1
|
Li R, Wang F, Wang J. Spatial Metabolomics and Its Application in Plant Research. Int J Mol Sci 2025; 26:3043. [PMID: 40243661 PMCID: PMC11988893 DOI: 10.3390/ijms26073043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Spatial metabolomics, as a frontier technology, is capable of conducting the comprehensive characterization of metabolites within organisms in terms of qualitative, quantitative and positional dimensions, so as to facilitate the visual analysis of biological processes. This paper summarizes the birth and development of spatial metabolomics, explains its differences and advantages from traditional metabolomics and summarizes its application in plant research. In addition, the limitations of spatial metabolomics are summarized and discussed, along with the technological improvement and application innovation of spatial metabolomics, in order to provide reference for the development strategy of spatial metabolomics and its application in plant research.
Collapse
Affiliation(s)
- Rong Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (R.L.); (F.W.)
| | - Fang Wang
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (R.L.); (F.W.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai-Tibet Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
| | - Jian Wang
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (R.L.); (F.W.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai-Tibet Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
| |
Collapse
|
2
|
Wei TL, Wan YT, Liu HN, Pei MS, He GQ, Guo DL. CHH hypermethylation contributes to the early ripening of grapes revealed by DNA methylome landscape of 'Kyoho' and its bud mutant. HORTICULTURE RESEARCH 2025; 12:uhae285. [PMID: 39866961 PMCID: PMC11764089 DOI: 10.1093/hr/uhae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/02/2024] [Indexed: 01/28/2025]
Abstract
DNA methylation is a stable epigenetic mark that plays a crucial role in plant life processes. However, the specific functions of DNA methylation in grape berry development remain largely unknown. In this study, we performed whole-genome bisulfite sequencing on 'Kyoho' grape and its early-ripening bud mutant 'Fengzao' at different developmental stages. Our results revealed that transposons (TEs) and gene flanking regions exhibited high levels of methylation, particularly in 'Fengzao', attributed to CHH site methylation. Interestingly, the methylation patterns in these two cultivars showed distinct dynamics during berry development. While methylation levels of genes and TEs increased gradually in 'Kyoho' throughout berry development, 'Fengzao' did not display consistent changes. Notably, 'Fengzao' exhibited higher methylation levels in promoters compared to 'Kyoho', suggesting that hypermethylation of promoters may contribute to its early ripening phenotype. Integration of methylome and transcriptome data highlighted differentially methylated genes (DMGs) and expressed genes (DEGs) associated with secondary metabolite biosynthesis, with 38 genes identified as potential candidates involved in grape berry development. Furthermore, the study identified a jasmonate-induced oxygenase gene (JOX1) as a negative regulator of ripening in Arabidopsis and grapes, indicating that hypermethylation of JOX1 may play a role in the early ripening of 'Fengzao'. Overall, our findings provide insights into the distinct DNA methylation patterns during grape berry development, shedding light on the epigenetic regulatory mechanisms underlying the early-ripening bud mutant.
Collapse
Affiliation(s)
- Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Yu-Tong Wan
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Guang-Qi He
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| |
Collapse
|
3
|
Chen S, Han J, Wu S, Guo S, Tang Y, Zheng Y, Hu L, Zhang X, Zhang P, Zhang H, Ren G, Gao S. From non-coding RNAs to histone modification: The epigenetic mechanisms in tomato fruit ripening and quality regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109070. [PMID: 39191041 DOI: 10.1016/j.plaphy.2024.109070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/28/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Ripening is one of the most important stages of fruit development and determines the fruit quality. Various factors play a role in this process, with epigenetic mechanisms emerging as important players. Epigenetic regulation encompasses DNA methylation, histone modifications and variants, chromatin remodeling, RNA modifications, and non-coding RNAs. Over the past decade, studies using tomato as a model have made considerable progress in understanding the impact of epigenetic regulation on fleshy fruit ripening and quality. In this paper, we provide an overview of recent advancements in the epigenetic regulation of tomato fruit ripening and quality regulation, focusing on three main mechanisms: DNA/RNA modifications, non-coding RNAs, and histone modifications. Furthermore, we highlight the unresolved issues and challenges within this research field, offering perspectives for future investigations to drive agricultural innovation.
Collapse
Affiliation(s)
- Shengbo Chen
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jiazhen Han
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Shu Wu
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Shangjing Guo
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Yufei Tang
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yujing Zheng
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Lei Hu
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xingxing Zhang
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Peng Zhang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | | | - Guodong Ren
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Shuai Gao
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
4
|
Li YH, Liu C, Xu RZ, Fan YP, Wang JY, Li H, Zhang J, Zhang HJ, Wang JJ, Li DK. Genome-wide analysis of long non-coding RNAs involved in the fruit development process of Cucumis melo Baogua. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1475-1491. [PMID: 39310708 PMCID: PMC11413265 DOI: 10.1007/s12298-024-01507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Melon (Cucumis melo L.) is a horticultural crop that is planted globally. Cucumis melo L. cv. Baogua is a typical melon that is suitable for studying fruit development because of its ability to adapt to different climatic conditions. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs longer than 200 nucleotides, which play important roles in a wide range of biological processes by regulating gene expression. In this study, the transcriptome of the Baogua melon was sequenced at three stages of the process of fruit development (14 days, 21 days, and 28 days) to study the role of lncRNAs in fruit development. The cis and trans lncRNAs were subsequently predicted and identified to determine their target genes. Notably, 1716 high-confidence lncRNAs were obtained in the three groups. A subsequent differential expression analysis of the lncRNAs between the three groups revealed 388 differentially expressed lncRNAs. A total of 11 genes were analyzed further to validate the transcriptome sequencing results. Interestingly, the MELO3C001376.2 and MSTRG.571.2 genes were found to be significantly (P < 0.05) downregulated in the fruits. This study provides a basis to better understand the functions and regulatory mechanisms of lncRNAs during the development of melon fruit.
Collapse
Affiliation(s)
- Ya-hui Li
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Chun Liu
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Run-zhe Xu
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Yu-peng Fan
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Ji-yuan Wang
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Hu Li
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Jian Zhang
- Institute of Vegetables, Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction By Ministry and Province), Anhui Academy of Agricultural Sciences, Huaibei Normal University, Nongke South Road 40, Hefei, 230031 Anhui Province People’s Republic of China
| | - Hui-jun Zhang
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Jing-jing Wang
- Huinan Academy of Agricultural Sciences, Huainan, 232001 Anhui Province People’s Republic of China
| | - Da-kui Li
- Huinan Academy of Agricultural Sciences, Huainan, 232001 Anhui Province People’s Republic of China
| |
Collapse
|
5
|
Yang L, Teng Y, Bu S, Ma B, Guo S, Liang M, Huang L. Effect of SlSAHH2 on metabolites in over-expressed and wild-type tomato fruit. PeerJ 2024; 12:e17466. [PMID: 38827284 PMCID: PMC11143970 DOI: 10.7717/peerj.17466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/05/2024] [Indexed: 06/04/2024] Open
Abstract
Background Tomato (Solanum lycopersicum) is an annual or perennial herb that occupies an important position in daily agricultural production. It is an essential food crop for humans and its ripening process is regulated by a number of genes. S-adenosyl-l-homocysteine hydrolase (AdoHcyase, EC 3.3.1.1) is widespread in organisms and plays an important role in regulating biological methylation reactions. Previous studies have revealed that transgenic tomato that over-express SlSAHH2 ripen earlier than the wild-type (WT). However, the differences in metabolites and the mechanisms driving how these differences affect the ripening cycle are unclear. Objective To investigate the effects of SlSAHH2 on metabolites in over-expressed tomato and WT tomato. Methods SlSAHH2 over-expressed tomato fruit (OE-5# and OE-6#) and WT tomato fruit at the breaker stage (Br) were selected for non-targeted metabolome analysis. Results A total of 733 metabolites were identified by mass spectrometry using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the Human Metabolome database (HMDB). The metabolites were divided into 12 categories based on the superclass results and a comparison with the HMDB. The differences between the two databases were analyzed by PLS-DA. Based on a variable important in projection value >1 and P < 0.05, 103 differential metabolites were found between tomato variety OE-5# and WT and 63 differential metabolites were found between OE-6# and WT. These included dehydrotomatine, L-serine, and gallic acid amongst others. Many metabolites are associated with fruit ripening and eight common metabolites were found between the OE-5# vs. WT and OE-6# vs. WT comparison groups. The low L-tryptophan expression in OE-5# and OE-6# is consistent with previous reports that its content decreases with fruit ripening. A KEGG pathway enrichment analysis of the significantly different metabolites revealed that in the OE-5# and WT groups, up-regulated metabolites were enriched in 23 metabolic pathways and down-regulated metabolites were enriched in 11 metabolic pathways. In the OE-6# and WT groups, up-regulated metabolites were enriched in 29 pathways and down-regulated metabolites were enriched in six metabolic pathways. In addition, the differential metabolite changes in the L-serine to flavonoid transformation metabolic pathway also provide evidence that there is a phenotypic explanation for the changes in transgenic tomato. Discussion The metabolomic mechanism controlling SlSAHH2 promotion of tomato fruit ripening has been further elucidated.
