1
|
Mathieu S, Lesch E, Garcia S, Graindorge S, Schallenberg-Rüdinger M, Hammani K. De novo RNA base editing in plant organelles with engineered synthetic P-type PPR editing factors. Nucleic Acids Res 2025; 53:gkaf279. [PMID: 40207624 PMCID: PMC11983096 DOI: 10.1093/nar/gkaf279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/06/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
In plant mitochondria and chloroplasts, cytidine-to-uridine RNA editing is necessary for the production of functional proteins. While natural PLS-type PPR proteins are specialized in this process, synthetic PPR proteins offer significant potential for targeted RNA editing. In this study, we engineered chimeric editing factors by fusing synthetic P-type PPR guides with the DYW cytidine deaminase domain of a moss mitochondrial editing factor, PPR56. These designer PPR editors (dPPRe) elicited efficient and precise de novo RNA editing in Escherichia coli as well as in the chloroplasts and mitochondria of Nicotiana benthamiana. Chloroplast transcriptome-wide analysis of the most efficient dPPRe revealed minimal off-target effects, with only three nontarget C sites edited due to sequence similarity with the intended target. This study introduces a novel and precise method for RNA base editing in plant organelles, paving the way for new approaches in gene regulation applicable to plants and potentially other organisms.
Collapse
Affiliation(s)
- Sébastien Mathieu
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Elena Lesch
- Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, 53115 Bonn, Germany
| | - Shahinez Garcia
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Stéfanie Graindorge
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Mareike Schallenberg-Rüdinger
- Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, 53115 Bonn, Germany
| | - Kamel Hammani
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
2
|
Wang T, Takenaka M. The molecular basis and evolution of the organellar RNA editosome by complementary DYW deaminases in seed plants. PLANT PHYSIOLOGY 2025; 197:kiaf142. [PMID: 40296642 DOI: 10.1093/plphys/kiaf142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 04/30/2025]
Abstract
The DYW deaminase domain catalyzes the conversion of cytidines (C) to uridines (U) in RNA editing of plant organelles. While the DYW subgroup contains a complete DYW deaminase domain at the C-terminus, the E2 and E+ subgroups rely on complementary deaminases, in which catalytic activity depends on interactions with short DYW proteins, such as DYW1, DYW2, and MITOCHONDRIAL EDITING FACTOR 8 (MEF8)/MITOCHONDRIAL EDITING FACTOR 8 SIMILAR (MEF8S). Although orthogonal RNA editing in bacteria by a DYW subgroup pentatricopeptide repeat (PPR) has been reported, attempts to activate the DYW deaminase through molecular complementation in bacteria have been unsuccessful, leaving its molecular basis unresolved. In this study, we reconstituted the simplest editosome in Escherichia coli, composed of PPR56PPRE1E2-CRR4PG and DYW1 alone. Systematical mutational analysis of the PG-box of CHLORORESPIRATORY REDUCTION 4 (CRR4) in bacteria and in planta revealed the critical role of serine, isoleucine, and phenylalanine residues in DYW deaminase complementation and catalysis. CRR4-like PPR proteins, termed the "PG-type" characterized by the PG-box with these 3 key amino acid residues at the C-terminus, are minor in angiosperms but constitute one of the major subgroups in gymnosperms. Putative orthologs of Arabidopsis thaliana DYW1 are present in limited angiosperm species, suggesting that in other species, other short DYW proteins serve as the interaction partners for PG-type PPR proteins. Our findings reveal a minimal functional editosome module, shedding light on the conserved and diverse mechanisms of RNA editing in plant organelles.
