 mutant is hypersensitive to salt, abscisic acid, and low-temperature stress, and harbors a developmental abnormality indicated by the shorter length of the shoot and root. The hypersensitivity to stress phenotype was rescued by complementation using OsSCR106 fused behind its endogenous promoter. Global gene expression and genome-wide splicing analysis in wild-type and scr106 seedlings revealed that OsSCR106 regulates its targets, presumably through regulating the alternative 3'-splice site. Under salt stress conditions, we identified multiple splice isoforms regulated by OsSCR106. Collectively, our results suggest that OsSCR106 is an important splicing factor that plays a crucial role in accurate pre-mRNA splicing and regulates abiotic stress responses in plants.
Collapse
Affiliation(s)
- Abdulrahman Alhabsi
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Gwendolyn K Kirschner
- Laboratory of Plant Cell and Developmental Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Gao R, Lu Y, Wu N, Liu H, Jin X. Comprehensive study of serine/arginine-rich (SR) gene family in rice: characterization, evolution and expression analysis. PeerJ 2023; 11:e16193. [PMID: 37849832 PMCID: PMC10578304 DOI: 10.7717/peerj.16193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
As important regulators of alternative splicing (AS) events, serine/arginine (SR)-rich proteins play indispensable roles in the growth and development of organisms. Until now, the study of SR genes has been lacking in plants. In the current study, we performed genome-wide analysis on the SR gene family in rice. A total of 24 OsSR genes were phylogenetically classified into seven groups, corresponding to seven subfamilies. The OsSR genes' structures, distribution of conserved domains, and protein tertiary structure of OsSR were conserved within each subfamily. The synteny analysis revealed that segmental duplication events were critical for the expansion of OsSR gene family. Moreover, interspecific synteny revealed the distribution of orthologous SR gene pairs between rice and Arabidopsis, sorghum, wheat, and maize. Among all OsSR genes, 14 genes exhibited NAGNAG acceptors, and only four OsSR genes had AS events on the NAGNAG acceptors. Furthermore, the distinct tissue-specific expression patterns of OsSR genes showed that these genes may function in different developmental stages in rice. The AS patterns on the same OsSR gene were variable among the root, stem, leaf, and grains at different filling stages, and some isoforms could only be detected in one or a few of tested tissues. Meanwhile, our results showed that the expression of some OsSR genes changed dramatically under ABA, GA, salt, drought, cold or heat treatment, which were related to the wide distribution of corresponding cis-elements in their promoter regions, suggesting their specific roles in stress and hormone response. This research facilitates our understanding of SR gene family in rice and provides clues for further exploration of the function of OsSR genes.
Collapse
Affiliation(s)
- Rui Gao
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yingying Lu
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Nan Wu
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Hui Liu
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiaoli Jin
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Jung H, Park HJ, Jo SH, Lee A, Lee HJ, Kim HS, Jung C, Cho HS. Nuclear OsFKBP20-1b maintains SR34 stability and promotes the splicing of retained introns upon ABA exposure in rice. THE NEW PHYTOLOGIST 2023; 238:2476-2494. [PMID: 36942934 DOI: 10.1111/nph.18892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/16/2023] [Indexed: 05/19/2023]
Abstract
Alternative splicing (AS) is a critical means by which plants respond to changes in the environment, but few splicing factors contributing to AS have been reported and functionally characterized in rice (Oryza sativa L.). Here, we explored the function and molecular mechanism of the spliceosome-associated protein OsFKBP20-1b during AS. We determined the AS landscape of wild-type and osfkbp20-1b knockout plants upon abscisic acid (ABA) treatment by transcriptome deep sequencing. To capture the dynamics of translating intron-containing mRNAs, we blocked transcription with cordycepin and performed polysome profiling. We also analyzed whether OsFKBP20-1b and the splicing factors OsSR34 and OsSR45 function together in AS using protoplast transfection assays. We show that OsFKBP20-1b interacts with OsSR34 and regulates its stability, suggesting a role as a chaperone-like protein in the spliceosome. OsFKBP20-1b facilitates the splicing of mRNAs with retained introns after ABA treatment; some of these mRNAs are translatable and encode functional transcriptional regulators of stress-responsive genes. In addition, interacting proteins, OsSR34 and OsSR45, regulate the splicing of the same retained introns as OsFKBP20-1b after ABA treatment. Our findings reveal that spliceosome-associated immunophilin functions in alternative RNA splicing in rice by positively regulating the splicing of retained introns to limit ABA response.