Collapse
Affiliation(s)
- Lu Yang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yue Teng
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Sijia Bu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Ben Ma
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Shijia Guo
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Mengxiao Liang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Lifen Huang
- Majorbio Bio-PharmTechnology Co. Ltd., Shanghai, China
| |
Collapse
|
6
|
Zhao Y, Shi J, Feng B, Yuan S, Yue X, Shi W, Yan Z, Xu D, Zuo J, Wang Q. Multi-omic analysis of the extension of broccoli quality during storage by folic acid. J Adv Res 2024; 59:65-78. [PMID: 37406731 PMCID: PMC11081962 DOI: 10.1016/j.jare.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023] Open
Abstract
INTRODUCTION Folic acid (FA) is a critical metabolite in all living organisms and an important nutritional component of broccoli. Few studies have been conducted on the impact of an exogenous application of FA on the postharvest physiology of fruits and vegetables during storage. In this regard, the mechanism by which an exogenous application of FA extends the postharvest quality of broccoli is unclear. OBJECTIVE This study utilized a multicomponent analysis to investigate how an exogenous application of FA effects the postharvest quality of broccoli. METHODS Broccoli was soaked in 5 mg/L FA for 10 min and the effect of the treatment on the appearance and nutritional quality of broccoli was evaluated. These data were combined with transcriptomic, metabolomic, and DNA methylation data to provide insight into the potential mechanism by which FA delays senescence. RESULTS The FA treatment inhibited the yellowing of broccoli during storage. CHH methylation was identified as the main type of methylation that occurs in broccoli and the FA treatment was found to inhibit DNA methylation, promote the accumulation of endogenous FA and chlorophyl, and inhibit ethylene biosynthesis in stored broccoli. The FA treatment also prevented the formation of off-odors by inhibiting the degradation of glucosinolate. CONCLUSIONS FA treatment inhibited the loss of nutrients during the storage of broccoli, delayed its yellowing, and inhibited the generation of off-odors. Our study provides deeper insight into the mechanism by which the postharvest application of FA delays postharvest senescence in broccoli and provides the foundation for further studies of postharvest metabolism in broccoli.
Collapse
Affiliation(s)
- Yaqi Zhao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Agriculture, Guangxi University, Nanning 530004, China
| | - Junyan Shi
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Bihong Feng
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shuzhi Yuan
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaozhen Yue
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wenlin Shi
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhicheng Yan
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Dongying Xu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
7
|
Jiang G, Li Z, Ding X, Zhou Y, Lai H, Jiang Y, Duan X. WUSCHEL-related homeobox transcription factor SlWOX13 regulates tomato fruit ripening. PLANT PHYSIOLOGY 2024; 194:2322-2337. [PMID: 37995308 DOI: 10.1093/plphys/kiad623] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Fruit ripening is a complex, genetically programmed process involving the action of critical transcription factors (TFs). Despite the established importance of WUSCHEL-related homeobox (WOX) TFs in plant development, the involvement of WOX and its underlying mechanism in the regulation of fruit ripening remain unclear. Here, we demonstrate that SlWOX13 regulates fruit ripening in tomato (Solanum lycopersicum). Overexpression of SlWOX13 accelerates fruit ripening, whereas loss-of-function mutation in SlWOX13 delays this process. Moreover, ethylene synthesis and carotenoid accumulation are significantly inhibited in slwox13 mutant fruit but accelerated in SlWOX13 transgenic fruit. Integrated analyses of RNA-seq and chromatin immunoprecipitation (ChIP)-seq identified 422 direct targets of SlWOX13, of which 243 genes are negatively regulated and 179 are positively regulated by SlWOX13. Electrophoretic mobility shift assay, RT-qPCR, dual-luciferase reporter assay, and ChIP-qPCR analyses demonstrated that SlWOX13 directly activates the expression of several genes involved in ethylene synthesis and signaling and carotenoid biosynthesis. Furthermore, SlWOX13 modulates tomato fruit ripening through key ripening-related TFs, such as RIPENING INHIBITOR (RIN), NON-RIPENING (NOR), and NAM, ATAF1, 2, and CUC2 4 (NAC4). Consequently, these effects promote fruit ripening. Taken together, these results demonstrate that SlWOX13 positively regulates tomato fruit ripening via both ethylene synthesis and signaling and by transcriptional regulation of key ripening-related TFs.
Collapse
Affiliation(s)
- Guoxiang Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Li
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochun Ding
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Yijie Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Hongmei Lai
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueming Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuewu Duan
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Fedorin DN, Eprintsev AT, Igamberdiev AU. The role of promoter methylation of the genes encoding the enzymes metabolizing di- and tricarboxylic acids in the regulation of plant respiration by light. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154195. [PMID: 38377939 DOI: 10.1016/j.jplph.2024.154195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
We discuss the role of epigenetic changes at the level of promoter methylation of the key enzymes of carbon metabolism in the regulation of respiration by light. While the direct regulation of enzymes via modulation of their activity and post-translational modifications is fast and readily reversible, the role of cytosine methylation is important for providing a prolonged response to environmental changes. In addition, adenine methylation can play a role in the regulation of transcription of genes. The mitochondrial and extramitochondrial forms of several enzymes participating in the tricarboxylic acid cycle and associated reactions are regulated via promoter methylation in opposite ways. The mitochondrial forms of citrate synthase, aconitase, fumarase, NAD-malate dehydrogenase are inhibited while the cytosolic forms of aconitase, fumarase, NAD-malate dehydrogenase, and the peroxisomal form of citrate synthase are activated. It is concluded that promoter methylation represents a universal mechanism of the regulation of activity of respiratory enzymes in plant cells by light. The role of the regulation of the mitochondrial and cytosolic forms of respiratory enzymes in the operation of malate and citrate valves and in controlling the redox state and balancing the energy level of photosynthesizing plant cells is discussed.
Collapse
Affiliation(s)
- Dmitry N Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018, Voronezh, Russia.
| | - Alexander T Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018, Voronezh, Russia.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
9
|
Gupta P, Dholaniya PS, Princy K, Madhavan AS, Sreelakshmi Y, Sharma R. Augmenting tomato functional genomics with a genome-wide induced genetic variation resource. FRONTIERS IN PLANT SCIENCE 2024; 14:1290937. [PMID: 38328621 PMCID: PMC10848261 DOI: 10.3389/fpls.2023.1290937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024]
Abstract
Induced mutations accelerate crop improvement by providing novel disease resistance and yield alleles. However, the alleles with no perceptible phenotype but have an altered function remain hidden in mutagenized plants. The whole-genome sequencing (WGS) of mutagenized individuals uncovers the complete spectrum of mutations in the genome. Genome-wide induced mutation resources can improve the targeted breeding of tomatoes and facilitate functional genomics. In this study, we sequenced 132 doubly ethyl methanesulfonate (EMS)-mutagenized lines of tomato and detected approximately 41 million novel mutations and 5.5 million short InDels not present in the parental cultivar. Approximately 97% of the genome had mutations, including the genes, promoters, UTRs, and introns. More than one-third of genes in the mutagenized population had one or more deleterious mutations predicted by Sorting Intolerant From Tolerant (SIFT). Nearly one-fourth of deleterious genes mapped on tomato metabolic pathways modulate multiple pathway steps. In addition to the reported GC>AT transition bias for EMS, our population also had a substantial number of AT>GC transitions. Comparing mutation frequency among synonymous codons revealed that the most preferred codon is the least mutagenic toward EMS. The validation of a potato leaf-like mutation, reduction in carotenoids in ζ-carotene isomerase mutant fruits, and chloroplast relocation loss in phototropin1 mutant validated the mutation discovery pipeline. Our database makes a large repertoire of mutations accessible to functional genomics studies and breeding of tomatoes.