Collapse
Affiliation(s)
- Tenghua Wang
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Wang Y, Tan BC. Pentatricopeptide repeat proteins in plants: Cellular functions, action mechanisms, and potential applications. PLANT COMMUNICATIONS 2025; 6:101203. [PMID: 39644091 PMCID: PMC11897456 DOI: 10.1016/j.xplc.2024.101203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Pentatricopeptide repeat (PPR) proteins are involved in nearly all aspects of post-transcriptional processing in plant mitochondria and plastids, playing vital roles in plant growth, development, cytoplasmic male sterility restoration, and responses to biotic and abiotic stresses. Over the last three decades, significant advances have been made in understanding the functions of PPR proteins and the primary mechanisms through which they mediate post-transcriptional processing. This review aims to summarize these advancements, highlighting the mechanisms by which PPR proteins facilitate RNA editing, intron splicing, and RNA maturation in the context of organellar gene expression. We also present the latest progress in PPR engineering and discuss its potential as a biotechnological tool. Additionally, we discuss key challenges and questions that remain in PPR research.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
4
|
Ali NA, Song W, Huang J, Wu D, Zhao X. Recent advances and biotechnological applications of RNA metabolism in plant chloroplasts and mitochondria. Crit Rev Biotechnol 2024; 44:1552-1573. [PMID: 38238104 DOI: 10.1080/07388551.2023.2299789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 11/20/2024]
Abstract
The chloroplast and mitochondrion are semi-autonomous organelles that play essential roles in cell function. These two organelles are embellished with prokaryotic remnants and contain many new features emerging from the co-evolution of organelles and the nucleus. A typical plant chloroplast or mitochondrion genome encodes less than 100 genes, and the regulation of these genes' expression is remarkably complex. The regulation of chloroplast and mitochondrion gene expression can be achieved at multiple levels during development and in response to environmental cues, in which, RNA metabolism, including: RNA transcription, processing, translation, and degradation, plays an important role. RNA metabolism in plant chloroplasts and mitochondria combines bacterial-like traits with novel features evolved in the host cell and is regulated by a large number of nucleus-encoded proteins. Among these, pentatricopeptide repeat (PPR) proteins are deeply involved in multiple aspects of the RNA metabolism of organellar genes. Research over the past decades has revealed new insights into different RNA metabolic events in plant organelles, such as the composition of chloroplast and mitochondrion RNA editosomes. We summarize and discuss the most recent knowledge and biotechnological implications of various RNA metabolism processes in plant chloroplasts and mitochondria, with a focus on the nucleus-encoded factors supporting them, to gain a deeper understanding of the function and evolution of these two organelles in plant cells. Furthermore, a better understanding of the role of nucleus-encoded factors in chloroplast and mitochondrion RNA metabolism will motivate future studies on manipulating the plant gene expression machinery with engineered nucleus-encoded factors.
Collapse
Affiliation(s)
- Nadia Ahmed Ali
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenjian Song
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianyan Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants of Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaobo Zhao
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Thielen M, Gärtner B, Knoop V, Schallenberg-Rüdinger M, Lesch E. Conquering new grounds: plant organellar C-to-U RNA editing factors can be functional in the plant cytosol. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:895-915. [PMID: 38753873 DOI: 10.1111/tpj.16804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Plant mitochondrial and chloroplast transcripts are subject to numerous events of specific cytidine-to-uridine (C-to-U) RNA editing to correct genetic information. Key protein factors for this process are specific RNA-binding pentatricopeptide repeat (PPR) proteins, which are encoded in the nucleus and post-translationally imported into the two endosymbiotic organelles. Despite hundreds of C-to-U editing sites in the plant organelles, no comparable editing has been found for nucleo-cytosolic mRNAs raising the question why plant RNA editing is restricted to chloroplasts and mitochondria. Here, we addressed this issue in the model moss Physcomitrium patens, where all PPR-type RNA editing factors comprise specific RNA-binding and cytidine deamination functionalities in single proteins. To explore whether organelle-type RNA editing can principally also take place in the plant cytosol, we expressed PPR56, PPR65 and PPR78, three editing factors recently shown to also function in a bacterial setup, together with cytosolic co-transcribed native targets in Physcomitrium. While we obtained unsatisfying results upon their constitutive expression, we found strong cytosolic RNA editing under hormone-inducible expression. Moreover, RNA-Seq analyses revealed varying numbers of up to more than 900 off-targets in other cytosolic transcripts. We conclude that PPR-mediated C-to-U RNA editing is not per se incompatible with the plant cytosol but that its limited target specificity has restricted its occurrence to the much less complex transcriptomes of mitochondria and chloroplast in the course of evolution.