Collapse
Affiliation(s)
- Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Areum Lee
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, UST, Daejeon, 34113, South Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- Department of Agriculture, Forestry, and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| |
Collapse
|
11
|
Lee A, Park HJ, Jo SH, Jung H, Kim HS, Lee HJ, Kim YS, Jung C, Cho HS. The spliceophilin CYP18-2 is mainly involved in the splicing of retained introns under heat stress in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1113-1133. [PMID: 36636802 DOI: 10.1111/jipb.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/12/2023] [Indexed: 05/13/2023]
Abstract
Peptidyl-prolyl isomerase-like 1 (PPIL1) is associated with the human spliceosome complex. However, its function in pre-mRNA splicing remains unclear. In this study, we show that Arabidopsis thaliana CYCLOPHILIN 18-2 (AtCYP18-2), a PPIL1 homolog, plays an essential role in heat tolerance by regulating pre-mRNA splicing. Under heat stress conditions, AtCYP18-2 expression was upregulated in mature plants and GFP-tagged AtCYP18-2 redistributed to nuclear and cytoplasmic puncta. We determined that AtCYP18-2 interacts with several spliceosome complex BACT components in nuclear puncta and is primarily associated with the small nuclear RNAs U5 and U6 in response to heat stress. The AtCYP18-2 loss-of-function allele cyp18-2 engineered by CRISPR/Cas9-mediated gene editing exhibited a hypersensitive phenotype to heat stress relative to the wild type. Moreover, global transcriptome profiling showed that the cyp18-2 mutation affects alternative splicing of heat stress-responsive genes under heat stress conditions, particularly intron retention (IR). The abundance of most intron-containing transcripts of a subset of genes essential for thermotolerance decreased in cyp18-2 compared to the wild type. Furthermore, the intron-containing transcripts of two heat stress-related genes, HEAT SHOCK PROTEIN 101 (HSP101) and HEAT SHOCK FACTOR A2 (HSFA2), produced functional proteins. HSP101-IR-GFP localization was responsive to heat stress, and HSFA2-III-IR interacted with HSF1 and HSP90.1 in plant cells. Our findings reveal that CYP18-2 functions as a splicing factor within the BACT spliceosome complex and is crucial for ensuring the production of adequate levels of alternatively spliced transcripts to enhance thermotolerance.
Collapse
Affiliation(s)
- Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, UST, Daejeon, 34113, Korea
| | - Youn-Sung Kim
- Department of Biotechnology, NongWoo Bio, Anseong, 17558, Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Korea
- Department of Agriculture, Forestry, and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34141, Korea
| |
Collapse
|
12
|
Muhammad S, Xu X, Zhou W, Wu L. Alternative splicing: An efficient regulatory approach towards plant developmental plasticity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1758. [PMID: 35983878 DOI: 10.1002/wrna.1758] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 05/13/2023]
Abstract
Alternative splicing (AS) is a gene regulatory mechanism that plants adapt to modulate gene expression (GE) in multiple ways. AS generates alternative isoforms of the same gene following various development and environmental stimuli, increasing transcriptome plasticity and proteome complexity. AS controls the expression levels of certain genes and regulates GE networks that shape plant adaptations through nonsense-mediated decay (NMD). This review intends to discuss AS modulation, from interaction with noncoding RNAs to the established roles of splicing factors (SFs) in response to endogenous and exogenous cues. We aim to gather such studies that highlight the magnitude and impact of AS, which are not always clear from individual articles, when AS is increasing in individual genes and at a global level. This work also anticipates making plant researchers know that AS is likely to occur in their investigations and that dynamic changes in AS and their effects must be frequently considered. We also review our understanding of AS-mediated posttranscriptional modulation of plant stress tolerance and discuss its potential application in crop improvement in the future. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > Splicing Mechanisms RNA-Based Catalysis > RNA Catalysis in Splicing and Translation.
