1
|
Shan C, Dong K, Wen D, Cui Z, Cao J. A review of m 6A modification in plant development and potential quality improvement. Int J Biol Macromol 2025; 308:142597. [PMID: 40157682 DOI: 10.1016/j.ijbiomac.2025.142597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
N6-methyladenosine (m6A) represents the most prevalent internal modification observed in eukaryotic mRNAs. As a pivotal regulator of gene expression, m6A exerts influence over a number of processes, including splicing, transport, translation, degradation, and the stability of mRNAs. It thus plays a crucial role in plant development and resistance to biotic and abiotic stressors. The writers, erasers, and readers of m6A, which deposit, eliminate and decode this modification, are also of critical importance and have been identified and characterized in multiple plant species. The advent of next-generation sequencing (NGS) and m6A detection technologies has precipitated a surge in research on m6A in recent years. Extensive research has elucidated the specific roles of m6A in plants and its underlying molecular mechanisms, indicating significant potential for crop improvement. This review presents a comprehensive overview of recent studies on m6A and its regulatory proteins in plant development and stress tolerance. It highlights the potential applications of this modification and its writers, erasers, and readers for plant improvement, with a particular focus on leaf development, floral transition, trichome morphogenesis, fruit ripening, and resilience to pests, diseases and abiotic stresses.
Collapse
Affiliation(s)
- Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dongyu Wen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zifan Cui
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
2
|
Liu K, Wang X, Wang J, Wang S, Bai H, Dong W, Qiao L, Jin Q, Zhang Z, Luo GZ, Wang Z. N 6-methyladenosine modifications stabilize phosphate starvation response-related mRNAs in plant adaptation to nutrient-deficient stress. Nat Commun 2025; 16:4093. [PMID: 40312414 PMCID: PMC12045979 DOI: 10.1038/s41467-025-59331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/16/2025] [Indexed: 05/03/2025] Open
Abstract
N6-methyladenosine (m6A), an abundant internal mRNA modification, is induced by various stress conditions and post-transcriptionally regulates gene expression. However, how m6A modifications help plants respond to nutrient-deficiency stress remains unclear. Here, we profile high-confidence m6A modifications in Arabidopsis transcriptome-wide under normal and inorganic orthophosphate (Pi)-deficient conditions (-P). High-confidence m6A modifications are identified using synthetic modification-free RNA libraries for systematic calibration. Pi starvation induces widespread m6A modifications, mediated by the Pi starvation response (PSR) master regulator PHOSPHATE STARVATION RESPONSE1 (PHR1) and its family members. Many Pi starvation-induced (PSI) m6A modifications occur on PSR-related mRNAs, including PHR1. In addition, PHR1 proteins interact with the m6A writers MRNA ADENOSINE METHYLASE (MTA) and METHYLTRANSFERASE B (MTB) in nuclei under -P conditions. m6A modifications facilitate systemic PSR signaling, as reflected by the reduced Pi content and PSR signaling in a knockdown artificial miRNA line targeting MTA, which shows a global decrease in m6A. Transcriptome-wide mRNA decay analysis reveals that PSI-m6A increases the stability of PSR-related mRNAs, but not through alternative polyadenylation site shifts. Analysis of transgenic plants with mutations in m6A loci demonstrates that m6A stabilizes PHR1 transcripts via a positive feedback loop. Our findings indicate that PSI-m6A modifications facilitate PSR signaling by enhancing the stability of certain mRNAs, shedding light on the role of m6A modifications in nutrient stress responses in plants.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaojia Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingyi Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuman Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiyan Bai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Weiguo Dong
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lulu Qiao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiongli Jin
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Guan-Zheng Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiye Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Hou N, He J, Bao C, Zhi F, Shen X, Liu Y, Li C, Fan T, Yang X, Chu B, Qin G, Liu Z, Mei C, Tan B, Feng J, Ma F, Malnoy M, Li X, Guan Q. MdDSK2a-Like-MdMTA Module Functions in Apple Cold Response via Regulating ROS Detoxification and Cell Wall Deposition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2504405. [PMID: 40278790 DOI: 10.1002/advs.202504405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Indexed: 04/26/2025]
Abstract
N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic cells. Although the importance of its roles in mRNA metabolism, plant development, and stress responses has been well documented, regulation of its machinery is largely unknown in plants. Here, it is reported that MdMTA positively regulates cold tolerance. Combining MeRIP-seq and RNA-seq, it is found that MdMTA regulates the m6A and expression levels of cold-responsive genes under cold stress, including those involved in reactive oxygen species (ROS) detoxification and cell wall deposition. Further analysis reveals that MdMTA promotes ROS scavenging and the deposition of cellulose and hemicellulose by regulating the mRNA stability of the relevant genes under cold conditions. MdDSK2a-like, a ubiquitin receptor protein, mediates MdMTA degradation by the 26S ubiquitin-dependent proteasome and autophagy pathways. MdDSK2a-like negatively regulates cold tolerance by reducing the m6A levels of MdMTA target genes. Consistently, MdDSK2a-like inhibits ROS scavenging and the deposition of cellulose and hemicellulose under cold conditions. Genetic dissection shows that MdDSK2a-like acts upstream of MdMTA in cold response. The results not only reveal the degradation of MdMTA, but also illustrate the molecular mechanism of the MdDSK2a-like-MdMTA module in m6A modification and cold response.
Collapse
Affiliation(s)
- Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu Liu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Chaoshuo Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianle Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinyue Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Baohua Chu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gege Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zeyuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuang Mei
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach, San Michele all'Adige, 38010, Italy
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
4
|
Ye X, Hu X, Zhen K, Meng J, Du H, Cao X, Zhou D. Genome-Wide Identification and Expression Analysis of m 6A Methyltransferase Family in Przewalskia tangutica Maxim. Int J Mol Sci 2025; 26:3593. [PMID: 40332128 PMCID: PMC12027458 DOI: 10.3390/ijms26083593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/30/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
N6-methyladenosine (m6A) RNA modification plays important regulatory roles in plant development and adaptation to the environment. However, there has been no research regarding m6A RNA methyltransferases (MT-A70) in Przewalskia tangutica Maxim. Here, we performed a comprehensive analysis of the MT-A70 family in Przewalskia tangutica (PtMTs), including gene structures, phylogenetic relationships, conserved motifs, gene location, promoter analysis, GO enrichment analysis, and expression profiles. We identified seven PtMT genes. Phylogeny analysis indicated that the seven PtMT genes could be divided into three groups; two MTA genes, three MTB genes, and two MTC genes, and domains and motifs exhibited similar patterns within the same group. These PtMT genes were found to contain a large number of cis-acting elements associated with plant hormones, light response, and stress response, suggesting their widespread regulatory function. Furthermore, the expression profiling of different tissues was investigated using RNA-seq data, and the expression of seven genes was further validated by qPCR analysis. These results provided valuable information to further elucidate the function of m6A regulatory genes and their epigenetic regulatory mechanisms in Przewalskia tangutica.
Collapse
Affiliation(s)
- Xing Ye
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
| | - Xingqiang Hu
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
| | - Kun Zhen
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
| | - Jing Meng
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
| | - Heyan Du
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
| | - Xueye Cao
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
| | - Dangwei Zhou
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
5
|
Shen L, Yu H. RNA m 6A modification meets plant hormones. NATURE PLANTS 2025; 11:686-695. [PMID: 40155697 DOI: 10.1038/s41477-025-01947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/19/2025] [Indexed: 04/01/2025]
Abstract
Plant hormones are essential signalling molecules that control and coordinate diverse physiological processes in plant development and adaptation to ever-fluctuating environments. This hormonal regulation of plant development and environmental responses has recently been shown to extensively involve the most widespread RNA modification, N6-methyladenosine (m6A). Here we discuss the current understanding of the crosstalk between m6A and plant hormones, focusing on their reciprocal regulation, where hormonal signals induce m6A reprogramming and m6A affects hormone biosynthesis and signalling cascades. We also highlight new insights into how m6A contributes to the hormonal control of plant development and stress responses. Furthermore, we discuss future prospects for unveiling the regulatory networks that orchestrate epitranscriptome-hormone interactions and harnessing the related knowledge accrued to enhance crop productivity and resilience in changing environments.