Collapse
Affiliation(s)
- Mirjam Thielen
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Béla Gärtner
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Elena Lesch
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| |
Collapse
|
6
|
Bayer-Császár E, Jörg A, Härtel B, Brennicke A, Takenaka M. The Gating Domain of MEF28 Is Essential for Editing Two Contiguous Cytidines in nad2 mRNA in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2024; 65:590-601. [PMID: 37530742 DOI: 10.1093/pcp/pcad087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
In plant organelles, each C-to-U RNA-editing site is specifically recognized by pentatricopeptide repeat (PPR) proteins with E1-E2, E1-E2-E+ or E1-E2-DYW domain extensions at the C-terminus. The distance between the PPR domain-binding site and the RNA-editing site is usually fixed at four bases, increasing the specificity of target-site recognition in this system. We here report, in contrast to the general case, on MEF28, which edits two adjacent mitochondrial sites, nad2-89 and nad2-90. When the sDYW domain of MEF28 was replaced with one derived from MEF11 or CRR22, the ability to edit downstream sites was lost, suggesting that the DYW domain of MEF28 provides unique target flexibility for two continuous cytidines. By contrast, substitutions of the entire E1-E2-DYW domains by MEF19E1-E2, SLO2E1-E2-E+ or CRR22E1-E2-E+ target both nad2 sites. In these cases, access to the contiguous sites in the chimeric PPR proteins is likely to be provided by the trans-associated DYW1-like proteins via the replaced E1-E2 or E1-E2-E+ domains. Furthermore, we demonstrated that the gating domain of MEF28 plays an important role in specific target-site recognition of the DYW domain. This finding suggests that the DYW domain and its internal gating domain fine-tune the specificity of the target site, which is valuable information for designing specific synthetic RNA-editing tools based on plant RNA-editing factors.
Collapse
Affiliation(s)
| | - Anja Jörg
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89069, Germany
| | - Barbara Härtel
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89069, Germany
| | - Axel Brennicke
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89069, Germany
| | - Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
7
|
Lesch E, Stempel MS, Dressnandt V, Oldenkott B, Knoop V, Schallenberg-Rüdinger M. Conservation of the moss RNA editing factor PPR78 despite the loss of its known cytidine-to-uridine editing sites is explained by a hidden extra target. THE PLANT CELL 2024; 36:727-745. [PMID: 38000897 PMCID: PMC10896298 DOI: 10.1093/plcell/koad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Cytidine (C)-to-uridine (U) RNA editing in plant organelles relies on specific RNA-binding pentatricopeptide repeat (PPR) proteins. In the moss Physcomitrium patens, all such RNA editing factors feature a C-terminal DYW domain that acts as the cytidine deaminase for C-to-U conversion. PPR78 of Physcomitrium targets 2 mitochondrial editing sites, cox1eU755SL and rps14eU137SL. Remarkably, the latter is edited to highly variable degrees in different mosses. Here, we aimed to unravel the coevolution of PPR78 and its 2 target sites in mosses. Heterologous complementation in a Physcomitrium knockout line revealed that the variable editing of rps14eU137SL depends on the PPR arrays of different PPR78 orthologues but not their C-terminal domains. Intriguingly, PPR78 has remained conserved despite the simultaneous loss of editing at both known targets among Hypnales (feather mosses), suggesting it serves an additional function. Using a recently established RNA editing assay in Escherichia coli, we confirmed site-specific RNA editing by PPR78 in the bacterium and identified 4 additional off-targets in the bacterial transcriptome. Based on conservation profiles, we predicted ccmFNeU1465RC as a candidate editing target of PPR78 in moss mitochondrial transcriptomes. We confirmed editing at this site in several mosses and verified that PPR78 targets ccmFNeU1465RC in the bacterial editing system, explaining the conservation and functional adaptation of PPR78 during moss evolution.