Collapse
Affiliation(s)
- Sajid Muhammad
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute of Zhejiang University, Sanya, Hainan, China
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoli Xu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weijun Zhou
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Wu
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute of Zhejiang University, Sanya, Hainan, China
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Li JY, Yang C, Xu J, Lu HP, Liu JX. The hot science in rice research: How rice plants cope with heat stress. PLANT, CELL & ENVIRONMENT 2023; 46:1087-1103. [PMID: 36478590 DOI: 10.1111/pce.14509] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/13/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Global climate change has great impacts on plant growth and development, reducing crop productivity worldwide. Rice (Oryza sativa L.), one of the world's most important food crops, is susceptible to high-temperature stress from seedling stage to reproductive stage. In this review, we summarize recent advances in understanding the molecular mechanisms underlying heat stress responses in rice, including heat sensing and signalling, transcriptional regulation, transcript processing, protein translation, and post-translational regulation. We also highlight the irreversible effects of high temperature on reproduction and grain quality in rice. Finally, we discuss challenges and opportunities for future research on heat stress responses in rice.
Collapse
Affiliation(s)
- Jin-Yu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuang Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hai-Ping Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Ren H, Bao J, Gao Z, Sun D, Zheng S, Bai J. How rice adapts to high temperatures. FRONTIERS IN PLANT SCIENCE 2023; 14:1137923. [PMID: 37008476 PMCID: PMC10063981 DOI: 10.3389/fpls.2023.1137923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
High-temperature stress affects crop yields worldwide. Identifying thermotolerant crop varieties and understanding the basis for this thermotolerance would have important implications for agriculture, especially in the face of climate change. Rice (Oryza sativa) varieties have evolved protective strategies to acclimate to high temperature, with different thermotolerance levels. In this review, we examine the morphological and molecular effects of heat on rice in different growth stages and plant organs, including roots, stems, leaves and flowers. We also explore the molecular and morphological differences among thermotolerant rice lines. In addition, some strategies are proposed to screen new rice varieties for thermotolerance, which will contribute to the improvement of rice for agricultural production in the future.
Collapse
Affiliation(s)
- Huimin Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingpei Bao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhenxian Gao
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Wheat Research Center, Shijiazhuang, China
| | - Daye Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
15
|
Suri A, Singh H, Kaur K, Kaachra A, Singh P. Genome-wide characterization of FK506-binding proteins, parvulins and phospho-tyrosyl phosphatase activators in wheat and their regulation by heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1053524. [PMID: 36589073 PMCID: PMC9797600 DOI: 10.3389/fpls.2022.1053524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Peptidyl-prolyl cis-trans isomerases (PPIases) are ubiquitous proteins which are essential for cis-trans isomerisation of peptide bonds preceding the proline residue. PPIases are categorized into four sub-families viz., cyclophilins, FK506-binding proteins (FKBPs), parvulins and protein phosphatase 2A phosphatase activators (PTPAs). Apart from catalysing the cis-trans isomerization, these proteins have also been implicated in diverse cellular functions. Though PPIases have been identified in several important crop plants, information on these proteins, except cyclophilins, is scanty in wheat. In order to understand the role of these genes in wheat, we carried out genome-wide identification using computational approaches. The present study resulted in identification of 71 FKBP (TaFKBP) 12 parvulin (TaPar) and 3 PTPA (TaPTPA) genes in hexaploid wheat genome, which are distributed on different chromosomes with uneven gene densities. The TaFKBP and TaPar proteins, besides PPIase domain, also contain additional domains, indicating functional diversification. In silico prediction also revealed that TaFKBPs are localized to ER, nucleus, chloroplast and cytoplasm, while the TaPars are confined to cytoplasm and nucleus. The TaPTPAs, on the contrary, appear to be present only in the cytoplasm. Evolutionary studies predicted that most of the TaFKBP, TaPar and TaPTPA genes in hexaploid wheat have been derived from their progenitor species, with some events of loss or gain. Syntenic analysis revealed the presence of many collinear blocks of TaFKBP genes in wheat and its sub-genome donors. qRT-PCR analysis demonstrated that expression of TaFKBP and TaPar genes is regulated differentially by heat stress, suggesting their likely involvement in thermotolerance. The findings of this study will provide basis for further functional characterization of these genes and their likely applications in crop improvement.