Collapse
Affiliation(s)
- Prateek Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
- Department of Biological Sciences, SRM University-AP, Amaravati, Andhra Pradesh, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Kunnappady Princy
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Athira Sethu Madhavan
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
10
|
Baranov D, Timerbaev V. Recent Advances in Studying the Regulation of Fruit Ripening in Tomato Using Genetic Engineering Approaches. Int J Mol Sci 2024; 25:760. [PMID: 38255834 PMCID: PMC10815249 DOI: 10.3390/ijms25020760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tomato (Solanum lycopersicum L.) is one of the most commercially essential vegetable crops cultivated worldwide. In addition to the nutritional value, tomato is an excellent model for studying climacteric fruits' ripening processes. Despite this, the available natural pool of genes that allows expanding phenotypic diversity is limited, and the difficulties of crossing using classical selection methods when stacking traits increase proportionally with each additional feature. Modern methods of the genetic engineering of tomatoes have extensive potential applications, such as enhancing the expression of existing gene(s), integrating artificial and heterologous gene(s), pointing changes in target gene sequences while keeping allelic combinations characteristic of successful commercial varieties, and many others. However, it is necessary to understand the fundamental principles of the gene molecular regulation involved in tomato fruit ripening for its successful use in creating new varieties. Although the candidate genes mediate ripening have been identified, a complete picture of their relationship has yet to be formed. This review summarizes the latest (2017-2023) achievements related to studying the ripening processes of tomato fruits. This work attempts to systematize the results of various research articles and display the interaction pattern of genes regulating the process of tomato fruit ripening.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
11
|
Wu W, Cao SF, Shi LY, Chen W, Yin XR, Yang ZF. Abscisic acid biosynthesis, metabolism and signaling in ripening fruit. FRONTIERS IN PLANT SCIENCE 2023; 14:1279031. [PMID: 38126013 PMCID: PMC10731311 DOI: 10.3389/fpls.2023.1279031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Fruits are highly recommended nowadays in human diets because they are rich in vitamins, minerals, fibers and other necessary nutrients. The final stage of fruit production, known as ripening, plays a crucial role in determining the fruit's quality and commercial value. This is a complex physiological process, which involves many phytohormones and regulatory factors. Among the phytohormones involved in fruit ripening, abscisic acid (ABA) holds significant importance. ABA levels generally increase during the ripening process in most fruits, and applying ABA externally can enhance fruit flavor, hasten softening, and promote color development through complex signal regulation. Therefore, gaining a deeper understanding of ABA's mechanisms in fruit ripening is valuable for regulating various fruit characteristics, making them more suitable for consumption or storage. This, in turn, can generate greater economic benefits and reduce postharvest losses. This article provides an overview of the relationship between ABA and fruit ripening. It summarizes the effects of ABA on ripening related traits, covering the biochemical aspects and the underlying molecular mechanisms. Additionally, the article discusses the interactions of ABA with other phytohormones during fruit ripening, especially ethylene, and provides perspectives for future exploration in this field.
Collapse
Affiliation(s)
- Wei Wu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Shi-feng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, China
| | - Li-yu Shi
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, China
| | - Wei Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, China
| | - Xue-ren Yin
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen-feng Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, China
| |
Collapse
|
12
|
Wu Q, He Y, Cui C, Tao X, Zhang D, Zhang Y, Ying T, Li L. Quantitative proteomic analysis of tomato fruit ripening behavior in response to exogenous abscisic acid. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7469-7483. [PMID: 37421609 DOI: 10.1002/jsfa.12838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/17/2023] [Accepted: 07/08/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND To determine how abscisic acid (ABA) affects tomato fruit ripening at the protein level, mature green cherry tomato fruit were treated with ABA, nordihydroguaiaretic acid (NDGA) or sterile water (control, CK). The proteomes of treated fruit were analyzed and quantified using tandem mass tags (TMTs) at 7 days after treatment, and the gene transcription abundances of differently expressed proteins (DEPs) were validated with quantitative real-time polymerase chain reaction. RESULTS Postharvest tomato fruit underwent faster color transformation and ripening than the CK when treated with ABA. In total, 6310 proteins were identified among the CK and treatment groups, of which 5359 were quantified. Using a change threshold of 1.2 or 0.83 times, 1081 DEPs were identified. Among them, 127 were upregulated and 127 were downregulated in the ABA versus CK comparison group. According to KEGG and protein-protein interaction network analyses, the ABA-regulated DEPs were primarily concentrated in the photosynthesis system and sugar metabolism pathways, and 102 DEPs associated with phytohormones biosynthesis and signal transduction, pigment synthesis and metabolism, cell wall metabolism, photosynthesis, redox reactions, allergens and defense responses were identified in the ABA versus CK and NDGA versus CK comparison groups. CONCLUSION ABA affects tomato fruit ripening at the protein level to some extent. The results of this study provided comprehensive insights and data for further research on the regulatory mechanism of ABA in tomato fruit ripening. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiong Wu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Yanan He
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Chunxiao Cui
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Xiaoya Tao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Dongdong Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Yurong Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Tiejin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Mejía-Mendoza MA, Garcidueñas-Piña C, Barrera-Figueroa BE, Morales-Domínguez JF. Identification and Profiling Analysis of microRNAs in Guava Fruit ( Psidium guajava L.) and Their Role during Ripening. Genes (Basel) 2023; 14:2029. [PMID: 38002972 PMCID: PMC10670931 DOI: 10.3390/genes14112029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The guava (Psidium guajava L.) is a climacteric fruit with an accelerated post-harvest overripening. miRNAs are small RNA sequences that function as gene regulators in eukaryotes and are essential for their survival and development. In this study, miRNA libraries were constructed, sequenced and analyzed from the breaker and ripe stages of guava fruit cv. Siglo XXI. One hundred and seventy-four mature miRNA sequences from 28 miRNA families were identified. The taxonomic distribution of the guava miRNAs showed a high level of conservation among the dicotyledonous plants. Most of the predicted miRNA target genes were transcription factors and genes involved in the metabolism of phytohormones such as abscisic acid, auxins, and ethylene, as revealed through an ontology enrichment analysis. The miRNA families miR168, miR169, miR396, miR397, and miR482 were classified as being directly associated with maturation, whereas the miRNA families miR160, miR165, miR167, miR3930, miR395, miR398, and miR535 were classified as being indirectly associated. With this study, we intended to increase our knowledge and understanding of the regulatory process involved in the ripening process, thereby providing valuable information for future research on the ripening of guava fruit.
Collapse
Affiliation(s)
- Mario Alejandro Mejía-Mendoza
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes (UAA), Av. Universidad, #940, Ciudad Universitaria, Aguascalientes 20100, Mexico; (M.A.M.-M.); (C.G.-P.)
| | - Cristina Garcidueñas-Piña
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes (UAA), Av. Universidad, #940, Ciudad Universitaria, Aguascalientes 20100, Mexico; (M.A.M.-M.); (C.G.-P.)
| | - Blanca Estela Barrera-Figueroa
- Centro de Investigaciones Científicas, Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Circuito Central #200, Parque Industrial, Tuxtepec 68301, Mexico;
| | - José Francisco Morales-Domínguez
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes (UAA), Av. Universidad, #940, Ciudad Universitaria, Aguascalientes 20100, Mexico; (M.A.M.-M.); (C.G.-P.)
| |
Collapse
|
14
|
Ming Y, Jiang L, Ji D. Epigenetic regulation in tomato fruit ripening. FRONTIERS IN PLANT SCIENCE 2023; 14:1269090. [PMID: 37780524 PMCID: PMC10539587 DOI: 10.3389/fpls.2023.1269090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Fruit ripening is a crucial stage in quality development, influenced by a diverse array of internal and external factors. Among these factors, epigenetic regulation holds significant importance and has garnered substantial research attention in recent years. Here, this review aims to discuss the breakthrough in epigenetic regulation of tomato (Solanum lycopersicum) fruit ripening, including DNA methylation, N6-Methyladenosine mRNA modification, histone demethylation/deacetylation, and non-coding RNA. Through this brief review, we seek to enhance our understanding of the regulatory mechanisms governing tomato fruit ripening, while providing fresh insights for the precise modulation of these mechanisms.