Collapse
Affiliation(s)
- Elena Lesch
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Maike Simone Stempel
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Vanessa Dressnandt
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Bastian Oldenkott
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Volker Knoop
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Mareike Schallenberg-Rüdinger
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| |
Collapse
|
8
|
Yang Y, Oldenkott B, Ramanathan S, Lesch E, Takenaka M, Schallenberg-Rüdinger M, Knoop V. DYW cytidine deaminase domains have a long-range impact on RNA recognition by the PPR array of chimeric plant C-to-U RNA editing factors and strongly affect target selection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:840-854. [PMID: 37565789 DOI: 10.1111/tpj.16412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023]
Abstract
The protein factors for the specific C-to-U RNA editing events in plant mitochondria and chloroplasts possess unique arrays of RNA-binding pentatricopeptide repeats (PPRs) linked to carboxy-terminal cytidine deaminase DYW domains via the extension motifs E1 and E2. The E1 and E2 motifs have distant similarities to tetratricopeptide repeats known to mediate protein-protein interactions but their precise function is unclear. Here, we investigate the tolerance of PPR56 and PPR65, two functionally characterized RNA editing factors of the moss Physcomitrium patens, for the creation of chimeras by variably replacing their C-terminal protein regions. Making use of a heterologous RNA editing assay system in Escherichia coli we find that heterologous DYW domains can strongly restrict or widen the spectrum of off-targets in the bacterial transcriptome for PPR56. Surprisingly, our data suggest that these changes are not only caused by the preference of a given heterologous DYW domain for the immediate sequence environment of the cytidine to be edited but also by a long-range impact on the nucleotide selectivity of the upstream PPRs.
Collapse
Affiliation(s)
- Yingying Yang
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Bastian Oldenkott
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Shyam Ramanathan
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Elena Lesch
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Mizuki Takenaka
- Department of Botany Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| |
Collapse
|
9
|
Zhang Y, Tian L, Lu C. Chloroplast gene expression: Recent advances and perspectives. PLANT COMMUNICATIONS 2023; 4:100611. [PMID: 37147800 PMCID: PMC10504595 DOI: 10.1016/j.xplc.2023.100611] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago. During subsequent coevolution with the nuclear genome, the chloroplast genome has remained independent, albeit strongly reduced, with its own transcriptional machinery and distinct features, such as chloroplast-specific innovations in gene expression and complicated post-transcriptional processing. Light activates the expression of chloroplast genes via mechanisms that optimize photosynthesis, minimize photodamage, and prioritize energy investments. Over the past few years, studies have moved from describing phases of chloroplast gene expression to exploring the underlying mechanisms. In this review, we focus on recent advances and emerging principles that govern chloroplast gene expression in land plants. We discuss engineering of pentatricopeptide repeat proteins and its biotechnological effects on chloroplast RNA research; new techniques for characterizing the molecular mechanisms of chloroplast gene expression; and important aspects of chloroplast gene expression for improving crop yield and stress tolerance. We also discuss biological and mechanistic questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Yi Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lin Tian
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Congming Lu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
10
|
Boyd RD, Hayes ML. A ribonuclease activity linked to DYW1 in vitro is inhibited by RIP/MORF proteins. Sci Rep 2023; 13:10723. [PMID: 37400527 PMCID: PMC10318007 DOI: 10.1038/s41598-023-36969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
Organellar C-to-U RNA editing in plants occurs in complexes composed of various classes of nuclear-encoded proteins. DYW-deaminases are zinc metalloenzymes that catalyze hydrolytic deamination required for C-to-U modification editing. Solved crystal structures for DYW-deaminase domains display all structural features consistent with a canonical cytidine deamination mechanism. However, some recombinant DYW-deaminases from plants have been associated with ribonuclease activity in vitro. Direct ribonuclease activity by an editing factor is confounding since it is not required for deamination of cytosine, theoretically would be inimical for mRNA editing, and does not have a clear physiological function in vivo. His-tagged recombinant DYW1 from Arabidopsis thaliana (rAtDYW1) was expressed and purified using immobilized metal affinity chromatography (IMAC). Fluorescently labeled RNA oligonucleotides were incubated with recombinant AtDYW1 under different conditions. Percent relative cleavage of RNA probes was recorded at multiple time points from triplicate reactions. The effects of treatment with zinc chelators EDTA and 1, 10-phenanthroline were examined for rAtDYW1. Recombinant His-tagged RNA editing factors AtRIP2, ZmRIP9, AtRIP9, AtOZ1, AtCRR4, and AtORRM1 were expressed in E. coli and purified. Ribonuclease activity was assayed for rAtDYW1 in the presence of different editing factors. Lastly, the effects on nuclease activity in the presence of nucleotides and modified nucleosides were investigated. RNA cleavage observed in this study was linked to the recombinant editing factor rAtDYW1 in vitro. The cleavage reaction is sensitive to high concentrations of zinc chelators, indicating a role for zinc ions for activity. The addition of equal molar concentrations of recombinant RIP/MORF proteins reduced cleavage activity associated with rAtDYW1. However, addition of equal molar concentrations of purified recombinant editing complex proteins AtCRR4, AtORRM1, and AtOZ1 did not strongly inhibit ribonuclease activity on RNAs lacking an AtCRR4 cis-element. Though AtCRR4 inhibited AtDYW1 activity for oligonucleotides with a cognate cis-element. The observation that editing factors limit ribonuclease activity of rAtDYW1 in vitro, suggests that nuclease activities are limited to RNAs in absence of native editing complex partners. Purified rAtDYW1 was associated with the hydrolysis of RNA in vitro, and activity was specifically inhibited by RNA editing factors.