Collapse
Affiliation(s)
- Anantika Suri
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Kirandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Anish Kaachra
- Biotechnology Division, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, HP, India
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
16
|
Jin X. Regulatory Network of Serine/Arginine-Rich (SR) Proteins: The Molecular Mechanism and Physiological Function in Plants. Int J Mol Sci 2022; 23:ijms231710147. [PMID: 36077545 PMCID: PMC9456285 DOI: 10.3390/ijms231710147] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
Serine/arginine-rich (SR) proteins are a type of splicing factor. They play significant roles in constitutive and alternative pre-mRNA splicing, and are involved in post-splicing activities, such as mRNA nuclear export, nonsense-mediated mRNA decay, mRNA translation, and miRNA biogenesis. In plants, SR proteins function under a complex regulatory network by protein–protein and RNA–protein interactions between SR proteins, other splicing factors, other proteins, or even RNAs. The regulatory networks of SR proteins are complex—they are regulated by the SR proteins themselves, they are phosphorylated and dephosphorylated through interactions with kinase, and they participate in signal transduction pathways, whereby signaling cascades can link the splicing machinery to the exterior environment. In a complex network, SR proteins are involved in plant growth and development, signal transduction, responses to abiotic and biotic stresses, and metabolism. Here, I review the current status of research on plant SR proteins, construct a model of SR proteins function, and ask many questions about SR proteins in plants.
Collapse
Affiliation(s)
- Xiaoli Jin
- Departmeng of Agronomy, College of Agriculture and Biotechnology, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Rosenkranz RRE, Ullrich S, Löchli K, Simm S, Fragkostefanakis S. Relevance and Regulation of Alternative Splicing in Plant Heat Stress Response: Current Understanding and Future Directions. FRONTIERS IN PLANT SCIENCE 2022; 13:911277. [PMID: 35812973 PMCID: PMC9260394 DOI: 10.3389/fpls.2022.911277] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/26/2022] [Indexed: 05/26/2023]
Abstract
Alternative splicing (AS) is a major mechanism for gene expression in eukaryotes, increasing proteome diversity but also regulating transcriptome abundance. High temperatures have a strong impact on the splicing profile of many genes and therefore AS is considered as an integral part of heat stress response. While many studies have established a detailed description of the diversity of the RNAome under heat stress in different plant species and stress regimes, little is known on the underlying mechanisms that control this temperature-sensitive process. AS is mainly regulated by the activity of splicing regulators. Changes in the abundance of these proteins through transcription and AS, post-translational modifications and interactions with exonic and intronic cis-elements and core elements of the spliceosomes modulate the outcome of pre-mRNA splicing. As a major part of pre-mRNAs are spliced co-transcriptionally, the chromatin environment along with the RNA polymerase II elongation play a major role in the regulation of pre-mRNA splicing under heat stress conditions. Despite its importance, our understanding on the regulation of heat stress sensitive AS in plants is scarce. In this review, we summarize the current status of knowledge on the regulation of AS in plants under heat stress conditions. We discuss possible implications of different pathways based on results from non-plant systems to provide a perspective for researchers who aim to elucidate the molecular basis of AS under high temperatures.
Collapse
Affiliation(s)
| | - Sarah Ullrich
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Karin Löchli
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
18
|
Wei F, Chen P, Jian H, Sun L, Lv X, Wei H, Wang H, Hu T, Ma L, Fu X, Lu J, Li S, Yu S. A Comprehensive Identification and Function Analysis of Serine/Arginine-Rich (SR) Proteins in Cotton ( Gossypium spp.). Int J Mol Sci 2022; 23:ijms23094566. [PMID: 35562957 PMCID: PMC9105085 DOI: 10.3390/ijms23094566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022] Open
Abstract
As one of the most important factors in alternative splicing (AS) events, serine/arginine-rich (SR) proteins not only participate in the growth and development of plants but also play pivotal roles in abiotic stresses. However, the research about SR proteins in cotton is still lacking. In this study, we performed an extensive comparative analysis of SR proteins and determined their phylogeny in the plant lineage. A total of 169 SR family members were identified from four Gossypium species, and these genes could be divided into eight distinct subfamilies. The domain, motif distribution and gene structure of cotton SR proteins are conserved within each subfamily. The expansion of SR genes is mainly contributed by WGD and allopolyploidization events in cotton. The selection pressure analysis showed that all the paralogous gene pairs were under purifying selection pressure. Many cis-elements responding to abiotic stress and phytohormones were identified in the upstream sequences of the GhSR genes. Expression profiling suggested that some GhSR genes may involve in the pathways of plant resistance to abiotic stresses. The WGCNA analysis showed that GhSCL-8 co-expressed with many abiotic responding related genes in a salt-responding network. The Y2H assays showed that GhSCL-8 could interact with GhSRs in other subfamilies. The subcellular location analysis showed that GhSCL-8 is expressed in the nucleus. The further VIGS assays showed that the silencing of GhSCL-8 could decrease salt tolerance in cotton. These results expand our knowledge of the evolution of the SR gene family in plants, and they will also contribute to the elucidation of the biological functions of SR genes in the future.