Collapse
Affiliation(s)
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dongchao Ji
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
15
|
Lu R, Song M, Wang Z, Zhai Y, Hu C, Perl A, Ma H. Independent flavonoid and anthocyanin biosynthesis in the flesh of a red-fleshed table grape revealed by metabolome and transcriptome co-analysis. BMC PLANT BIOLOGY 2023; 23:361. [PMID: 37454071 DOI: 10.1186/s12870-023-04368-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Red flesh is a desired fruit trait, but the regulation of red flesh formation in grape is not well understood. 'Mio Red' is a seedless table grape variety with light-red flesh and blue-purple skin. The skin color develops at veraison whereas the flesh color develops at a later stage of berry development. The flesh and skin flavonoid metabolomes and transcriptomes were analyzed. RESULTS A total of 161 flavonoids were identified, including 16 anthocyanins. A total of 66 flavonoids were found at significantly different levels in the flesh and skin (fold change ≥ 2 or ≤ 0.5, variable importance in projection (VIP) ≥ 1). The main anthocyanins in the flesh were pelargonidin and peonidin, and in the skin were peonidin, delphinidin, and petunidin. Transcriptome comparison revealed 57 differentially expressed structural genes of the flavonoid-metabolism pathway (log2fold change ≥ 1, FDR < 0.05, FPKM ≥ 1). Two differentially expressed anthocyanin synthase (ANS) genes were annotated, ANS2 (Vitvi02g00435) with high expression in flesh and ANS1 (Vitvi11g00565) in skin, respectively. One dihydro flavonol 4-reductase (DFR, Vitvi18g00988) gene was differentially expressed although high in both skin and flesh. Screened and correlation analysis of 12 ERF, 9 MYB and 3 bHLH genes. The Y1H and dual luciferase assays showed that MYBA1 highly activates the ANS2 promoter in flesh and that ERFCBF6 was an inhibitory, EFR23 and bHLH93 may activate the DFR gene. These genes may be involved in the regulation of berry flesh color. CONCLUSIONS Our study revealed that anthocyanin biosynthesis in grape flesh is independent of that in the skin. Differentially expressed ANS, MYB and ERF transcription factors provide new clues for the future breeding of table grapes that will provide the health benefits as red wine.
Collapse
Affiliation(s)
- Renxiang Lu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Miaoyu Song
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhe Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanlei Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chaoyang Hu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Avihai Perl
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Wang W, Wang Y, Chen T, Qin G, Tian S. Current insights into posttranscriptional regulation of fleshy fruit ripening. PLANT PHYSIOLOGY 2023; 192:1785-1798. [PMID: 36250906 PMCID: PMC10315313 DOI: 10.1093/plphys/kiac483] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/27/2022] [Indexed: 05/26/2023]
Abstract
Fruit ripening is a complicated process that is accompanied by the formation of fruit quality. It is not only regulated at the transcriptional level via transcription factors or DNA methylation but also fine-tuned after transcription occurs. Here, we review recent advances in our understanding of key regulatory mechanisms of fleshy fruit ripening after transcription. We mainly highlight the typical mechanisms by which fruit ripening is controlled, namely, alternative splicing, mRNA N6-methyladenosine RNA modification methylation, and noncoding RNAs at the posttranscriptional level; regulation of translation efficiency and upstream open reading frame-mediated translational repression at the translational level; and histone modifications, protein phosphorylation, and protein ubiquitination at the posttranslational level. Taken together, these posttranscriptional regulatory mechanisms, along with transcriptional regulation, constitute the molecular framework of fruit ripening. We also critically discuss the potential usage of some mechanisms to improve fruit traits.
Collapse
Affiliation(s)
- Weihao Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuying Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Nguyen TMV, Hertog MLATM, Van de Poel B, Tran DT, Nicolaï B. Targeted system approach to ethylene biosynthesis and signaling of a heat tolerant tomato cultivar; the impact of growing season on fruit ripening. FRONTIERS IN PLANT SCIENCE 2023; 14:1195020. [PMID: 37457344 PMCID: PMC10348052 DOI: 10.3389/fpls.2023.1195020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Growing tomato in hot weather conditions is challenging for fruit production and yield. Tomato cv. Savior is a heat-tolerant cultivar which can be grown during both the Vietnamese winter (mild condition) and summer (hot condition) season. Understanding the mechanisms of ethylene biosynthesis and signaling are important for agriculture, as manipulation of these pathways can lead to improvements in crop yield, stress tolerance, and fruit ripening. The objective of this study was to investigate an overview of ethylene biosynthesis and signaling from target genes to proteins and metabolites and the impact of growing season on a heat tolerant tomato cultivar throughout fruit ripening and postharvest storage. This work also showed the feasibility of absolute protein quantification of ethylene biosynthesis enzymes. Summer fruit showed the delayed peak of ethylene production until the red ripe stage. The difference in postharvest ethylene production between winter and summer fruit appears to be regulated by the difference in accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC) which depends on the putative up-regulation of SAM levels. The lack of differences in protein concentrations between winter and summer fruit indicate that heat stress did not alter the ethylene biosynthesis-related protein abundance in heat tolerant cultivar. The analysis results of enzymatic activity and proteomics showed that in both winter and summer fruit, the majority of ACO activity could be mainly contributed to the abundance of ACO5 and ACO6 isoforms, rather than ACO1. Likewise, ethylene signal transduction was largely controlled by the abundance of ethylene receptors ETR1, ETR3, ETR6, and ETR7 together with the constitute triple response regulator CTR1 for both winter and summer grown tomatoes. Altogether our results indicate that in the heat tolerant tomato cv. Savior, growing season mainly affects the ethylene biosynthesis pathway and leaves the signaling pathway relatively unaffected.
Collapse
Affiliation(s)
- Thao Minh Viet Nguyen
- KU Leuven, BIOSYST-MeBioS Postharvest Lab, Leuven, Belgium
- Vietnam National University of Agriculture, Faculty of Food Science and Technology, Hanoi, Vietnam
- KU Leuven Plant Institute (LPI), Leuven, Belgium
| | - Maarten L. A. T. M. Hertog
- KU Leuven, BIOSYST-MeBioS Postharvest Lab, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Leuven, Belgium
| | - Bram Van de Poel
- KU Leuven Plant Institute (LPI), Leuven, Belgium
- KU Leuven, BIOSYST- Crop Biotechnics, Molecular Plant Hormone Physiology Lab, Leuven, Belgium
| | - Dinh Thi Tran
- Vietnam National University of Agriculture, Faculty of Food Science and Technology, Hanoi, Vietnam
| | - Bart Nicolaï
- KU Leuven, BIOSYST-MeBioS Postharvest Lab, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Leuven, Belgium
- Flanders Centre of Postharvest Technology, Leuven, Belgium
| |
Collapse
|
18
|
Eprintsev AT, Fedorin DN, Igamberdiev AU. Light-Dependent Expression and Promoter Methylation of the Genes Encoding Succinate Dehydrogenase, Fumarase, and NAD-Malate Dehydrogenase in Maize ( Zea mays L.) Leaves. Int J Mol Sci 2023; 24:10211. [PMID: 37373359 DOI: 10.3390/ijms241210211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The expression and methylation of promoters of the genes encoding succinate dehydrogenase, fumarase, and NAD-malate dehydrogenase in maize (Zea mays L.) leaves depending on the light regime were studied. The genes encoding the catalytic subunits of succinate dehydrogenase showed suppression of expression upon irradiation by red light, which was abolished by far-red light. This was accompanied by an increase in promoter methylation of the gene Sdh1-2 encoding the flavoprotein subunit A, while methylation was low for Sdh2-3 encoding the iron-sulfur subunit B under all conditions. The expression of Sdh3-1 and Sdh4 encoding the anchoring subunits C and D was not affected by red light. The expression of Fum1 encoding the mitochondrial form of fumarase was regulated by red and far-red light via methylation of its promoter. Only one gene encoding the mitochondrial NAD-malate dehydrogenase gene (mMdh1) was regulated by red and far-red light, while the second gene (mMdh2) did not respond to irradiation, and neither gene was controlled by promoter methylation. It is concluded that the dicarboxylic branch of the tricarboxylic acid cycle is regulated by light via the phytochrome mechanism, and promoter methylation is involved with the flavoprotein subunit of succinate dehydrogenase and the mitochondrial fumarase.
Collapse
Affiliation(s)
- Alexander T Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Dmitry N Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
19
|
Guo S, Zheng Y, Meng D, Zhao X, Sang Z, Tan J, Deng Z, Lang Z, Zhang B, Wang Q, Bouzayen M, Zuo J. DNA and coding/non-coding RNA methylation analysis provide insights into tomato fruit ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:399-413. [PMID: 36004545 DOI: 10.1111/tpj.15951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Ripening is the last, irreversible developmental stage during which fruit become palatable, thus promoting seed dispersal by frugivory. In Alisa Craig fruit, mRNAs with increasing m5C levels, such as STPK and WRKY 40, were identified as being involved in response to biotic and abiotic stresses. Furthermore, two mRNAs involved in cell wall metabolism, PG and EXP-B1, also presented increased m5C levels. In the Nr mutant, several m5C-modified mRNAs involved in fruit ripening, including those encoding WRKY and MADS-box proteins, were found. Targets of long non-coding RNAs and circular RNAs with different m5C sites were also found; these targets included 2-alkenal reductase, soluble starch synthase 1, WRKY, MADS-box, and F-box/ketch-repeat protein SKIP11. A combined analysis of changes in 5mC methylation and mRNA revealed many differentially expressed genes with differentially methylated regions encoding transcription factors and key enzymes related to ethylene biosynthesis and signal transduction; these included ERF084, EIN3, AP2/ERF, ACO5, ACS7, EIN3/4, EBF1, MADS-box, AP2/ERF, and ETR1. Taken together, our findings contribute to the global understanding of the mechanisms underlying fruit ripening, thereby providing new information for both fruit and post-harvest behavior.