Collapse
Affiliation(s)
- Robert D Boyd
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Michael L Hayes
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA, 90032, USA.
| |
Collapse
|
11
|
Toma-Fukai S, Sawada Y, Maeda A, Shimizu H, Shikanai T, Takenaka M, Shimizu T. Structural insight into the activation of an Arabidopsis organellar C-to-U RNA editing enzyme by active site complementation. THE PLANT CELL 2023; 35:1888-1900. [PMID: 36342219 PMCID: PMC10226597 DOI: 10.1093/plcell/koac318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/05/2022] [Indexed: 05/30/2023]
Abstract
RNA-binding pentatricopeptide repeat (PPR) proteins catalyze hundreds of cytidine to uridine RNA editing events in plant organelles; these editing events are essential for proper gene expression. More than half of the PPR-type RNA editing factors, however, lack the DYW cytidine deaminase domain. Genetic analyses have suggested that their cytidine deaminase activity arises by association with a family of DYW1-like proteins that contain an N-terminally truncated DYW domain, but their molecular mechanism has been unclear. Here, we report the crystal structure of the Arabidopsis thaliana DYW1 deaminase domain at 1.8 Å resolution. DYW1 has a cytidine deaminase fold lacking the PG box. The internal insertion within the deaminase fold shows an α-helical fold instead of the β-finger reported for the gating domain of the A. thaliana ORGANELLE TRANSCRIPT PROCESSING 86. The substrate-binding pocket is incompletely formed and appears to be complemented in the complex by the E2 domain and the PG box of the interacting PPR protein. In vivo RNA editing assays corroborate the activation model for DYW1 deaminase. Our study demonstrates the common activation mechanism of the DYW1-like proteins by molecular complementation of the DYW domain and reconstitution of the substrate-binding pocket.
Collapse
Affiliation(s)
- Sachiko Toma-Fukai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuto Sawada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ayako Maeda
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hikaru Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Zhang M, Li Z, Wang Z, Xiao Y, Bao L, Wang M, An C, Gao Y. Exploring the RNA Editing Events and Their Potential Regulatory Roles in Tea Plant ( Camellia sinensis L.). Int J Mol Sci 2022; 23:13640. [PMID: 36362430 PMCID: PMC9654872 DOI: 10.3390/ijms232113640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 04/11/2024] Open
Abstract
RNA editing is a post-transcriptional modification process that alters the RNA sequence relative to the genomic blueprint. In plant organelles (namely, mitochondria and chloroplasts), the most common type is C-to-U, and the absence of C-to-U RNA editing results in abnormal plant development, such as etiolation and albino leaves, aborted embryonic development and retarded seedling growth. Here, through PREP, RES-Scanner, PCR and RT-PCR analyses, 38 and 139 RNA editing sites were identified from the chloroplast and mitochondrial genomes of Camellia sinensis, respectively. Analysis of the base preference around the RNA editing sites showed that in the -1 position of the edited C had more frequent occurrences of T whereas rare occurrences of G. Three conserved motifs were identified at 25 bases upstream of the RNA editing site. Structural analyses indicated that the RNA secondary structure of 32 genes, protein secondary structure of 37 genes and the three-dimensional structure of 5 proteins were altered due to RNA editing. The editing level analysis of matK and ndhD in six tea cultivars indicated that matK-701 might be involved in the color change of tea leaves. Furthermore, 218 PLS-CsPPR proteins were predicted to interact with the identified RNA editing sites. In conclusion, this study provides comprehensive insight into RNA editing events, which will facilitate further study of the RNA editing phenomenon of the tea plant.