Collapse
Affiliation(s)
- Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
| | - Hao Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Ma L, Tao X, Fahim AM, Xu Y, Zhang Y, Li S, Yang G, Pu Y, Wang W, Liu L, Fan T, Wu J, Sun W. Novel insights into the unique characterization of N6-methyladenosine RNA modification and regulating cold tolerance in winter Brassica rapa. Int J Biol Macromol 2025; 303:140460. [PMID: 39919396 DOI: 10.1016/j.ijbiomac.2025.140460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
N6-methyladenosine (m6A) is an mRNA modification considered essential in plants, and is a key player in gene regulation at the transcriptional and translational levels. In present study, we mapped Brassica rapa's whole transcriptome m6A profile under low-temperature stress in different cold tolerant varieties to elucidate the m6A methylation pattern. The distribution of m6A modifications changed significantly under low temperature stress. More 5'UTR m6A was deposited in strong cold-resistant varieties and responded positively to cold resistance by regulating mRNA expression abundance. The increase in m6A abundance was correlated with the increase in mRNA abundance after low temperature stress. ZAT12 might positively regulate its mRNA expression through m6A methylation. MYBC1 might be a negative regulator to cope with low-temperature stress. The hypothetical protein was involved in starch and sucrose metabolic pathways, and that the Low-quality protein was involved in the regulation of DNA binding, DNA-binding, transcription factor activity, and proline biosynthetic processes and leaf senescence pathways. In addition, a number of m6A methyltransferases and m6A demethylases play crucial roles in response to cold stress. These results revealed the critical role of m6A -modified genes under cold stress and provide new insights into the study of cold resistance in winter Brassica rapa.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xiaolei Tao
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Abbas Muhammad Fahim
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanxia Xu
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Zhang
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Shiyi Li
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Gang Yang
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Pu
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Wangtian Wang
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Lijun Liu
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingting Fan
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Junyan Wu
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Wancang Sun
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
7
|
Kang H, Thomas HR, Xia X, Shi H, Zhang L, Hong J, Shi K, Zhou J, Yu J, Zhou Y. An integrative overview of cold response and regulatory pathways in horticultural crops. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1028-1059. [PMID: 40213955 DOI: 10.1111/jipb.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
Global climate change challenges agricultural production, as extreme temperature fluctuations negatively affect crop growth and yield. Low temperature (LT) stress impedes photosynthesis, disrupts metabolic processes, and compromises the integrity of cell membranes, ultimately resulting in diminished yield and quality. Notably, many tropical or subtropical horticultural plants are particularly susceptible to LT stress. To address these challenges, it is imperative to understand the mechanisms underlying cold tolerance in horticultural crops. This review summarizes recent advances in the physiological and molecular mechanisms that enable horticultural crops to withstand LT stress, emphasizing discrepancies between horticultural crops and model systems. These mechanisms include C-repeat binding factor-dependent transcriptional regulation, post-translational modifications, epigenetic control, and metabolic regulation. Reactive oxygen species, plant hormones, and light signaling pathways are integrated into the cold response network. Furthermore, technical advances for improving cold tolerance are highlighted, including genetic improvement, the application of light-emitting diodes, the utility of novel plant growth regulators, and grafting. Finally, prospective directions for fundamental research and practical applications to boost cold tolerance are discussed.
Collapse
Affiliation(s)
- Huijia Kang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Hannah Rae Thomas
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Huanran Shi
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Limeng Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Jiachen Hong
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- Key Laboratory of Horticultural Plant Growth and Development, Agricultural and Rural Ministry of China, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Cai J, Shen L, Kang H, Xu T. RNA modifications in plant adaptation to abiotic stresses. PLANT COMMUNICATIONS 2025; 6:101229. [PMID: 39709520 PMCID: PMC11897461 DOI: 10.1016/j.xplc.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/15/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
Epitranscriptomic chemical modifications of RNAs have emerged as potent regulatory mechanisms in the process of plant stress adaptation. Currently, over 170 distinct chemical modifications have been identified in mRNAs, tRNAs, rRNAs, microRNAs (miRNAs), and long noncoding RNAs (lncRNAs). Genetic and molecular studies have identified the genes responsible for addition and removal of chemical modifications from RNA molecules, which are known as "writers" and "erasers," respectively. N6-methyladenosine (m6A) is the most prevalent chemical modification identified in eukaryotic mRNAs. Recent studies have identified m6A writers and erasers across different plant species, including Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), cotton (Gossypium hirsutum), and tomato (Solanum lycopersicum). Accumulating discoveries have improved our understanding of the functions of RNA modifications in plant stress responses. This review highlights the latest research on RNA modification, emphasizing the biological and cellular roles of diverse chemical modifications of mRNAs, tRNAs, rRNAs, miRNAs, and lncRNAs in plant responses to environmental and hormonal signals. We also propose and discuss critical questions and future challenges for enhancing our understanding of the cellular and mechanistic roles of RNA modifications in plant stress responses. Integrating molecular insights into the regulatory roles of RNA modifications in stress responses with novel genome- and RNA-editing technologies will facilitate the breeding of stress-tolerant crops through precise engineering of RNA modifications.
Collapse
Affiliation(s)
- Jing Cai
- Jiangsu International Joint Center of Genomics, Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Ling Shen
- Jiangsu International Joint Center of Genomics, Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Hunseung Kang
- Jiangsu International Joint Center of Genomics, Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China; Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea.
| | - Tao Xu
- Jiangsu International Joint Center of Genomics, Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China.
| |
Collapse
|
9
|
Li X, Wang C, Chen Y, Liu W, Zhang M, Wang N, Xiang C, Gao L, Dong Y, Zhang W. m5C and m6A modifications regulate the mobility of pumpkin CHOLINE KINASE 1 mRNA under chilling stress. PLANT PHYSIOLOGY 2025; 197:kiae511. [PMID: 39325727 DOI: 10.1093/plphys/kiae511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024]
Abstract
Mobile messenger RNAs (mRNAs) serve as crucial long-distance signaling molecules, responding to environmental stimuli in plants. Although many mobile transcripts have been identified, only a limited subset has been characterized as functional long-distance signals within specific plant species, raising an intriguing question about whether the prevalence of species specificity in mobile transcripts implies a divergence in the mechanisms governing mRNA mobility across distinct plant species. Our study delved into the notable case of CHOLINE KINASE 1 (CK1), an extensively studied instance of mobile mRNAs regulated by a transfer RNA-like sequence (TLS) in Arabidopsis (Arabidopsis thaliana). We established an association between mRNA mobility and length, independent of TLS numbers. Notably, neither the mobile mRNAs nor the mechanisms underpinning their mobility proved to be conserved across different plant species. The exclusive mobility of pumpkin CK1 mRNA under chilling stress was pivotal in enhancing the chilling tolerance of cucumber/pumpkin heterografts. Distinct from the TLS-mediated mobility of AtCK1 mRNA, the mobility of CmoCK1 mRNA is orchestrated by both m5C and m6A modifications, adding dimensions to our understanding of mRNA transport mechanisms.
Collapse
Affiliation(s)
- Xiaojun Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Cuicui Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Ying Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Wenqian Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Miao Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Naonao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Chenggang Xiang
- College of Life Science and Technology, Honghe University, Mengzi, Yunnan, 661100, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Yihan Dong
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, 67084, France
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
10
|
Ma L, Xing L, Li Z, Jiang D. Epigenetic control of plant abiotic stress responses. J Genet Genomics 2025; 52:129-144. [PMID: 39322116 DOI: 10.1016/j.jgg.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
On top of genetic information, organisms have evolved complex and sophisticated epigenetic regulation to adjust gene expression in response to developmental and environmental signals. Key epigenetic mechanisms include DNA methylation, histone modifications and variants, chromatin remodeling, and chemical modifications of RNAs. Epigenetic control of environmental responses is particularly important for plants, which are sessile and unable to move away from adverse environments. Besides enabling plants to rapidly respond to environmental stresses, some stress-induced epigenetic changes can be maintained, providing plants with a pre-adapted state to recurring stresses. Understanding these epigenetic mechanisms offers valuable insights for developing crop varieties with enhanced stress tolerance. Here, we focus on abiotic stresses and summarize recent progress in characterizing stress-induced epigenetic changes and their regulatory mechanisms and roles in plant abiotic stress resistance.
Collapse
Affiliation(s)
- Lijun Ma
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lihe Xing
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zicong Li
- Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore.
| |
Collapse
|
11
|
Li Y, Chen J, Sun Z. N6-methyladenosine (m6A) modification: Emerging regulators in plant-virus interactions. Virology 2025; 603:110373. [PMID: 39729962 DOI: 10.1016/j.virol.2024.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
N6-methyladenosine (m6A), a reversible epigenetic modification, is widely present on both cellular and viral RNAs. This modification undergoes catalysis by methyltransferases (writers), removal by demethylases (erasers), and recognition by m6A-binding proteins (readers), ultimately influencing the fate and function of modified RNA molecules. With recent advances in sequencing technologies, the genome-wide mapping of m6A has become possible, enabling a deeper exploration of its roles during viral infections. So far, while the significance of m6A in regulating virus-host interactions has been well-established in animal viruses, research on its involvement in plant viruses remains in its early stages. In this review, we summarize the current knowledge regarding the functions and molecular mechanisms of m6A in plant-virus interactions. A better understanding of these complex interactions may provide valuable insights for developing novel antiviral strategies, potentially leading to more effective control of plant viral diseases in the field.
Collapse
Affiliation(s)
- Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
12
|
Ganguly DR, Li Y, Bhat SS, Tiwari S, Ng PJ, Gregory BD, Sunkar R. mRNA ADENOSINE METHYLASE promotes drought tolerance through N 6-methyladenosine-dependent and independent impacts on mRNA regulation in Arabidopsis. THE NEW PHYTOLOGIST 2025; 245:183-199. [PMID: 39462792 PMCID: PMC11617654 DOI: 10.1111/nph.20227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
Among many mRNA modifications, adenine methylation at the N6 position (N6-methyladenosine, m6A) is known to affect mRNA biology extensively. The influence of m6A has yet to be assessed under drought, one of the most impactful abiotic stresses. We show that Arabidopsis thaliana (L.) Heynh. (Arabidopsis) plants lacking mRNA ADENOSINE METHYLASE (MTA) are drought-sensitive. Subsequently, we comprehensively assess the impacts of MTA-dependent m6A changes during drought on mRNA abundance, stability, and translation in Arabidopsis. During drought, there is a global trend toward hypermethylation of many protein-coding transcripts that does not occur in mta. We also observe complex regulation of m6A at a transcript-specific level, possibly reflecting compensation by other m6A components. Importantly, a subset of transcripts that are hypermethylated in an MTA-dependent manner exhibited reduced turnover and translation in mta, compared with wild-type (WT) plants, during drought. Additionally, MTA impacts transcript stability and translation independently of m6A. We also correlate drought-associated deposition of m6A with increased translation of modulators of drought response, such as RD29A, COR47, COR413, ALDH2B, ERD7, and ABF4 in WT, which is impaired in mta. m6A is dynamic during drought and, alongside MTA, promotes tolerance by regulating drought-responsive changes in transcript turnover and translation.