Collapse
Affiliation(s)
- Susu Guo
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yanyan Zheng
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Zhaoze Sang
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Jinjuan Tan
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhiping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo Zhang
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Qing Wang
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Mondher Bouzayen
- Laboratory Genomics and Biotechnology of Fruits, INRA, Toulouse INP, University of Toulouse, Castanet-Tolosan, France
| | - Jinhua Zuo
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
20
|
Chen X, Xu X, Zhang S, Munir N, Zhu C, Zhang Z, Chen Y, Xuhan X, Lin Y, Lai Z. Genome-wide circular RNA profiling and competing endogenous RNA regulatory network analysis provide new insights into the molecular mechanisms underlying early somatic embryogenesis in Dimocarpus longan Lour. TREE PHYSIOLOGY 2022; 42:1876-1898. [PMID: 35313353 DOI: 10.1093/treephys/tpac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Circular RNAs (circRNAs) are widely involved in plant growth and development. However, the function of circRNAs in plant somatic embryogenesis (SE) remains elusive. Here, by using high-throughput sequencing, a total of 5029 circRNAs were identified in the three stages of longan (Dimocarpus longan Lour.) early SE. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that differentially expressed (DE) circRNA host genes were enriched in the 'non-homologous end-joining' (NHEJ) and 'butanoate metabolism' pathways. In addition, the reactive oxygen species (ROS) content during longan early SE was determined. The results indicated that ROS-induced DNA double-strand breaks may not depend on the NHEJ repair pathway. Correlation analyses of the levels of related metabolites (glutamate, γ-aminobutyrate and pyruvate) and the expression levels of circRNAs and their host genes involved in butanoate metabolism were performed. The results suggested that circRNAs may act as regulators of the expression of cognate mRNAs, thereby affecting the accumulation of related compounds. A competing endogenous RNA (ceRNA) network of DE circRNAs, DE mRNAs, DE long noncoding RNAs (lncRNAs) and DE microRNAs (miRNAs) was constructed. The results showed that the putative targets of the noncoding RNA (ncRNAs) were significantly enriched in the KEGG pathways 'mitogen-activated protein kinase signaling' and 'nitrogen metabolism'. Furthermore, the expression patterns of the candidate circRNAs, lncRNAs, miRNAs and mRNAs confirmed the negative correlation between miRNAs and ceRNAs. In addition, two circRNA overexpression vectors were constructed to further verify the ceRNA network correlations in longan early SE. Our study revealed the potential role of circRNAs in longan early SE, providing new insights into the intricate regulatory mechanism underlying plant SE.
Collapse
Affiliation(s)
- Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Shuting Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Nigarish Munir
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Chen Zhu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Xu Xuhan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300 Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| |
Collapse
|
21
|
Genome-wide identification and characterization of long noncoding RNAs during peach (Prunus persica) fruit development and ripening. Sci Rep 2022; 12:11044. [PMID: 35773470 PMCID: PMC9247041 DOI: 10.1038/s41598-022-15330-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
LncRNAs represent a class of RNA transcripts of more than 200 nucleotides (nt) in length without discernible protein-coding potential. The expression levels of lncRNAs are significantly affected by stress or developmental cues. Recent studies have shown that lncRNAs participate in fruit development and ripening processes in tomato and strawberry; however, in other fleshy fruits, the association between lncRNAs and fruit ripening remains largely elusive. Here, we constructed 9 ssRNA-Seq libraries from three different peach (Prunus persica) fruit developmental stages comprising the first and second exponential stages and the fruit-ripening stage. In total, 1500 confident lncRNAs from 887 loci were obtained according to the bioinformatics analysis. The lncRNAs identified in peach fruits showed distinct characteristics compared with protein-coding mRNAs, including lower expression levels, lower complexity of alternative splicing, shorter isoforms and smaller numbers of exons. Expression analysis identified 575 differentially expressed lncRNAs (DELs) classified into 6 clusters, among which members of Clusters 1, 2, 4 and 5 were putatively associated with fruit development and ripening processes. Quantitative real-time PCR revealed that the DELs indeed had stage-specific expression patterns in peach fruits. GO and KEGG enrichment analysis revealed that DELs might be associated with fruit-ripening-related physiological and metabolic changes, such as flavonoid biosynthesis, fruit texture softening, chlorophyll breakdown and aroma compound accumulation. Finally, the similarity analysis of lncRNAs within different plant species indicated the low sequence conservation of lncRNAs. Our study reports a large number of fruit-expressed lncRNAs and identifies fruit development phase-specific expressed lncRNA members, which highlights their potential functions in fruit development and ripening processes and lays the foundations for future functional research.
Collapse
|
22
|
Baldrich P, Bélanger S, Kong S, Pokhrel S, Tamim S, Teng C, Schiebout C, Gurazada SGR, Gupta P, Patel P, Razifard H, Nakano M, Dusia A, Meyers BC, Frank MH. The evolutionary history of small RNAs in Solanaceae. PLANT PHYSIOLOGY 2022; 189:644-665. [PMID: 35642548 PMCID: PMC9157080 DOI: 10.1093/plphys/kiac089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/07/2022] [Indexed: 06/01/2023]
Abstract
The Solanaceae or "nightshade" family is an economically important group with remarkable diversity. To gain a better understanding of how the unique biology of the Solanaceae relates to the family's small RNA (sRNA) genomic landscape, we downloaded over 255 publicly available sRNA data sets that comprise over 2.6 billion reads of sequence data. We applied a suite of computational tools to predict and annotate two major sRNA classes: (1) microRNAs (miRNAs), typically 20- to 22-nucleotide (nt) RNAs generated from a hairpin precursor and functioning in gene silencing and (2) short interfering RNAs (siRNAs), including 24-nt heterochromatic siRNAs typically functioning to repress repetitive regions of the genome via RNA-directed DNA methylation, as well as secondary phased siRNAs and trans-acting siRNAs generated via miRNA-directed cleavage of a polymerase II-derived RNA precursor. Our analyses described thousands of sRNA loci, including poorly understood clusters of 22-nt siRNAs that accumulate during viral infection. The birth, death, expansion, and contraction of these sRNA loci are dynamic evolutionary processes that characterize the Solanaceae family. These analyses indicate that individuals within the same genus share similar sRNA landscapes, whereas comparisons between distinct genera within the Solanaceae reveal relatively few commonalities.
Collapse
Affiliation(s)
- Patricia Baldrich
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | | - Shuyao Kong
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Suresh Pokhrel
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri 65211, USA
| | - Saleh Tamim
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19711, USA
| | - Chong Teng
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | | - Sai Guna Ranjan Gurazada
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19711, USA
- Corteva Agriscience, Wilmington, Delaware 19805, USA
| | - Pallavi Gupta
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- Institute for Data Science & Informatics, University of Missouri, Columbia, Missouri 65211, USA
| | - Parth Patel
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19711, USA
| | - Hamid Razifard
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Mayumi Nakano
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Ayush Dusia
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19711, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri 65211, USA
| | - Margaret H Frank
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| |
Collapse
|
23
|
Bianchetti R, Bellora N, de Haro LA, Zuccarelli R, Rosado D, Freschi L, Rossi M, Bermudez L. Phytochrome-Mediated Light Perception Affects Fruit Development and Ripening Through Epigenetic Mechanisms. FRONTIERS IN PLANT SCIENCE 2022; 13:870974. [PMID: 35574124 PMCID: PMC9096621 DOI: 10.3389/fpls.2022.870974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Phytochrome (PHY)-mediated light and temperature perception has been increasingly implicated as important regulator of fruit development, ripening, and nutritional quality. Fruit ripening is also critically regulated by chromatin remodeling via DNA demethylation, though the molecular basis connecting epigenetic modifications in fruits and environmental cues remains largely unknown. Here, to unravel whether the PHY-dependent regulation of fruit development involves epigenetic mechanisms, an integrative analysis of the methylome, transcriptome and sRNAome of tomato fruits from phyA single and phyB1B2 double mutants was performed in immature green (IG) and breaker (BK) stages. The transcriptome analysis showed that PHY-mediated light perception regulates more genes in BK than in the early stages of fruit development (IG) and that PHYB1B2 has a more substantial impact than PHYA in the fruit transcriptome, in both analyzed stages. The global profile of methylated cytosines revealed that both PHYA and PHYB1B2 affect the global methylome, but PHYB1B2 has a greater impact on ripening-associated methylation reprogramming across gene-rich genomic regions in tomato fruits. Remarkably, promoters of master ripening-associated transcription factors (TF) (RIN, NOR, CNR, and AP2a) and key carotenoid biosynthetic genes (PSY1, PDS, ZISO, and ZDS) remained highly methylated in phyB1B2 from the IG to BK stage. The positional distribution and enrichment of TF binding sites were analyzed over the promoter region of the phyB1B2 DEGs, exposing an overrepresentation of binding sites for RIN as well as the PHY-downstream effectors PIFs and HY5/HYH. Moreover, phyA and phyB1B2 mutants showed a positive correlation between the methylation level of sRNA cluster-targeted genome regions in gene bodies and mRNA levels. The experimental evidence indicates that PHYB1B2 signal transduction is mediated by a gene expression network involving chromatin organization factors (DNA methylases/demethylases, histone-modifying enzymes, and remodeling factors) and transcriptional regulators leading to altered mRNA profile of ripening-associated genes. This new level of understanding provides insights into the orchestration of epigenetic mechanisms in response to environmental cues affecting agronomical traits.