Collapse
Affiliation(s)
- Fei Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China;
| | - Pengyun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (P.C.); (H.J.); (X.L.); (H.W.); (H.W.); (T.H.); (L.M.); (X.F.); (J.L.)
| | - Hongliang Jian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (P.C.); (H.J.); (X.L.); (H.W.); (H.W.); (T.H.); (L.M.); (X.F.); (J.L.)
| | - Lu Sun
- Handan Academy of Agricultural Sciences, Handan 056001, China;
| | - Xiaoyan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (P.C.); (H.J.); (X.L.); (H.W.); (H.W.); (T.H.); (L.M.); (X.F.); (J.L.)
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (P.C.); (H.J.); (X.L.); (H.W.); (H.W.); (T.H.); (L.M.); (X.F.); (J.L.)
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (P.C.); (H.J.); (X.L.); (H.W.); (H.W.); (T.H.); (L.M.); (X.F.); (J.L.)
| | - Tingli Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (P.C.); (H.J.); (X.L.); (H.W.); (H.W.); (T.H.); (L.M.); (X.F.); (J.L.)
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (P.C.); (H.J.); (X.L.); (H.W.); (H.W.); (T.H.); (L.M.); (X.F.); (J.L.)
| | - Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (P.C.); (H.J.); (X.L.); (H.W.); (H.W.); (T.H.); (L.M.); (X.F.); (J.L.)
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (P.C.); (H.J.); (X.L.); (H.W.); (H.W.); (T.H.); (L.M.); (X.F.); (J.L.)
| | - Shiyun Li
- Handan Academy of Agricultural Sciences, Handan 056001, China;
- Correspondence: (S.L.); (S.Y.)
| | - Shuxun Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China;
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (P.C.); (H.J.); (X.L.); (H.W.); (H.W.); (T.H.); (L.M.); (X.F.); (J.L.)
- Correspondence: (S.L.); (S.Y.)
| |
Collapse
|
19
|
Park HJ, Jung HM, Lee A, Jo SH, Lee HJ, Kim HS, Jung CK, Min SR, Cho HS. SUMO Modification of OsFKBP20-1b Is Integral to Proper Pre-mRNA Splicing upon Heat Stress in Rice. Int J Mol Sci 2021; 22:ijms22169049. [PMID: 34445755 PMCID: PMC8396655 DOI: 10.3390/ijms22169049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
OsFKBP20-1b, a plant-specific cyclophilin protein, has been implicated to regulate pre-mRNA splicing under stress conditions in rice. Here, we demonstrated that OsFKBP20-1b is SUMOylated in a reconstituted SUMOylation system in E.coli and in planta, and that the SUMOylation-coupled regulation was associated with enhanced protein stability using a less SUMOylated OsFKBP20-1b mutant (5KR_OsFKBP20-1b). Furthermore, OsFKBP20-1b directly interacted with OsSUMO1 and OsSUMO2 in the nucleus and cytoplasm, whereas the less SUMOylated 5KR_OsFKBP20-1b mutant had an impaired interaction with OsSUMO1 and 2 in the cytoplasm but not in the nucleus. Under heat stress, the abundance of an OsFKBP20-1b-GFP fusion protein was substantially increased in the nuclear speckles and cytoplasmic foci, whereas the heat-responsiveness was remarkably diminished in the presence of the less SUMOylated 5KR_OsFKBP20-1b-GFP mutant. The accumulation of endogenous SUMOylated OsFKBP20-1b was enhanced by heat stress in planta. Moreover, 5KR_OsFKBP20-1b was not sufficiently associated with the U snRNAs in the nucleus as a spliceosome component. A protoplast transfection assay indicated that the low SUMOylation level of 5KR_OsFKBP20-1b led to inaccurate alternative splicing and transcription under heat stress. Thus, our results suggest that OsFKBP20-1b is post-translationally regulated by SUMOylation, and the modification is crucial for proper RNA processing in response to heat stress in rice.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
| | - Hae-Myeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Seung-Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
- Department of Functional Genomics, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
| | - Choon-Kyun Jung
- Department of International Agricultural Technology and Crop Biotechnology Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea;
- Department of Agriculture, Forestry, and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sung-Ran Min
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
- Correspondence: (S.-R.M.); (H.-S.C.); Tel.: +82-42-860-4463 (S.-R.M.); +82-42-860-4469 (H.-S.C.)