Collapse
Affiliation(s)
- Diep R. Ganguly
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Yongfang Li
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | | | - Shalini Tiwari
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Pei Jia Ng
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Brian D. Gregory
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| |
Collapse
|
13
|
Zheng H, Dang Y, Gao Y, Li S, Wu F, Zhang F, Wang X, Du X, Wang L, Song J, Sui N. An mRNA methylase and demethylase regulate sorghum salt tolerance by mediating N6-methyladenosine modification. PLANT PHYSIOLOGY 2024; 196:3048-3070. [PMID: 39405192 DOI: 10.1093/plphys/kiae529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/04/2024] [Indexed: 12/14/2024]
Abstract
N 6-methyladenosine (m6A) modification is a crucial and widespread molecular mechanism governing plant development and stress tolerance. The specific impact of m6A regulation on plants with inherently high salt tolerance remains unclear. Existing research primarily focuses on the overexpression or knockout of individual writer or eraser components to alter m6A levels. However, a comprehensive study simultaneously altering overall m6A modification levels within the same experiment is lacking. Such an investigation is essential to determine whether opposing changes in m6A modification levels exert entirely different effects on plant salt tolerance. In this study, we identified the major writer member mRNA adenosine methylase A (SbMTA) in sorghum (Sorghum bicolor) as critical for sorghum survival. The sbmta mutant exhibits a phenotype characterized by reduced overall m6A, developmental arrest, and, ultimately, lethality. Overexpression of SbMTA increased m6A levels and salt tolerance, while overexpression of the m6A eraser alkylated DNA repair protein AlkB homolog 10B (SbALKBH10B) in sorghum showed the opposite phenotype. Comparative analyses between sorghum with different m6A levels reveal that SbMTA- and SbALKBH10B-mediated m6A alterations significantly impact the stability and expression levels of genes related to the abscisic acid signaling pathway and growth under salt stress. In summary, this study unveils the intricate relationship between m6A modifications and salt tolerance in sorghum, providing valuable insights into how m6A modification levels on specific transcripts influence responses to salt stress.
Collapse
Affiliation(s)
- Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yinping Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - FengHui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Fangning Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xihua Du
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
14
|
Brodersen P, Arribas-Hernández L. The m 6A-YTH regulatory system in plants: A status. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102650. [PMID: 39488190 DOI: 10.1016/j.pbi.2024.102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 11/04/2024]
Abstract
Plants use mRNA methylation to regulate gene expression. As in other eukaryotes, the only abundant methylated nucleotide in plant mRNA bodies is N6-methyladenosine (m6A). The conserved core components of m6A-based genetic control are a multi-subunit nuclear methyltransferase, and a set of nuclear and cytoplasmic RNA-binding proteins consisting of an m6A recognition module, the YT521-B homology (YTH) domain, and long intrinsically disordered regions (IDRs). In plants, this system is essential for growth during embryonic and post-embryonic development, but emerging evidence also points to key functions in plant-virus interactions and stimulus-dependent gene regulation. Cytoplasmic YTH-domain proteins are particularly important for these functions, and recent progress has identified two elements of the underlying molecular mechanisms: IDR-mediated phase separation and conserved short linear motifs mediating interactions with other key mRNA-binding proteins.
Collapse
Affiliation(s)
- Peter Brodersen
- University of Copenhagen, Copenhagen Plant Science Center, Department of Biology, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.
| | - Laura Arribas-Hernández
- University of Copenhagen, Copenhagen Plant Science Center, Department of Biology, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark; Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM), 29750 Algarrobo-Costa, Málaga, Spain.
| |
Collapse
|
15
|
Huang Y, Chen M, Chen D, Chen H, Xie Z, Dai S. Enhanced HSP70 binding to m 6A-methylated RNAs facilitates cold stress adaptation in mango seedlings. BMC PLANT BIOLOGY 2024; 24:1114. [PMID: 39578738 PMCID: PMC11585147 DOI: 10.1186/s12870-024-05818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Cold stress poses a serious challenge to tropical fruit production, particularly in mango. N6-methyladenosine (m6A) modifications are key regulators of gene expression, enabling plants to respond to stress responses, enhance adaptation and improve resilience to environmental challenges. RESULTS In our study, transcriptome-wide m6A methylation profiling under cold stress identified 6,499 differentially methylated m6A peaks and 2,164 differentially expressed genes (DEGs) in mango seedlings. Among these genes, six exhibited both significant increases in m6A modification levels and gene expression, 21 showed a significant increase in m6A levels but a concurrent downregulation of gene expression, and 26 showed reduced m6A levels but exhibited increased gene expression, highlighting distinct regulatory patterns in m6A-mediated gene expression control. Gene Ontology (GO) enrichment analysis revealed significant involvement in pathways such as potassium ion import, nitrate response, and transcription regulation. Notably, HSP70 was one of the upregulated genes in response to cold stress. RNA immunoprecipitation (RNA-IP) assays confirmed the association of HSP70 with m6A-modified RNAs in vivo, supporting its role in regulating stress-responsive transcripts. Additionally, immunofluorescence analysis demonstrated the formation of HSP70 condensates in plant cells under cold stress, indicating a potential mechanism for localized RNA stabilization. Fluorescence polarization assays demonstrated that HSP70 binds preferentially to m6A-modified RNAs, suggesting its role in forming protective condensates under cold conditions. This interaction between m6A modification and HSP70 points to a potential mechanism that helps stabilize stress-responsive transcripts, contributing to the plant's enhanced cold tolerance. CONCLUSIONS m6A modifications play a vital role in regulating gene expression under cold stress, offering new insights into mango's stress responses and potential breeding strategies for cold tolerance.
Collapse
Affiliation(s)
- Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Mingming Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, Guangdong, 518108, China.
| | - Daming Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Haomin Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Zhihao Xie
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Shuangfeng Dai
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
16
|
Zhang B, Zhang S, Wu Y, Li Y, Kong L, Wu R, Zhao M, Liu W, Yu H. Defining context-dependent m 6A RNA methylomes in Arabidopsis. Dev Cell 2024; 59:2772-2786.e3. [PMID: 39025060 DOI: 10.1016/j.devcel.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024]
Abstract
N6-Methyladenosine (m6A) prevalently occurs on cellular RNA across almost all kingdoms of life. It governs RNA fate and is essential for development and stress responses. However, the dynamic, context-dependent m6A methylomes across tissues and in response to various stimuli remain largely unknown in multicellular organisms. Here, we generate a comprehensive census that identifies m6A methylomes in 100 samples during development or following exposure to various external conditions in Arabidopsis thaliana. We demonstrate that m6A is a suitable biomarker to reflect the developmental lineage, and that various stimuli rapidly affect m6A methylomes that constitute the regulatory network required for an effective response to the stimuli. Integrative analyses of the census and its correlation with m6A regulators identify multiple layers of regulation on highly context-dependent m6A modification in response to diverse developmental and environmental stimuli, providing insights into m6A modification dynamics in the myriad contexts of multicellular organisms.
Collapse
Affiliation(s)
- Bin Zhang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Songyao Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Yujin Wu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Yan Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Lingyao Kong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Ranran Wu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ming Zhao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Wei Liu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hao Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
17
|
Lu X, He Y, Guo JQ, Wang Y, Yan Q, Xiong Q, Shi H, Hou Q, Yin J, An YB, Chen YD, Yang CS, Mao Y, Zhu X, Tang Y, Liu J, Bi Y, Song L, Wang L, Yang Y, He M, Li W, Chen X, Wang J. Dynamics of epitranscriptomes uncover translational reprogramming directed by ac4C in rice during pathogen infection. NATURE PLANTS 2024; 10:1548-1561. [PMID: 39317771 DOI: 10.1038/s41477-024-01800-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
Messenger RNA modifications play pivotal roles in RNA biology, but comprehensive landscape changes of epitranscriptomes remain largely unknown in plant immune response. Here we report translational reprogramming directed by ac4C mRNA modification upon pathogen challenge. We first investigate the dynamics of translatomes and epitranscriptomes and uncover that the change in ac4C at single-base resolution promotes translational reprogramming upon Magnaporthe oryzae infection. Then by characterizing the specific distributions of m1A, 2'O-Nm, ac4C, m5C, m6A and m7G, we find that ac4Cs, unlike other modifications, are enriched at the 3rd position of codons, which stabilizes the Watson-Crick base pairing. Importantly, we demonstrate that upon pathogen infection, the increased expression of the ac4C writer OsNAT10/OsACYR (N-ACETYLTRANSFERASE FOR CYTIDINE IN RNA) promotes translation to facilitate rapid activation of immune responses, including the enhancement of jasmonic acid biosynthesis. Our study provides an atlas of mRNA modifications and insights into ac4C function in plant immunity.