Collapse
Affiliation(s)
- Ricardo Bianchetti
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Nicolas Bellora
- Institute of Nuclear Technologies for Health (Intecnus), National Scientific and Technical Research Council (CONICET), Bariloche, Argentina
| | - Luis A. de Haro
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Rafael Zuccarelli
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Daniele Rosado
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luisa Bermudez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, INTA-CONICET, Castelar, Argentina
- Cátedra de Genética, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
24
|
Zumajo-Cardona C, Ambrose BA. Fleshy or dry: transcriptome analyses reveal the genetic mechanisms underlying bract development in Ephedra. EvoDevo 2022; 13:10. [PMID: 35477429 PMCID: PMC9047513 DOI: 10.1186/s13227-022-00195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gnetales have a key phylogenetic position in the evolution of seed plants. Among the Gnetales, there is an extraordinary morphological diversity of seeds, the genus Ephedra, in particular, exhibits fleshy, coriaceous or winged (dry) seeds. Despite this striking diversity, its underlying genetic mechanisms remain poorly understood due to the limited studies in gymnosperms. Expanding the genomic and developmental data from gymnosperms contributes to a better understanding of seed evolution and development. RESULTS We performed transcriptome analyses on different plant tissues of two Ephedra species with different seed morphologies. Anatomical observations in early developing ovules, show that differences in the seed morphologies are established early in their development. The transcriptomic analyses in dry-seeded Ephedra californica and fleshy-seeded Ephedra antisyphilitica, allowed us to identify the major differences between the differentially expressed genes in these species. We detected several genes known to be involved in fruit ripening as upregulated in the fleshy seed of Ephedra antisyphilitica. CONCLUSIONS This study allowed us to determine the differentially expressed genes involved in seed development of two Ephedra species. Furthermore, the results of this study of seeds with the enigmatic morphology in Ephedra californica and Ephedra antisyphilitica, allowed us to corroborate the hypothesis which suggest that the extra envelopes covering the seeds of Gnetales are not genetically similar to integument. Our results highlight the importance of carrying out studies on less explored species such as gymnosperms, to gain a better understanding of the evolutionary history of plants.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY, USA.,The Graduate Center, City University of New York, New York, NY, USA
| | - Barbara A Ambrose
- New York Botanical Garden, Bronx, NY, USA. .,The Graduate Center, City University of New York, New York, NY, USA.
| |
Collapse
|
25
|
Fàbregas N, Fernie AR. The reliance of phytohormone biosynthesis on primary metabolite precursors. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153589. [PMID: 34896926 DOI: 10.1016/j.jplph.2021.153589] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 05/07/2023]
Abstract
There is some debate as to whether phytohormone metabolites should be classified as primary or secondary metabolites. Phytohormones have profound effects on growth - a typical trait of primary metabolites - yet several of them are formed from secondary metabolite precursors. This is further exacerbated by the blurred distinction between primary and secondary metabolism. What is clearer, however, is that phytohormones display distinctive regulatory mechanisms from other metabolites. Moreover, by contrast to microbial and mammalian systems, the majority of plant metabolite receptors characterized to date are hormone receptors. Here, we provide an overview of the metabolic links between primary metabolism and phytohormone biosynthesis in an attempt to complement recent reviews covering the signaling crosstalk between elements of core metabolism and the phytohormones. In doing so, we cover the biosynthesis of both the classical metabolic phytohormones namely auxins, salicylic acid, jasmonate, ethylene, cytokinins, brassinosteroids, gibberellins and abscisic acid as well as recently described plant growth regulators which have been proposed as novel phytohormones namely strigolactones blumenols, zaxinone and β-cyclocitral as well as melatonin. For each hormone, we describe the primary metabolite precursors which fuel its synthesis, act as conjugates or in the case of 2-oxoglutarate act more directly as a co-substrate in the biosynthesis of gibberellin, auxin and salicylic acid. Furthermore, several amino acids operate as hormone conjugates, such as jasmonate-conjugates. In reviewing the biosynthesis of all the phytohormones simultaneously, the exceptional intricacy of the biochemical interplay that underpins their interaction emerges.
Collapse
Affiliation(s)
- Norma Fàbregas
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany.
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
26
|
Gupta C, Salgotra RK. Epigenetics and its role in effecting agronomical traits. FRONTIERS IN PLANT SCIENCE 2022; 13:925688. [PMID: 36046583 PMCID: PMC9421166 DOI: 10.3389/fpls.2022.925688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 05/16/2023]
Abstract
Climate-resilient crops with improved adaptation to the changing climate are urgently needed to feed the growing population. Hence, developing high-yielding crop varieties with better agronomic traits is one of the most critical issues in agricultural research. These are vital to enhancing yield as well as resistance to harsh conditions, both of which help farmers over time. The majority of agronomic traits are quantitative and are subject to intricate genetic control, thereby obstructing crop improvement. Plant epibreeding is the utilisation of epigenetic variation for crop development, and has a wide range of applications in the field of crop improvement. Epigenetics refers to changes in gene expression that are heritable and induced by methylation of DNA, post-translational modifications of histones or RNA interference rather than an alteration in the underlying sequence of DNA. The epigenetic modifications influence gene expression by changing the state of chromatin, which underpins plant growth and dictates phenotypic responsiveness for extrinsic and intrinsic inputs. Epigenetic modifications, in addition to DNA sequence variation, improve breeding by giving useful markers. Also, it takes epigenome diversity into account to predict plant performance and increase crop production. In this review, emphasis has been given for summarising the role of epigenetic changes in epibreeding for crop improvement.
Collapse
|
27
|
Identification of Long Non-Coding RNAs Associated with Tomato Fruit Expansion and Ripening by Strand-Specific Paired-End RNA Sequencing. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As emerging essential regulators in plant development, long non-coding RNAs (lncRNAs) have been extensively investigated in multiple horticultural crops, as well as in different tissues of plants. Tomato fruits are an indispensable part of people’s diet and are consumed as fruits and vegetables. Meanwhile, tomato is widely used as a model to study the ripening mechanism in fleshy fruit. Although increasing evidence shows that lncRNAs are involved in lots of biological processes in tomato plants, the comprehensive identification of lncRNAs in tomato fruit during its expansion and ripening and their functions are partially known. Here, we performed strand-specific paired-end RNA sequencing (ssRNA-seq) of tomato Heinz1706 fruits at five different developmental stages, as well as flowers and leaves. We identified 17,674 putative lncRNAs by referencing the recently released SL4.0 and annotation ITAG4.0 in tomato plants. Many lncRNAs show different expression patterns in fleshy fruit at different developmental stages compared with leaves or flowers. Our results indicate that lncRNAs play an important role in the regulation of tomato fruit expansion and ripening, providing informative lncRNA candidates for further studies in tomato fruits. In addition, we also summarize the recent advanced progress in lncRNAs mediated regulation on horticultural fruits. Hence, our study updates the understanding of lncRNAs in horticultural plants and provides resources for future studies relating to the expansion and ripening of tomato fruits.
Collapse
|
28
|
Brumos J. Gene regulation in climacteric fruit ripening. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102042. [PMID: 33971378 DOI: 10.1016/j.pbi.2021.102042] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Seed dispersion and consequent plant propagation depend on the success of fruit ripening. Thus, ripening is a highly regulated developmental process aiming to maximize fruit organoleptic traits to attract herbivores. During ripening, the developing fruit experiences dramatic modifications, including color change, flavor improvement, and loss of firmness that are remarkably coordinated. Dynamic interactions between multiple hormones, transcription factors, and epigenetic modifications establish the complex regulatory network that controls the expression levels of ripening-related genes. Tomato, as a climacteric fruit, displays a burst of respiration once the seeds mature, followed by an increase in ethylene that regulates ripening. The accepted paradigm of the ripening transcriptional regulation has been recently challenged by the generation of true-null mutants of the previously considered master regulators of ripening. In addition to hormonal and transcriptional control, epigenetic shifts regulate the ripening process. Future research will contribute to better understanding the factors regulating fruit ripening.