| | - Hye-Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (S.-R.M.); (H.-S.C.); Tel.: +82-42-860-4463 (S.-R.M.); +82-42-860-4469 (H.-S.C.)
| |
Collapse
|
20
|
Ganie SA, Reddy ASN. Stress-Induced Changes in Alternative Splicing Landscape in Rice: Functional Significance of Splice Isoforms in Stress Tolerance. BIOLOGY 2021; 10:309. [PMID: 33917813 PMCID: PMC8068108 DOI: 10.3390/biology10040309] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022]
Abstract
Improvements in yield and quality of rice are crucial for global food security. However, global rice production is substantially hindered by various biotic and abiotic stresses. Making further improvements in rice yield is a major challenge to the rice research community, which can be accomplished through developing abiotic stress-resilient rice varieties and engineering durable agrochemical-independent pathogen resistance in high-yielding elite rice varieties. This, in turn, needs increased understanding of the mechanisms by which stresses affect rice growth and development. Alternative splicing (AS), a post-transcriptional gene regulatory mechanism, allows rapid changes in the transcriptome and can generate novel regulatory mechanisms to confer plasticity to plant growth and development. Mounting evidence indicates that AS has a prominent role in regulating rice growth and development under stress conditions. Several regulatory and structural genes and splicing factors of rice undergo different types of stress-induced AS events, and the functional significance of some of them in stress tolerance has been defined. Both rice and its pathogens use this complex regulatory mechanism to devise strategies against each other. This review covers the current understanding and evidence for the involvement of AS in biotic and abiotic stress-responsive genes, and its relevance to rice growth and development. Furthermore, we discuss implications of AS for the virulence of different rice pathogens and highlight the areas of further research and potential future avenues to develop climate-smart and disease-resistant rice varieties.
Collapse
Affiliation(s)
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
21
|
Burjoski V, Reddy ASN. The Landscape of RNA-Protein Interactions in Plants: Approaches and Current Status. Int J Mol Sci 2021; 22:2845. [PMID: 33799602 PMCID: PMC7999938 DOI: 10.3390/ijms22062845] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022] Open
Abstract
RNAs transmit information from DNA to encode proteins that perform all cellular processes and regulate gene expression in multiple ways. From the time of synthesis to degradation, RNA molecules are associated with proteins called RNA-binding proteins (RBPs). The RBPs play diverse roles in many aspects of gene expression including pre-mRNA processing and post-transcriptional and translational regulation. In the last decade, the application of modern techniques to identify RNA-protein interactions with individual proteins, RNAs, and the whole transcriptome has led to the discovery of a hidden landscape of these interactions in plants. Global approaches such as RNA interactome capture (RIC) to identify proteins that bind protein-coding transcripts have led to the identification of close to 2000 putative RBPs in plants. Interestingly, many of these were found to be metabolic enzymes with no known canonical RNA-binding domains. Here, we review the methods used to analyze RNA-protein interactions in plants thus far and highlight the understanding of plant RNA-protein interactions these techniques have provided us. We also review some recent protein-centric, RNA-centric, and global approaches developed with non-plant systems and discuss their potential application to plants. We also provide an overview of results from classical studies of RNA-protein interaction in plants and discuss the significance of the increasingly evident ubiquity of RNA-protein interactions for the study of gene regulation and RNA biology in plants.
Collapse
Affiliation(s)
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|