Collapse
Affiliation(s)
- Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- MOE Key Laboratory of Agricultural Bioinformatics, Sichuan Agricultural University, Chengdu, China.
| | - Yao He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jin-Qiao Guo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yue Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Qian Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Qing Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Hui Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yi-Bang An
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yi-Di Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Cheng-Shuang Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Ye Mao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jiali Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yu Bi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Long Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yihua Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
18
|
Miyokawa R, Sasaki E. The role of FIONA1 in alternative splicing and its effects on flowering regulation in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 243:2055-2060. [PMID: 39056273 DOI: 10.1111/nph.19995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Affiliation(s)
- Ryo Miyokawa
- Faculty of Science, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Eriko Sasaki
- Faculty of Science, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
19
|
Chen T, Greene GH, Motley J, Mwimba M, Luo GZ, Xu G, Karapetyan S, Xiang Y, Liu C, He C, Dong X. m 6A modification plays an integral role in mRNA stability and translation during pattern-triggered immunity. Proc Natl Acad Sci U S A 2024; 121:e2411100121. [PMID: 39116132 PMCID: PMC11331096 DOI: 10.1073/pnas.2411100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Plants employ distinct mechanisms to respond to environmental changes. Modification of mRNA by N 6-methyladenosine (m6A), known to affect the fate of mRNA, may be one such mechanism to reprogram mRNA processing and translatability upon stress. However, it is difficult to distinguish a direct role from a pleiotropic effect for this modification due to its prevalence in RNA. Through characterization of the transient knockdown-mutants of m6A writer components and mutants of specific m6A readers, we demonstrate the essential role that m6A plays in basal resistance and pattern-triggered immunity (PTI). A global m6A profiling of mock and PTI-induced Arabidopsis plants as well as formaldehyde fixation and cross-linking immunoprecipitation-sequencing of the m6A reader, EVOLUTIONARILY CONSERVED C-TERMINAL REGION2 (ECT2) showed that while dynamic changes in m6A modification and binding by ECT2 were detected upon PTI induction, most of the m6A sites and their association with ECT2 remained static. Interestingly, RNA degradation assay identified a dual role of m6A in stabilizing the overall transcriptome while facilitating rapid turnover of immune-induced mRNAs during PTI. Moreover, polysome profiling showed that m6A enhances immune-associated translation by binding to the ECT2/3/4 readers. We propose that m6A plays a positive role in plant immunity by destabilizing defense mRNAs while enhancing their translation efficiency to create a transient surge in the production of defense proteins.
Collapse
Affiliation(s)
- Tianyuan Chen
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - George H. Greene
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Jonathan Motley
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Musoki Mwimba
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Guan-Zheng Luo
- HHMI, University of Chicago, Chicago, IL60637
- Department of Chemistry, University of Chicago, Chicago, IL60637
| | - Guoyong Xu
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Sargis Karapetyan
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Yezi Xiang
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Chang Liu
- HHMI, University of Chicago, Chicago, IL60637
- Department of Chemistry, University of Chicago, Chicago, IL60637
| | - Chuan He
- HHMI, University of Chicago, Chicago, IL60637
- Department of Chemistry, University of Chicago, Chicago, IL60637
| | - Xinnian Dong
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| |
Collapse
|
20
|
Palos K, Nelson Dittrich AC, Lyons EH, Gregory BD, Nelson ADL. Comparative analyses suggest a link between mRNA splicing, stability, and RNA covalent modifications in flowering plants. BMC PLANT BIOLOGY 2024; 24:768. [PMID: 39134938 PMCID: PMC11318313 DOI: 10.1186/s12870-024-05486-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND In recent years, covalent modifications on RNA nucleotides have emerged as pivotal moieties influencing the structure, function, and regulatory processes of RNA Polymerase II transcripts such as mRNAs and lncRNAs. However, our understanding of their biological roles and whether these roles are conserved across eukaryotes remains limited. RESULTS In this study, we leveraged standard polyadenylation-enriched RNA-sequencing data to identify and characterize RNA modifications that introduce base-pairing errors into cDNA reads. Our investigation incorporated data from three Poaceae (Zea mays, Sorghum bicolor, and Setaria italica), as well as publicly available data from a range of stress and genetic contexts in Sorghum and Arabidopsis thaliana. We uncovered a strong enrichment of RNA covalent modifications (RCMs) deposited on a conserved core set of nuclear mRNAs involved in photosynthesis and translation across these species. However, the cohort of modified transcripts changed based on environmental context and developmental program, a pattern that was also conserved across flowering plants. We determined that RCMs can partly explain accession-level differences in drought tolerance in Sorghum, with stress-associated genes receiving a higher level of RCMs in a drought tolerant accession. To address function, we determined that RCMs are significantly enriched near exon junctions within coding regions, suggesting an association with splicing. Intriguingly, we found that these base-pair disrupting RCMs are associated with stable mRNAs, are highly correlated with protein abundance, and thus likely associated with facilitating translation. CONCLUSIONS Our data point to a conserved role for RCMs in mRNA stability and translation across the flowering plant lineage.
Collapse
Affiliation(s)
- Kyle Palos
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA
| | | | - Eric H Lyons
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew D L Nelson
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
21
|
Cai Z, Tang Q, Song P, Tian E, Yang J, Jia G. The m6A reader ECT8 is an abiotic stress sensor that accelerates mRNA decay in Arabidopsis. THE PLANT CELL 2024; 36:2908-2926. [PMID: 38835286 PMCID: PMC11289641 DOI: 10.1093/plcell/koae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/11/2024] [Indexed: 06/06/2024]
Abstract
N 6-methyladenosine (m6A) is the most abundant mRNA modification and plays diverse roles in eukaryotes, including plants. It regulates various processes, including plant growth, development, and responses to external or internal stress responses. However, the mechanisms underlying how m6A is related to environmental stresses in both mammals and plants remain elusive. Here, we identified EVOLUTIONARILY CONSERVED C-TERMINAL REGION 8 (ECT8) as an m6A reader protein and showed that its m6A-binding capability is required for salt stress responses in Arabidopsis (Arabidopsis thaliana). ECT8 accelerates the degradation of its target transcripts through direct interaction with the decapping protein DECAPPING 5 within processing bodies. We observed a significant increase in the ECT8 expression level under various environmental stresses. Using salt stress as a representative stressor, we found that the transcript and protein levels of ECT8 rise in response to salt stress. The increased abundance of ECT8 protein results in the enhanced binding capability to m6A-modified mRNAs, thereby accelerating their degradation, especially those of negative regulators of salt stress responses. Our results demonstrated that ECT8 acts as an abiotic stress sensor, facilitating mRNA decay, which is vital for maintaining transcriptome homeostasis and enhancing stress tolerance in plants. Our findings not only advance the understanding of epitranscriptomic gene regulation but also offer potential applications for breeding more resilient crops in the face of rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Zhihe Cai
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qian Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peizhe Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Enlin Tian
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junbo Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Wang G, Li H, Ye C, He K, Liu S, Jiang B, Ge R, Gao B, Wei J, Zhao Y, Li A, Zhang D, Zhang J, He C. Quantitative profiling of m 6A at single base resolution across the life cycle of rice and Arabidopsis. Nat Commun 2024; 15:4881. [PMID: 38849358 PMCID: PMC11161662 DOI: 10.1038/s41467-024-48941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
N6-methyladenosine (m6A) plays critical roles in regulating mRNA metabolism. However, comprehensive m6A methylomes in different plant tissues with single-base precision have yet to be reported. Here, we present transcriptome-wide m6A maps at single-base resolution in different tissues of rice and Arabidopsis using m6A-SAC-seq. Our analysis uncovers a total of 205,691 m6A sites distributed across 22,574 genes in rice, and 188,282 m6A sites across 19,984 genes in Arabidopsis. The evolutionarily conserved m6A sites in rice and Arabidopsis ortholog gene pairs are involved in controlling tissue development, photosynthesis and stress response. We observe an overall mRNA stabilization effect by 3' UTR m6A sites in certain plant tissues. Like in mammals, a positive correlation between the m6A level and the length of internal exons is also observed in plant mRNA, except for the last exon. Our data suggest an active m6A deposition process occurring near the stop codon in plant mRNA. In addition, the MTA-installed plant mRNA m6A sites correlate with both translation promotion and translation suppression, depicting a more complicated regulatory picture. Our results therefore provide in-depth resources for relating single-base resolution m6A sites with functions in plants and uncover a suppression-activation model controlling m6A biogenesis across species.