Collapse
Affiliation(s)
- Javier Brumos
- Institute of Molecular and Cellular Biology of Plants, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
29
|
Pan H, Lyu S, Chen Y, Xu S, Ye J, Chen G, Wu S, Li X, Chen J, Pan D. MicroRNAs and Transcripts Associated with an Early Ripening Mutant of Pomelo ( Citrus grandis Osbeck). Int J Mol Sci 2021; 22:9348. [PMID: 34502256 PMCID: PMC8431688 DOI: 10.3390/ijms22179348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
'Liuyuezaoyou' is an early-ripening cultivar selected from a bud mutation of Citrus grandis Osbeck 'Guanximiyou'. They were designated here as MT and WT, respectively. The fruit of MT matures about 45 days earlier than WT, which was accompanied by significant changes in key phytohormones, sugar compounds and organic acids. Recent studies have showed that microRNAs (miRNAs) play an important role in regulation of fruit ripening process. The aim of this study was to compare MT fruits with WT ones to uncover if miRNAs were implicated in the ripening of C. grandis. Fruits of both WT and MT at four developmental stages were analyzed using high-throughput sequencing and RT-PCR. Several independent miRNA libraries were constructed and sequenced. A total of 747 known miRNAs were identified and 99 novel miRNAs were predicted across all libraries. The novel miRNAs were found to have hairpin structures and possess star sequences. These results showed that transcriptome and miRNAs are substantially involved in a complex and comprehensive network in regulation of fruit ripening of this species. Further analysis of the network model revealed intricate interactions of miRNAs with mRNAs during the fleshy fruit ripening process. Several identified miRNAs have potential targets. These include auxin-responsive protein IAA9, sucrose synthase 3, V-type proton ATPase, NCED1 (ABA biosynthesis) and PL1/5 (pectate lyase genes), as well as NAC100 putative coordinated regulation networks, whose interactions with respective miRNAs may contribute significantly to fruit ripening of C. grandis.
Collapse
Affiliation(s)
- Heli Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.P.); (S.L.); (Y.C.); (S.X.); (G.C.); (S.W.); (X.L.)
| | - Shiheng Lyu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.P.); (S.L.); (Y.C.); (S.X.); (G.C.); (S.W.); (X.L.)
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703, USA
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Yanqiong Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.P.); (S.L.); (Y.C.); (S.X.); (G.C.); (S.W.); (X.L.)
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Shirong Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.P.); (S.L.); (Y.C.); (S.X.); (G.C.); (S.W.); (X.L.)
| | - Jianwen Ye
- Agricultural and Rural Bureau of Pinghe County, Zhangzhou 363700, China;
| | - Guixin Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.P.); (S.L.); (Y.C.); (S.X.); (G.C.); (S.W.); (X.L.)
| | - Shaohua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.P.); (S.L.); (Y.C.); (S.X.); (G.C.); (S.W.); (X.L.)
| | - Xiaoting Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.P.); (S.L.); (Y.C.); (S.X.); (G.C.); (S.W.); (X.L.)
| | - Jianjun Chen
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703, USA
| | - Dongming Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.P.); (S.L.); (Y.C.); (S.X.); (G.C.); (S.W.); (X.L.)
| |
Collapse
|
30
|
Kakoulidou I, Avramidou EV, Baránek M, Brunel-Muguet S, Farrona S, Johannes F, Kaiserli E, Lieberman-Lazarovich M, Martinelli F, Mladenov V, Testillano PS, Vassileva V, Maury S. Epigenetics for Crop Improvement in Times of Global Change. BIOLOGY 2021; 10:766. [PMID: 34439998 PMCID: PMC8389687 DOI: 10.3390/biology10080766] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Epigenetics has emerged as an important research field for crop improvement under the on-going climatic changes. Heritable epigenetic changes can arise independently of DNA sequence alterations and have been associated with altered gene expression and transmitted phenotypic variation. By modulating plant development and physiological responses to environmental conditions, epigenetic diversity-naturally, genetically, chemically, or environmentally induced-can help optimise crop traits in an era challenged by global climate change. Beyond DNA sequence variation, the epigenetic modifications may contribute to breeding by providing useful markers and allowing the use of epigenome diversity to predict plant performance and increase final crop production. Given the difficulties in transferring the knowledge of the epigenetic mechanisms from model plants to crops, various strategies have emerged. Among those strategies are modelling frameworks dedicated to predicting epigenetically controlled-adaptive traits, the use of epigenetics for in vitro regeneration to accelerate crop breeding, and changes of specific epigenetic marks that modulate gene expression of traits of interest. The key challenge that agriculture faces in the 21st century is to increase crop production by speeding up the breeding of resilient crop species. Therefore, epigenetics provides fundamental molecular information with potential direct applications in crop enhancement, tolerance, and adaptation within the context of climate change.
Collapse
Affiliation(s)
- Ioanna Kakoulidou
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
| | - Evangelia V. Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-Dimitra (ELGO-DIMITRA), 11528 Athens, Greece;
| | - Miroslav Baránek
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Valtická 334, 69144 Lednice, Czech Republic;
| | - Sophie Brunel-Muguet
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, UNICAEN, INRAE, Normandie Université, CEDEX, F-14032 Caen, France;
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, National University of Ireland (NUI) Galway, H91 TK33 Galway, Ireland;
| | - Frank Johannes
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
- Institute for Advanced Study, Technical University of Munich, Lichtenberg Str. 2a, 85748 Garching, Germany
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Centro de Investigaciones Biológicas Margarita Salas-(CIB-CSIC), Ramiro Maeztu 9, 28040 Madrid, Spain;
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria;
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE, EA1207 USC1328, Université d’Orléans, F-45067 Orléans, France
| |
Collapse
|
31
|
Cai J, Wu Z, Hao Y, Liu Y, Song Z, Chen W, Li X, Zhu X. Small RNAs, Degradome, and Transcriptome Sequencing Provide Insights into Papaya Fruit Ripening Regulated by 1-MCP. Foods 2021; 10:1643. [PMID: 34359513 PMCID: PMC8303378 DOI: 10.3390/foods10071643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
As an inhibitor of ethylene receptors, 1-methylcyclopropene (1-MCP) can delay the ripening of papaya. However, improper 1-MCP treatment will cause a rubbery texture in papaya. Understanding of the underlying mechanism is still lacking. In the present work, a comparative sRNA analysis was conducted after different 1-MCP treatments and identified a total of 213 miRNAs, of which 44 were known miRNAs and 169 were novel miRNAs in papaya. Comprehensive functional enrichment analysis indicated that plant hormone signal pathways play an important role in fruit ripening. Through the comparative analysis of sRNAs and transcriptome sequencing, a total of 11 miRNAs and 12 target genes were associated with the ethylene and auxin signaling pathways. A total of 1741 target genes of miRNAs were identified by degradome sequencing, and nine miRNAs and eight miRNAs were differentially expressed under the ethylene and auxin signaling pathways, respectively. The network regulation diagram of miRNAs and target genes during fruit ripening was drawn. The expression of 11 miRNAs and 12 target genes was verified by RT-qPCR. The target gene verification showed that cpa-miR390a and cpa-miR396 target CpARF19-like and CpERF RAP2-12-like, respectively, affecting the ethylene and auxin signaling pathways and, therefore, papaya ripening.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoyang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Z.W.); (Y.H.); (Y.L.); (Z.S.); (W.C.); (X.L.)
| |
Collapse
|
32
|
NGS Methodologies and Computational Algorithms for the Prediction and Analysis of Plant Circular RNAs. Methods Mol Biol 2021; 2362:119-145. [PMID: 34195961 DOI: 10.1007/978-1-0716-1645-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Circular RNAs (circRNAs) are a class of single-stranded RNAs derived from exonic, intronic, and intergenic regions from precursor messenger RNAs (pre-mRNA), where a noncanonical back-splicing event occurs, in which the 5' and 3' ends are attached by covalent bond. CircRNAs participate in the regulation of gene expression at the transcriptional and posttranscriptional level primarily as miRNA and RNA-binding protein (RBP) sponges, but also involved in the regulation of alternative RNA splicing and transcription. CircRNAs are widespread and abundant in plants where they have been involved in stress responses and development. Through the analysis of all publications in this field in the last five years, we can summarize that the identification of these molecules is carried out through next generation sequencing studies, where samples have been previously treated to eliminate DNA, rRNA, and linear RNAs as a means to enrich circRNAs. Once libraries are prepared, they are sequenced and subsequently studied from a bioinformatics point of view. Among the different tools for identifying circRNAs, we can highlight CIRI as the most used (in 60% of the published studies), as well as CIRCExplorer (20%) and find_circ (20%). Although it is recommended to use more than one program in combination, and preferably developed specifically to treat with plant samples, this is not always the case. It should also be noted that after identifying these circular RNAs, most of the authors validate their findings in the laboratory in order to obtain bona fide results.