Collapse
Affiliation(s)
- Mengyuan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhuo Li
- College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zijian Wang
- College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yao Xiao
- College of Language and Culture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Lu Bao
- College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Chuanjing An
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuefang Gao
- College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
13
|
U-to-C RNA editing by synthetic PPR-DYW proteins in bacteria and human culture cells. Commun Biol 2022; 5:968. [PMID: 36109586 PMCID: PMC9478123 DOI: 10.1038/s42003-022-03927-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Programmable RNA editing offers significant therapeutic potential for a wide range of genetic diseases. Currently, several deaminase enzymes, including ADAR and APOBEC, can perform programmable adenosine-to-inosine or cytidine-to-uridine RNA correction. However, enzymes to perform guanosine-to-adenosine and uridine-to-cytidine (U-to-C) editing are still lacking to complete the set of transition reactions. It is believed that the DYW:KP proteins, specific to seedless plants, catalyze the U-to-C reactions in mitochondria and chloroplasts. In this study, we designed seven DYW:KP domains based on consensus sequences and fused them to a designer RNA-binding pentatricopeptide repeat (PPR) domain. We show that three of these PPR-DYW:KP proteins edit targeted uridine to cytidine in bacteria and human cells. In addition, we show that these proteins have a 5′ but not apparent 3′ preference for neighboring nucleotides. Our results establish the DYW:KP aminase domain as a potential candidate for the development of a U-to-C editing tool in human cells. DYW:KP domains, designed on proteins found in the mitochondria and chloroplasts of seedless plants, are fused to a designer RNA-binding pentatricopeptide repeat (PPR) domain to edit targeted uridine to cytidine in bacteria and human cells.
Collapse
|
14
|
Lesch E, Schilling MT, Brenner S, Yang Y, Gruss O, Knoop V, Schallenberg-Rüdinger M. Plant mitochondrial RNA editing factors can perform targeted C-to-U editing of nuclear transcripts in human cells. Nucleic Acids Res 2022; 50:9966-9983. [PMID: 36107771 PMCID: PMC9508816 DOI: 10.1093/nar/gkac752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/12/2022] Open
Abstract
RNA editing processes are strikingly different in animals and plants. Up to thousands of specific cytidines are converted into uridines in plant chloroplasts and mitochondria whereas up to millions of adenosines are converted into inosines in animal nucleo-cytosolic RNAs. It is unknown whether these two different RNA editing machineries are mutually incompatible. RNA-binding pentatricopeptide repeat (PPR) proteins are the key factors of plant organelle cytidine-to-uridine RNA editing. The complete absence of PPR mediated editing of cytosolic RNAs might be due to a yet unknown barrier that prevents its activity in the cytosol. Here, we transferred two plant mitochondrial PPR-type editing factors into human cell lines to explore whether they could operate in the nucleo-cytosolic environment. PPR56 and PPR65 not only faithfully edited their native, co-transcribed targets but also different sets of off-targets in the human background transcriptome. More than 900 of such off-targets with editing efficiencies up to 91%, largely explained by known PPR-RNA binding properties, were identified for PPR56. Engineering two crucial amino acid positions in its PPR array led to predictable shifts in target recognition. We conclude that plant PPR editing factors can operate in the entirely different genetic environment of the human nucleo-cytosol and can be intentionally re-engineered towards new targets.
Collapse
Affiliation(s)
- Elena Lesch
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Maximilian T Schilling
- Institut für Genetik, Abteilung Zellteilung, Universität Bonn , Karlrobert-Kreiten-Str. 13 , D-53115 Bonn , Germany
| | - Sarah Brenner
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Yingying Yang
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Oliver J Gruss
- Institut für Genetik, Abteilung Zellteilung, Universität Bonn , Karlrobert-Kreiten-Str. 13 , D-53115 Bonn , Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| |
Collapse
|