Collapse
Affiliation(s)
- Guanqun Wang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Haoxuan Li
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Kayla He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Shun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Bochen Jiang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Ruiqi Ge
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Boyang Gao
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Jiangbo Wei
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yutao Zhao
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Aixuan Li
- Department of Biology, Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Di Zhang
- Department of Biology, Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA.
| |
Collapse
|
23
|
Liu H, Lin M, Wang H, Li X, Zhou D, Bi X, Zhang Y. N 6-methyladenosine analysis unveils key mechanisms underlying long-term salt stress tolerance in switchgrass (Panicum virgatum). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112023. [PMID: 38320658 DOI: 10.1016/j.plantsci.2024.112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
N6-methyladenosine (m6A) RNA modification is critical for plant growth, development, and environmental stress response. While short-term stress impacts on m6A are well-documented, the consequences of prolonged stress remain underexplored. This study conducts a thorough transcriptome-wide analysis of m6A modifications following 28-day exposure to 200 mM NaCl. We detected 11,149 differentially expressed genes (DEGs) and 12,936 differentially methylated m6A peaks, along with a global decrease in m6A levels. Notably, about 62% of m6A-modified DEGs, including demethylase genes like PvALKBH6_N, PvALKBH9_K, and PvALKBH10_N, showed increased expression and reduced m6A peaks, suggesting that decreased m6A methylation may enhance gene expression under salt stress. Consistent expression and methylation patterns were observed in key genes related to ion homeostasis (e.g., H+-ATPase 1, High-affinity K+transporter 5), antioxidant defense (Catalase 1/2, Copper/zinc superoxide dismutase 2, Glutathione synthetase 1), and osmotic regulation (delta 1-pyrroline-5-carboxylate synthase 2, Pyrroline-5-carboxylate reductase). These findings provide insights into the adaptive mechanisms of switchgrass under long-term salt stress and highlight the potential of regulating m6A modifications as a novel approach for crop breeding strategies focused on stress resistance.
Collapse
Affiliation(s)
- Huayue Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mengzhuo Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hui Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xue Li
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Die Zhou
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Song P, Cai Z, Jia G. Principles, functions, and biological implications of m 6A in plants. RNA (NEW YORK, N.Y.) 2024; 30:491-499. [PMID: 38531642 PMCID: PMC11019739 DOI: 10.1261/rna.079951.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Over the past decade, N 6-methyladenosine (m6A) has emerged as a prevalent and dynamically regulated modification across the transcriptome; it has been reversibly installed, removed, and interpreted by specific binding proteins, and has played crucial roles in molecular and biological processes. Within this scope, we consolidate recent advancements of m6A research in plants regarding gene expression regulation, diverse physiologic and pathogenic processes, as well as crop trial implications, to guide discussions on challenges associated with and leveraging epitranscriptome editing for crop improvement.
Collapse
Affiliation(s)
- Peizhe Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhihe Cai
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- PKU-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China
| |
Collapse
|
25
|
Cai J, Hu J, Xu T, Kang H. FIONA1-mediated mRNA m 6 A methylation regulates the response of Arabidopsis to salt stress. PLANT, CELL & ENVIRONMENT 2024; 47:900-912. [PMID: 38193282 DOI: 10.1111/pce.14807] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/03/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024]
Abstract
N6 -methyladenosine (m6 A) is an mRNA modification widely found in eukaryotes and plays a crucial role in plant development and stress responses. FIONA1 (FIO1) is a recently identified m6 A methyltransferase that regulates Arabidopsis (Arabidopsis thaliana) floral transition; however, its role in stress response remains unknown. In this study, we demonstrate that FIO1-mediated m6 A methylation plays a vital role in salt stress response in Arabidopsis. The loss-of-function fio1 mutant was sensitive to salt stress. Importantly, the complementation lines expressing the wild-type FIO1 exhibited the wild-type phenotype, whereas the complementation lines expressing the mutant FIO1m , in which two critical amino acid residues essential for methyltransferase activity were mutated, did not recover the wild-type phenotype under salt stress, indicating that the salt sensitivity is associated with FIO1 methyltransferase activity. Furthermore, FIO1-mediated m6 A methylation regulated ROS production and affected the transcript level of several salt stress-responsive genes via modulating their mRNA stability in an m6 A-dependent manner in response to salt stress. Importantly, FIO1 is associated with salt stress response by specifically targeting and differentially modulating several salt stress-responsive genes compared with other m6 A writer. Collectively, our findings highlight the molecular mechanism of FIO1-mediated m6 A methylation in the salt stress adaptation.
Collapse
Affiliation(s)
- Jing Cai
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Jianzhong Hu
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Tao Xu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
26
|
Sharma B, Govindan G, Li Y, Sunkar R, Gregory BD. RNA N 6-Methyladenosine Affects Copper-Induced Oxidative Stress Response in Arabidopsis thaliana. Noncoding RNA 2024; 10:8. [PMID: 38392963 PMCID: PMC10892094 DOI: 10.3390/ncrna10010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
Recently, post-transcriptional regulation of mRNA mediated by N6-methyladenosine (m6A) has been found to have profound effects on transcriptome regulation during plant responses to various abiotic stresses. However, whether this RNA modification can affect an oxidative stress response in plants has not been studied. To assess the role of m6A modifications during copper-induced oxidative stress responses, m6A-IP-seq was performed in Arabidopsis seedlings exposed to high levels of copper sulfate. This analysis revealed large-scale shifts in this modification on the transcripts most relevant for oxidative stress. This altered epitranscriptomic mark is known to influence transcript abundance and translation; therefore we scrutinized these possibilities. We found an increased abundance of copper-enriched m6A-containing transcripts. Similarly, we also found increased ribosome occupancy of copper-enriched m6A-containing transcripts, specifically those encoding proteins involved with stress responses relevant to oxidative stressors. Furthermore, the significance of the m6A epitranscriptome on plant oxidative stress tolerance was uncovered by assessing germination and seedling development of the mta (N6-methyladenosine RNA methyltransferase A mutant complemented with ABI3:MTA) mutant exposed to high copper treatment. These analyses suggested hypersensitivity of the mta mutant compared to the wild-type plants in response to copper-induced oxidative stress. Overall, our findings suggest an important role for m6A in the oxidative stress response of Arabidopsis.
Collapse
Affiliation(s)
- Bishwas Sharma
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Ganesan Govindan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (G.G.); (Y.L.)
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Yongfang Li
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (G.G.); (Y.L.)
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (G.G.); (Y.L.)
| | - Brian D. Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
27
|
Fan S, Xu X, Chen J, Yin Y, Zhao Y. Genome-wide identification, characterization, and expression analysis of m6A readers-YTH domain-containing genes in alfalfa. BMC Genomics 2024; 25:18. [PMID: 38166738 PMCID: PMC10759653 DOI: 10.1186/s12864-023-09926-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Eukaryotic messenger RNAs (mRNAs) are often modified with methyl groups at the N6 position of adenosine (m6A), and these changes are interpreted by YTH domain-containing proteins to regulate the metabolism of m6A-modified mRNAs. Although alfalfa (Medicago sativa) is an established model organism for forage development, the understanding of YTH proteins in alfalfa is still limited. In the present investigation, 53 putative YTH genes, each encoding a YT521 domain-containing protein, were identified within the alfalfa genome. These genes were categorized into two subfamilies: YTHDF (49 members) and YTHDC (four members). Each subfamily demonstrates analogous motif distributions and domain architectures. Specifically, proteins encoded by MsYTHDF genes incorporate a single domain structure, while those corresponding to MsYTH5, 8, 12, 16 who are identified as members of the MsYTHDC subfamily, exhibit CCCH-type zinc finger repeats at their N-termini. It is also observed that the predicted aromatic cage pocket that binds the m6A residue of MsYTHDC consists of a sequence of two tryptophan residues and one tyrosine residue (WWY). Conversely, in MsYTHDF, the binding pocket comprises two highly conserved tryptophan residues and either one tryptophan residue (WWW) or tyrosine residue (WWY) in MsYTHDF.Through comparative analysis of qRT-PCR data, we observed distinct expression patterns in specific genes under abiotic stress, indicating their potential regulatory roles. Notably, five genes (MsYTH2, 14, 26, 27, 48) consistently exhibit upregulation, and two genes (MsYTH33, 35) are downregulated in response to both cold and salt stress. This suggests a common mechanism among these YTH proteins in response to various abiotic stressors in alfalfa. Further, integrating qRT-PCR with RNA-seq data revealed that MsYTH2, MsYTH14, and MsYTH16 are highly expressed in leaves at various development stages, underscoring their potential roles in regulating the growth of these plant parts. The obtained findings shed further light on the biological functions of MsYTH genes and may aid in the selection of suitable candidate genes for future genetic enhancement endeavors aimed at improving salt and cold tolerance in alfalfa.
Collapse
Affiliation(s)
- Shugao Fan
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Xiao Xu
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Jianmin Chen
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Yanling Yin
- School of Resources and Environmental Engineering, Ludong University, Yantai, China.
| | - Ying Zhao
- School of Resources and Environmental Engineering, Ludong University, Yantai, China.
| |
Collapse
|
28
|
Amara U, Hu J, Park SJ, Kang H. ECT12, an YTH-domain protein, is a potential mRNA m 6A reader that affects abiotic stress responses by modulating mRNA stability in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108255. [PMID: 38071803 DOI: 10.1016/j.plaphy.2023.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 02/15/2024]
Abstract
N6-methyladenosine (m6A), the most abundant modification found in eukaryotic mRNAs, is interpreted by m6A "readers," thus playing a crucial role in regulating RNA metabolism. The YT521-B homology-domain (YTHD) proteins, also known as EVOLUTIONARILY CONSERVED C-TERMINAL REGION (ECT), are recognized as m6A reader proteins in plants and animals. Among the 13 potential YTHD family proteins in Arabidopsis thaliana, the functions of only a few members are known. In this study, we determined the function of ECT12 (YTH11) as a potential m6A reader that plays a crucial role in response to abiotic stresses. The loss-of-function ect12 mutants showed no noticeable developmental defects under normal conditions but displayed hypersensitivity to salt or dehydration stress. The salt- or dehydration-hypersensitive phenotypes were correlated with altered levels of several m6A-modified stress-responsive transcripts. Notably, the increased or decreased transcript levels were associated with each transcript's reduced or enhanced decay, respectively. Electrophoretic mobility shift and RNA-immunoprecipitation assays showed that ECT12 binds to m6A-modified RNAs both in vitro and in planta, suggesting its role as an m6A reader. Collectively, these results indicate that the potential m6A reader ECT12 regulates the stability of m6A-modified RNA transcripts, thereby facilitating the response of Arabidopsis to abiotic stresses.