Collapse
|
33
|
Yang X, Zhang X, Yang Y, Zhang H, Zhu W, Nie WF. The histone variant Sl_H2A.Z regulates carotenoid biosynthesis and gene expression during tomato fruit ripening. HORTICULTURE RESEARCH 2021; 8:85. [PMID: 33790255 PMCID: PMC8012623 DOI: 10.1038/s41438-021-00520-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 05/03/2023]
Abstract
The conserved histone variant H2A.Z is essential for transcriptional regulation; defense responses; and various biological processes in plants, such as growth, development, and flowering. However, little is known about how H2A.Z affects the developmental process and ripening of tomato fruits. Here, we utilized the CRISPR/Cas9 gene-editing system to generate a sl_hta9 sl_hta11 double-mutant, designated sl_h2a.z, and found that these two mutations led to a significant reduction in the fresh weight of tomato fruits. Subsequent messenger RNA (mRNA)-seq results showed that dysfunction of Sl_H2A.Z has profound effects on the reprogramming of genome-wide gene expression at different developmental stages of tomato fruits, indicating a ripening-dependent correlation between Sl_H2A.Z and gene expression regulation in tomato fruits. In addition, the expression of three genes, SlPSY1, SlPDS, and SlVDE, encoding the key enzymes in the biosynthesis pathway of carotenoids, was significantly upregulated in the later ripening stages, which was consistent with the increased contents of carotenoids in sl_h2a.z double-mutant fruits. Overall, our study reveals a role of Sl_H2A.Z in the regulation of carotenoids and provides a resource for the study of Sl_H2A.Z-dependent gene expression regulation. Hence, our results provide a link between epigenetic regulation via histone variants and fruit development, suggesting a conceptual framework to understand how histone variants regulate tomato fruit quality.
Collapse
Affiliation(s)
- Xuedong Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, 201403, Shanghai, China
| | - Xuelian Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, 201403, Shanghai, China
| | - Youxin Yang
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, 330045, Nanchang, Jiangxi, China
| | - Hui Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, 201403, Shanghai, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, 201403, Shanghai, China.
| | - Wen-Feng Nie
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, Jiangsu, China.
| |
Collapse
|
34
|
Pattyn J, Vaughan‐Hirsch J, Van de Poel B. The regulation of ethylene biosynthesis: a complex multilevel control circuitry. THE NEW PHYTOLOGIST 2021; 229:770-782. [PMID: 32790878 PMCID: PMC7820975 DOI: 10.1111/nph.16873] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/04/2020] [Indexed: 05/06/2023]
Abstract
The gaseous plant hormone ethylene is produced by a fairly simple two-step biosynthesis route. Despite this pathway's simplicity, recent molecular and genetic studies have revealed that the regulation of ethylene biosynthesis is far more complex and occurs at different layers. Ethylene production is intimately linked with the homeostasis of its general precursor S-adenosyl-l-methionine (SAM), which experiences transcriptional and posttranslational control of its synthesising enzymes (SAM synthetase), as well as the metabolic flux through the adjacent Yang cycle. Ethylene biosynthesis continues from SAM by two dedicated enzymes: 1-aminocyclopropane-1-carboxylic (ACC) synthase (ACS) and ACC oxidase (ACO). Although the transcriptional dynamics of ACS and ACO have been well documented, the first transcription factors that control ACS and ACO expression have only recently been discovered. Both ACS and ACO display a type-specific posttranslational regulation that controls protein stability and activity. The nonproteinogenic amino acid ACC also shows a tight level of control through conjugation and translocation. Different players in ACC conjugation and transport have been identified over the years, however their molecular regulation and biological significance is unclear, yet relevant, as ACC can also signal independently of ethylene. In this review, we bring together historical reports and the latest findings on the complex regulation of the ethylene biosynthesis pathway in plants.
Collapse
Affiliation(s)
- Jolien Pattyn
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| | - John Vaughan‐Hirsch
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| |
Collapse
|
35
|
Hewitt S, Dhingra A. Beyond Ethylene: New Insights Regarding the Role of Alternative Oxidase in the Respiratory Climacteric. FRONTIERS IN PLANT SCIENCE 2020; 11:543958. [PMID: 33193478 PMCID: PMC7652990 DOI: 10.3389/fpls.2020.543958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Climacteric fruits are characterized by a dramatic increase in autocatalytic ethylene production that is accompanied by a spike in respiration at the onset of ripening. The change in the mode of ethylene production from autoinhibitory to autostimulatory is known as the System 1 (S1) to System 2 (S2) transition. Existing physiological models explain the basic and overarching genetic, hormonal, and transcriptional regulatory mechanisms governing the S1 to S2 transition of climacteric fruit. However, the links between ethylene and respiration, the two main factors that characterize the respiratory climacteric, have not been examined in detail at the molecular level. Results of recent studies indicate that the alternative oxidase (AOX) respiratory pathway may play an essential role in mediating cross-talk between ethylene response, carbon metabolism, ATP production, and ROS signaling during climacteric ripening. New genomic, metabolic, and epigenetic information sheds light on the interconnectedness of ripening metabolic pathways, necessitating an expansion of the current, ethylene-centric physiological models. Understanding points at which ripening responses can be manipulated may reveal key, species- and cultivar-specific targets for regulation of ripening, enabling superior strategies for reducing postharvest wastage.
Collapse
Affiliation(s)
- Seanna Hewitt
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Amit Dhingra
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
36
|
Vats S, Bansal R, Rana N, Kumawat S, Bhatt V, Jadhav P, Kale V, Sathe A, Sonah H, Jugdaohsingh R, Sharma TR, Deshmukh R. Unexplored nutritive potential of tomato to combat global malnutrition. Crit Rev Food Sci Nutr 2020; 62:1003-1034. [PMID: 33086895 DOI: 10.1080/10408398.2020.1832954] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tomato, a widely consumed vegetable crop, offers a real potential to combat human nutritional deficiencies. Tomatoes are rich in micronutrients and other bioactive compounds (including vitamins, carotenoids, and minerals) that are known to be essential or beneficial for human health. This review highlights the current state of the art in the molecular understanding of the nutritional aspects, conventional and molecular breeding efforts, and biofortification studies undertaken to improve the nutritional content and quality of tomato. Transcriptomics and metabolomics studies, which offer a deeper understanding of the molecular regulation of the tomato's nutrients, are discussed. The potential uses of the wastes from the tomato processing industry (i.e., the peels and seed extracts) that are particularly rich in oils and proteins are also discussed. Recent advancements with CRISPR/Cas mediated gene-editing technology provide enormous opportunities to enhance the nutritional content of agricultural produces, including tomatoes. In this regard, genome editing efforts with respect to biofortification in the tomato plant are also discussed. The recent technological advancements and knowledge gaps described herein aim to help explore the unexplored nutritional potential of the tomato.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ruchi Bansal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Nitika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Vacha Bhatt
- Department of Botany, Savitribai Phule Pune University, Pune, MS, India
| | - Pravin Jadhav
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS, India
| | - Vijay Kale
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS, India
| | - Atul Sathe
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ravin Jugdaohsingh
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
37
|
Jacobs DM, van den Berg MA, Hall RD. Towards superior plant-based foods using metabolomics. Curr Opin Biotechnol 2020; 70:23-28. [PMID: 33086174 DOI: 10.1016/j.copbio.2020.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022]
Abstract
Metabolomics is proving a useful approach for many of the main future goals in agronomy and food production such as sustainability/crop resilience, food quality, safety, storage, and nutrition. Targeted and/or untargeted small-molecule analysis, coupled to chemometric analysis, has already unveiled a great deal of the complexity of plant-based foods, but there is still 'dark matter' to be discovered. Moreover, state-of-the-art food metabolomics offers insights into the molecular mechanisms underlying sensorial and nutritional characteristics of foods and thus enables higher precision and speed. This review describes recent applications of food metabolomics from fork to farm and focuses on the opportunities these bring to continue food innovation and support the shift to plant-based foods.
Collapse
Affiliation(s)
- Doris M Jacobs
- Unilever Foods Innovation Center, Bronland 14, 6708 WH Wageningen, Netherlands.
| | - Marco A van den Berg
- DSM Biotechnology Center, Biotech Campus Delft, Alexander Fleminglaan 1, Delft, 2613 AX, Netherlands
| | - Robert D Hall
- Business Unit Bioscience, Wageningen University & Research and Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, Netherlands
| |
Collapse
|