Collapse
Affiliation(s)
- Umme Amara
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Jianzhong Hu
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Su Jung Park
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
29
|
Govindan G, Sunkar R. MeRIP-Seq for Identifying Stress-Responsive Transcriptome-Wide m 6A Profiles in Plants. Methods Mol Biol 2024; 2832:47-55. [PMID: 38869786 DOI: 10.1007/978-1-0716-3973-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Recent advancements in detection and mapping methods have enabled researchers to uncover the biological importance of RNA chemical modifications, which play a vital role in post-transcriptional gene regulation. Although numerous types of RNA modifications have been identified in higher eukaryotes, only a few have been extensively studied for their biological functions. Of these, N6-methyladenosine (m6A) is the most prevalent and important mRNA modification that influences various aspects of RNA metabolism, including mRNA stability, degradation, splicing, alternative polyadenylation, export, and localization, as well as translation. Thus, they have implications for a variety of biological processes, including growth, development, and stress responses. The m6A deposition or removal on transcripts is dynamic and is altered in response to internal and external cues. Because this mark can alter gene expression under stress conditions, it is essential to identify the transcripts that can acquire or lose this epitranscriptomic mark upon exposure to stress conditions. Here we describe a step-by-step protocol for identifying stress-responsive transcriptome-wide m6A changes using RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-seq).
Collapse
Affiliation(s)
- Ganesan Govindan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
30
|
Xie Y, Chan LY, Cheung MY, Li MW, Lam HM. Current technical advancements in plant epitranscriptomic studies. THE PLANT GENOME 2023; 16:e20316. [PMID: 36890704 DOI: 10.1002/tpg2.20316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The growth and development of plants are the result of the interplay between the internal developmental programming and plant-environment interactions. Gene expression regulations in plants are made up of multi-level networks. In the past few years, many studies were carried out on co- and post-transcriptional RNA modifications, which, together with the RNA community, are collectively known as the "epitranscriptome." The epitranscriptomic machineries were identified and their functional impacts characterized in a broad range of physiological processes in diverse plant species. There is mounting evidence to suggest that the epitranscriptome provides an additional layer in the gene regulatory network for plant development and stress responses. In the present review, we summarized the epitranscriptomic modifications found so far in plants, including chemical modifications, RNA editing, and transcript isoforms. The various approaches to RNA modification detection were described, with special emphasis on the recent development and application potential of third-generation sequencing. The roles of epitranscriptomic changes in gene regulation during plant-environment interactions were discussed in case studies. This review aims to highlight the importance of epitranscriptomics in the study of gene regulatory networks in plants and to encourage multi-omics investigations using the recent technical advancements.
Collapse
Affiliation(s)
- Yichun Xie
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Long-Yiu Chan
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ming-Yan Cheung
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Man-Wah Li
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
31
|
Jiang B, Zhong Z, Gu L, Zhang X, Wei J, Ye C, Lin G, Qu G, Xiang X, Wen C, Hummel M, Bailey-Serres J, Wang Q, He C, Wang X, Lin C. Light-induced LLPS of the CRY2/SPA1/FIO1 complex regulating mRNA methylation and chlorophyll homeostasis in Arabidopsis. NATURE PLANTS 2023; 9:2042-2058. [PMID: 38066290 PMCID: PMC10724061 DOI: 10.1038/s41477-023-01580-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023]
Abstract
Light regulates chlorophyll homeostasis and photosynthesis via various molecular mechanisms in plants. The light regulation of transcription and protein stability of nuclear-encoded chloroplast proteins have been extensively studied, but how light regulation of mRNA metabolism affects abundance of nuclear-encoded chloroplast proteins and chlorophyll homeostasis remains poorly understood. Here we show that the blue light receptor cryptochrome 2 (CRY2) and the METTL16-type m6A writer FIONA1 (FIO1) regulate chlorophyll homeostasis in response to blue light. In contrast to the CRY2-mediated photo-condensation of the mRNA adenosine methylase (MTA), photoexcited CRY2 co-condenses FIO1 only in the presence of the CRY2-signalling protein SUPPRESSOR of PHYTOCHROME A (SPA1). CRY2 and SPA1 synergistically or additively activate the RNA methyltransferase activity of FIO1 in vitro, whereas CRY2 and FIO1, but not MTA, are required for the light-induced methylation and translation of the mRNAs encoding multiple chlorophyll homeostasis regulators in vivo. Our study demonstrates that the light-induced liquid-liquid phase separation of the photoreceptor/writer complexes is commonly involved in the regulation of photoresponsive changes of mRNA methylation, whereas the different photo-condensation mechanisms of the CRY/FIO1 and CRY/MTA complexes explain, at least partially, the writer-specific functions in plant photomorphogenesis.
Collapse
Affiliation(s)
- Bochen Jiang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| | - Zhenhui Zhong
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Gu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueyang Zhang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiangbo Wei
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Guifang Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gaoping Qu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xian Xiang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenjin Wen
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Maureen Hummel
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Qin Wang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Xu Wang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, China.
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Vicente AM, Manavski N, Rohn PT, Schmid LM, Garcia-Molina A, Leister D, Seydel C, Bellin L, Möhlmann T, Ammann G, Kaiser S, Meurer J. The plant cytosolic m 6A RNA methylome stabilizes photosynthesis in the cold. PLANT COMMUNICATIONS 2023; 4:100634. [PMID: 37287225 PMCID: PMC10721483 DOI: 10.1016/j.xplc.2023.100634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/10/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
The sessile lifestyle of plants requires an immediate response to environmental stressors that affect photosynthesis, growth, and crop yield. Here, we showed that three abiotic perturbations-heat, cold, and high light-triggered considerable changes in the expression signatures of 42 epitranscriptomic factors (writers, erasers, and readers) with putative chloroplast-associated functions that formed clusters of commonly expressed genes in Arabidopsis. The expression changes under all conditions were reversible upon deacclimation, identifying epitranscriptomic players as modulators in acclimation processes. Chloroplast dysfunctions, particularly those induced by the oxidative stress-inducing norflurazon in a largely GENOME UNCOUPLED-independent manner, triggered retrograde signals to remodel chloroplast-associated epitranscriptomic expression patterns. N6-methyladenosine (m6A) is known as the most prevalent RNA modification and impacts numerous developmental and physiological functions in living organisms. During cold treatment, expression of components of the primary nuclear m6A methyltransferase complex was upregulated, accompanied by a significant increase in cellular m6A mRNA marks. In the cold, the presence of FIP37, a core component of the writer complex, played an important role in positive regulation of thylakoid structure, photosynthetic functions, and accumulation of photosystem I, the Cytb6f complex, cyclic electron transport proteins, and Curvature Thylakoid1 but not that of photosystem II components and the chloroplast ATP synthase. Downregulation of FIP37 affected abundance, polysomal loading, and translation of cytosolic transcripts related to photosynthesis in the cold, suggesting m6A-dependent translational regulation of chloroplast functions. In summary, we identified multifaceted roles of the cellular m6A RNA methylome in coping with cold; these were predominantly associated with chloroplasts and served to stabilize photosynthesis.
Collapse
Affiliation(s)
- Alexandre Magno Vicente
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Paul Torben Rohn
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Lisa-Marie Schmid
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Antoni Garcia-Molina
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Charlotte Seydel
- Plant Development, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Leo Bellin
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Street, 7, 67663 Kaiserslautern, Germany
| | - Torsten Möhlmann
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Street, 7, 67663 Kaiserslautern, Germany
| | - Gregor Ammann
- Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Stefanie Kaiser
- Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
33
|
Prall W, Sheikh AH, Bazin J, Bigeard J, Almeida-Trapp M, Crespi M, Hirt H, Gregory BD. Pathogen-induced m6A dynamics affect plant immunity. THE PLANT CELL 2023; 35:4155-4172. [PMID: 37610247 PMCID: PMC10615206 DOI: 10.1093/plcell/koad224] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Posttranscriptional regulation of mRNA mediated by methylation at the N6 position of adenine (N6-methyladenosine [m6A]) has profound effects on transcriptome regulation in plants. Focused studies across eukaryotes offer glimpses into the processes governed by m6A throughout developmental and disease states. However, we lack an understanding of the dynamics and the regulatory potential of m6A during biotic stress in plants. Here, we provide a comprehensive look into the effects of m6A on both the short-term and long-term responses to pathogen signaling in Arabidopsis (Arabidopsis thaliana). We demonstrate that m6A-deficient plants are more resistant to bacterial and fungal pathogen infections and have altered immune responses. Furthermore, m6A deposition is specifically coordinated on transcripts involved in defense and immunity prior to and proceeding the pathogen signal flagellin. Consequently, the dynamic modulation of m6A on specific stress-responsive transcripts is correlated with changes in abundance and cleavage of these transcripts. Overall, we show that the m6A methylome is regulated prior to and during simulated and active pathogen stress and functions in the coordination and balancing of normal growth and pathogen responses.
Collapse
Affiliation(s)
- Wil Prall
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104,USA
| | - Arsheed H Sheikh
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900,Saudi Arabia
| | - Jeremie Bazin
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Universite Paris Sud, Universite Evry, Universite Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, 91190 Gif-sur-Yvette,France
| | - Jean Bigeard
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Universite Paris Sud, Universite Evry, Universite Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, 91190 Gif-sur-Yvette,France
| | - Marilia Almeida-Trapp
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900,Saudi Arabia
| | - Martin Crespi
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Universite Paris Sud, Universite Evry, Universite Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, 91190 Gif-sur-Yvette,France
| | - Heribert Hirt
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900,Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna,Austria
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104,USA
| |
Collapse
|
34
|
Dhingra Y, Gupta S, Gupta V, Agarwal M, Katiyar-Agarwal S. The emerging role of epitranscriptome in shaping stress responses in plants. PLANT CELL REPORTS 2023; 42:1531-1555. [PMID: 37481775 DOI: 10.1007/s00299-023-03046-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
KEY MESSAGE RNA modifications and editing changes constitute 'epitranscriptome' and are crucial in regulating the development and stress response in plants. Exploration of the epitranscriptome and associated machinery would facilitate the engineering of stress tolerance in crops. RNA editing and modifications post-transcriptionally decorate almost all classes of cellular RNAs, including tRNAs, rRNAs, snRNAs, lncRNAs and mRNAs, with more than 170 known modifications, among which m6A, Ψ, m5C, 8-OHG and C-to-U editing are the most abundant. Together, these modifications constitute the "epitranscriptome", and contribute to changes in several RNA attributes, thus providing an additional structural and functional diversification to the "cellular messages" and adding another layer of gene regulation in organisms, including plants. Numerous evidences suggest that RNA modifications have a widespread impact on plant development as well as in regulating the response of plants to abiotic and biotic stresses. High-throughput sequencing studies demonstrate that the landscapes of m6A, m5C, Am, Cm, C-to-U, U-to-G, and A-to-I editing are remarkably dynamic during stress conditions in plants. GO analysis of transcripts enriched in Ψ, m6A and m5C modifications have identified bonafide components of stress regulatory pathways. Furthermore, significant alterations in the expression pattern of genes encoding writers, readers, and erasers of certain modifications have been documented when plants are grown in challenging environments. Notably, manipulating the expression levels of a few components of RNA editing machinery markedly influenced the stress tolerance in plants. We provide updated information on the current understanding on the contribution of RNA modifications in shaping the stress responses in plants. Unraveling of the epitranscriptome has opened new avenues for designing crops with enhanced productivity and stress resilience in view of global climate change.
Collapse
Affiliation(s)
- Yashika Dhingra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Shitij Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland
| | - Vaishali Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Manu Agarwal
- Department of Botany, University of Delhi North Campus, Delhi, 110007, India
| | - Surekha Katiyar-Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
35
|
Zhao J, Zhang C, Li S, Yuan M, Mu W, Yang J, Ma Y, Guan C, Ma C. Changes in m 6A RNA methylation are associated with male sterility in wolfberry. BMC PLANT BIOLOGY 2023; 23:456. [PMID: 37770861 PMCID: PMC10540408 DOI: 10.1186/s12870-023-04458-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND N6-methyladenosine (m6A) modification is the most abundant type of RNA modification in eukaryotic cells, playing pivotal roles in multiple plant growth and development processes. Yet the potential role of m6A in conferring the trait of male sterility in plants remains unknown. RESULTS In this study, we performed RNA-sequencing (RNA-Seq) and m6A-sequencing (m6A-Seq) of RNAs obtained from the anther tissue of two wolfberry lines: 'Ningqi No.1' (LB1) and its natural male sterile mutant 'Ningqi No.5' (LB5). Based on the newly assembled transcriptome, we established transcriptome-wide m6A maps for LB1 and LB5 at the single nucleus pollen stage. We found that the gene XLOC_021201, a homolog of m6A eraser-related gene ALKBH10 in Arabidopsis thaliana, was significantly differentially expressed between LB1 and LB5. We also identified 1642 and 563 m6A-modified genes with hypermethylated and hypomethylated patterns, respectively, in LB1 compared with LB5. We found the hypermethylated genes significantly enriched in biological processes related to energy metabolism and lipid metabolism, while hypomethylation genes were mainly linked to cell cycle process, gametophyte development, and reproductive process. Among these 2205 differentially m6A methylated genes, 13.74% (303 of 2205) were differentially expressed in LB1 vis-à-vis LB5. CONCLUSIONS This study constructs the first m6A transcriptome map of wolfberry and establishes an association between m6A and the trait of male sterility in wolfberry.
Collapse
Affiliation(s)
- Jiawen Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chujun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sifan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengmeng Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenlan Mu
- College of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Jing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yutong Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cuiping Guan
- College of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China.
| | - Chuang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
36
|
Yang S, Zhou J, Li Y, Wu J, Ma C, Chen Y, Sun X, Wu L, Liang X, Fu Q, Xu Z, Li L, Huang Z, Zhu J, Jia X, Ye X, Chen R. AP2/EREBP Pathway Plays an Important Role in Chaling Wild Rice Tolerance to Cold Stress. Int J Mol Sci 2023; 24:14441. [PMID: 37833888 PMCID: PMC10572191 DOI: 10.3390/ijms241914441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Cold stress is the main factor limiting rice production and distribution. Chaling wild rice can survive in cold winters. AP2/EREBP is a known transcription factor family associated with abiotic stress. We identified the members of the AP2/EREBP transcription factor family in rice, maize, and Arabidopsis, and conducted collinearity analysis and gene family analysis. We used Affymetrix array technology to analyze the expression of AP2/EREBP family genes in Chaling wild rice and cultivated rice cultivar Pei'ai64S, which is sensitive to cold. According to the GeneChip results, the expression levels of AP2/EREBP genes in Chaling wild rice were different from those in Pei'ai64S; and the increase rate of 36 AP2/EREBP genes in Chaling wild rice was higher than that in Pei'ai64S. Meanwhile, the MYC elements in cultivated rice and Chaling wild rice for the Os01g49830, Os03g08470, and Os03g64260 genes had different promoter sequences, resulting in the high expression of these genes in Chaling wild rice under low-temperature conditions. Furthermore, we analyzed the upstream and downstream genes of the AP2/EREBP transcription factor family and studied the conservation of these genes. We found that the upstream transcription factors were more conserved, indicating that these upstream transcription factors may be more important in regulating cold stress. Meanwhile, we found the expression of AP2/EREBP pathway genes was significantly increased in recombinant inbred lines from Nipponbare crossing with Chaling wild rice, These results suggest that the AP2/EREBP signaling pathway plays an important role in Chaling wild rice tolerance to cold stress.
Collapse
Affiliation(s)
- Songjin Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Jingming Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Yaqi Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Jiacheng Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Chuan Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Yulin Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Xingzhuo Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Lingli Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Xin Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Qiuping Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Zhengjun Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Lihua Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Zhengjian Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Jianqing Zhu
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (X.J.); (X.Y.)
| | - Xiaomei Jia
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (X.J.); (X.Y.)
| | - Xiaoying Ye
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (X.J.); (X.Y.)
| | - Rongjun Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (X.J.); (X.Y.)
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
37
|
Lin H, Shi T, Zhang Y, He C, Zhang Q, Mo Z, Pan W, Nie X. Genome-Wide Identification, Expression and Evolution Analysis of m6A Writers, Readers and Erasers in Aegilops_tauschii. PLANTS (BASEL, SWITZERLAND) 2023; 12:2747. [PMID: 37514361 PMCID: PMC10385245 DOI: 10.3390/plants12142747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
N6-methyladenosine modifications (m6A) is one of the most abundant and prevalent post-transcriptional RNA modifications in plants, playing the crucial role in plant growth and development and stress adaptation. However, the m6A regulatory machinery in Aegilops_tauschii, the D genome progenitor of common wheat, is not well understood at present. Here, we systematically identified the m6A-related genes in Aegilops with a genome-wide search approach. In total, 25 putative m6A genes composed of 5 writers, 13 readers and 7 erasers were obtained. A phylogenetic analysis clearly grouped them into three subfamilies with the same subfamily showing similar gene structures and conserved domains. These m6A genes were found to contain a large number of cis-acting elements associating with plant hormones, regulation of growth and development as well as stress response, suggesting their widespread regulation function. Furthermore, the expression profiling of them was investigated using RNA-seq data to obtain stress-responsive candidates, of which 5 were further validated with a qPCR analysis. Finally, the genetic variation of m6A-related genes was investigated between Aegilops and D subgenome of wheat based on re-sequencing data, and an obvious genetic bottleneck occurred on them during the wheat domestication process. The promising haplotype association with domestication and agronomic traits was also detected. This study provided some insights on the genomic organization and evolutionary features of m6A-related genes in Aegilops, which will facilitate the further functional study and also contribute to broaden the genetic basis for genetic improvement in wheat and other crops.
Collapse
Affiliation(s)
- Huiyuan Lin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Tingrui Shi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Ying Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Chuyang He
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Qiying Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Zhiping Mo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
- Australia-China Joint Research Centre for Abiotic and Biotic Stress Management in Agriculture, Horticulture and Forestry, Yangling 712100, China
| |
Collapse
|
38
|
Wang S, Wang H, Xu Z, Jiang S, Shi Y, Xie H, Wang S, Hua J, Wu Y. m6A mRNA modification promotes chilling tolerance and modulates gene translation efficiency in Arabidopsis. PLANT PHYSIOLOGY 2023; 192:1466-1482. [PMID: 36810961 PMCID: PMC10231368 DOI: 10.1093/plphys/kiad112] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 05/16/2023]
Abstract
N 6-methyladenosine (m6A), the most prevalent mRNA modification in eukaryotes, is an emerging player of gene regulation at transcriptional and translational levels. Here, we explored the role of m6A modification in response to low temperature in Arabidopsis (Arabidopsis thaliana). Knocking down mRNA adenosine methylase A (MTA), a key component of the modification complex, by RNA interference (RNAi) led to drastically reduced growth at low temperature, indicating a critical role of m6A modification in the chilling response. Cold treatment reduced the overall m6A modification level of mRNAs especially at the 3' untranslated region. Joint analysis of the m6A methylome, transcriptome and translatome of the wild type (WT) and the MTA RNAi line revealed that m6A-containing mRNAs generally had higher abundance and translation efficiency than non-m6A-containing mRNAs under normal and low temperatures. In addition, reduction of m6A modification by MTA RNAi only moderately altered the gene expression response to low temperature but led to dysregulation of translation efficiencies of one third of the genes of the genome in response to cold. We tested the function of the m6A-modified cold-responsive gene ACYL-COA:DIACYLGLYCEROL ACYLTRANSFERASE 1 (DGAT1) whose translation efficiency but not transcript level was reduced in the chilling-susceptible MTA RNAi plant. The dgat1 loss-of-function mutant exhibited reduced growth under cold stress. These results reveal a critical role of m6A modification in regulating growth under low temperature and suggest an involvement of translational control in chilling responses in Arabidopsis.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| | - Haiyan Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| | - Zhihui Xu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| | - Shasha Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| | - Yucheng Shi
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| | - Hairong Xie
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| | - Shu Wang
- Gene Sequencing Center, Jiangbei New Area Biopharmaceutical Public Service Platform Co., Ltd., Nanjing 210000, Jiangsu, China
| | - Jian Hua
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca 14850, NY, USA
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| |
Collapse
|
39
|
Song P, Wei L, Chen Z, Cai Z, Lu Q, Wang C, Tian E, Jia G. m 6A readers ECT2/ECT3/ECT4 enhance mRNA stability through direct recruitment of the poly(A) binding proteins in Arabidopsis. Genome Biol 2023; 24:103. [PMID: 37122016 PMCID: PMC10150487 DOI: 10.1186/s13059-023-02947-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND RNA N6-methyladenosine (m6A) modification is critical for plant growth and crop yield. m6A reader proteins can recognize m6A modifications to facilitate the functions of m6A in gene regulation. ECT2, ECT3, and ECT4 are m6A readers that are known to redundantly regulate trichome branching and leaf growth, but their molecular functions remain unclear. RESULTS Here, we show that ECT2, ECT3, and ECT4 directly interact with each other in the cytoplasm and perform genetically redundant functions in abscisic acid (ABA) response regulation during seed germination and post-germination growth. We reveal that ECT2/ECT3/ECT4 promote the stabilization of their targeted m6A-modified mRNAs, but have no function in alternative polyadenylation and translation. We find that ECT2 directly interacts with the poly(A) binding proteins, PAB2 and PAB4, and maintains the stabilization of m6A-modified mRNAs. Disruption of ECT2/ECT3/ECT4 destabilizes mRNAs of ABA signaling-related genes, thereby promoting the accumulation of ABI5 and leading to ABA hypersensitivity. CONCLUSION Our study reveals a unified functional model of m6A mediated by m6A readers in plants. In this model, ECT2/ECT3/ECT4 promote stabilization of their target mRNAs in the cytoplasm.
Collapse
Affiliation(s)
- Peizhe Song
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Lianhuan Wei
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Zixin Chen
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Zhihe Cai
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Qiang Lu
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Chunling Wang
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Enlin Tian
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.
| |
Collapse
|
40
|
Garcias-Morales D, Palomar VM, Charlot F, Nogué F, Covarrubias AA, Reyes JL. N 6 -Methyladenosine modification of mRNA contributes to the transition from 2D to 3D growth in the moss Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:7-22. [PMID: 36794900 DOI: 10.1111/tpj.16149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Plants colonized the land approximately 470 million years ago, coinciding with the development of apical cells that divide in three planes. The molecular mechanisms that underly the development of the 3D growth pattern are poorly understood, mainly because 3D growth in seed plants starts during embryo development. In contrast, the transition from 2D to 3D growth in the moss Physcomitrium patens has been widely studied, and it involves a large turnover of the transcriptome to allow the establishment of stage-specific transcripts that facilitate this developmental transition. N6 -Methyladenosine (m6 A) is the most abundant, dynamic and conserved internal nucleotide modification present on eukaryotic mRNA and serves as a layer of post-transcriptional regulation directly affecting several cellular processes and developmental pathways in many organisms. In Arabidopsis, m6 A has been reported to be essential for organ growth and determination, embryo development and responses to environmental signals. In this study, we identified the main genes of the m6 A methyltransferase complex (MTC), MTA, MTB and FIP37, in P. patens and demonstrate that their inactivation leads to the loss of m6 A in mRNA, a delay in the formation of gametophore buds and defects in spore development. Genome-wide analysis revealed several transcripts affected in the Ppmta background. We demonstrate that the PpAPB1-PpAPB4 transcripts, encoding central factors orchestrating the transition from 2D to 3D growth in P. patens, are modified by m6 A, whereas in the Ppmta mutant the lack of the m6 A marker is associated with a corresponding decrease in transcript accumulation. Overall, we suggest that m6 A is essential to enable the proper accumulation of these and other bud-specific transcripts directing the turnover of stage-specific transcriptomes, and thus promoting the transition from protonema to gametophore buds in P. patens.
Collapse
Affiliation(s)
- David Garcias-Morales
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, CP, 62210, Mexico
| | - V Miguel Palomar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N. University Ave, Ann Arbor, MI, 48109-1085, USA
| | - Florence Charlot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Fabien Nogué
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, CP, 62210, Mexico
| | - José L Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, CP, 62210, Mexico
| |
Collapse
|
41
|
Shen L, Ma J, Li P, Wu Y, Yu H. Recent advances in the plant epitranscriptome. Genome Biol 2023; 24:43. [PMID: 36882788 PMCID: PMC9990323 DOI: 10.1186/s13059-023-02872-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/12/2023] [Indexed: 03/09/2023] Open
Abstract
Chemical modifications of RNAs, known as the epitranscriptome, are emerging as widespread regulatory mechanisms underlying gene regulation. The field of epitranscriptomics advances recently due to improved transcriptome-wide sequencing strategies for mapping RNA modifications and intensive characterization of writers, erasers, and readers that deposit, remove, and recognize RNA modifications, respectively. Herein, we review recent advances in characterizing plant epitranscriptome and its regulatory mechanisms in post-transcriptional gene regulation and diverse physiological processes, with main emphasis on N6-methyladenosine (m6A) and 5-methylcytosine (m5C). We also discuss the potential and challenges for utilization of epitranscriptome editing in crop improvement.
Collapse
Affiliation(s)
- Lisha Shen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore. .,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
| | - Jinqi Ma
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Ping Li
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Yujin Wu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Hao Yu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore. .,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
42
|
Wang L, Yang C, Shan Q, Zhao M, Yu J, Li YF. Transcriptome-wide profiling of mRNA N 6-methyladenosine modification in rice panicles and flag leaves. Genomics 2023; 115:110542. [PMID: 36535337 DOI: 10.1016/j.ygeno.2022.110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
N6-methyladenosine (m6A) modification is essential for plant growth and development. Exploring m6A methylation patterns in rice tissues is fundamental to understanding the regulatory effects of this modification. Here, we profiled the transcriptome-wide m6A landscapes of rice panicles at the booting stage (PB) and flowering stage (PF), and of flag leaves at the flowering stage (LF). The global m6A level differed significantly among the three tissues and was closely associated with the expression of writer and eraser genes. The methylated gene ratio was higher in the flag leaves than in the panicles. Compared with commonly methylated genes, tissue-specific methylated genes showed lower levels of both m6A modification and expression, and a preference for m6A deposition in the coding sequence region. The m6A profiles of the two organs had more distinct differences than the profiles of the same organ at different stages. A negative correlation between m6A levels and gene expression was observed in PF vs. PB but not in PF vs. LF, indicting the complicated regulatory effect of m6A on gene expression. The distinct expression patterns of m6A reader genes in different tissues indicate that readers may affect gene stability through binding. Overall, our findings demonstrated that m6A modification influences tissue function by regulating gene expression. Our findings provide valuable insights on the regulation and biological functions of m6A modifications in rice.
Collapse
Affiliation(s)
- Li Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Chenhui Yang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Qianru Shan
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Miao Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Juanjuan Yu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yong-Fang Li
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|