1
|
Sagia GM, Georgiou X, Chamilos G, Diallinas G, Dimou S. Distinct trafficking routes of polarized and non-polarized membrane cargoes in Aspergillus nidulans. eLife 2024; 13:e103355. [PMID: 39431919 DOI: 10.7554/elife.103355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024] Open
Abstract
Membrane proteins are sorted to the plasma membrane via Golgi-dependent trafficking. However, our recent studies challenged the essentiality of Golgi in the biogenesis of specific transporters. Here, we investigate the trafficking mechanisms of membrane proteins by following the localization of the polarized R-SNARE SynA versus the non-polarized transporter UapA, synchronously co-expressed in wild-type or isogenic genetic backgrounds repressible for conventional cargo secretion. In wild-type, the two cargoes dynamically label distinct secretory compartments, highlighted by the finding that, unlike SynA, UapA does not colocalize with the late-Golgi. In line with early partitioning into distinct secretory carriers, the two cargoes collapse in distinct ER-Exit Sites (ERES) in a sec31ts background. Trafficking via distinct cargo-specific carriers is further supported by showing that repression of proteins essential for conventional cargo secretion does not affect UapA trafficking, while blocking SynA secretion. Overall, this work establishes the existence of distinct, cargo-dependent, trafficking mechanisms, initiating at ERES and being differentially dependent on Golgi and SNARE interactions.
Collapse
Affiliation(s)
- Georgia Maria Sagia
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | - Xenia Georgiou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | - Georgios Chamilos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
- School of Medicine, University of Crete, Heraklion, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
| | - Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| |
Collapse
|
2
|
The Golgi-resident protein ACBD3 concentrates STING at ER-Golgi contact sites to drive export from the ER. Cell Rep 2022; 41:111868. [PMID: 36543137 DOI: 10.1016/j.celrep.2022.111868] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
STING, an endoplasmic reticulum (ER)-resident receptor for cyclic di-nucleotides (CDNs), is essential for innate immune responses. Upon CDN binding, STING moves from the ER to the Golgi, where it activates downstream type-I interferon (IFN) signaling. General cargo proteins exit from the ER via concentration at ER exit sites. However, the mechanism of STING concentration is poorly understood. Here, we visualize the ER exit sites of STING by blocking its transport at low temperature or by live-cell imaging with the cell-permeable ligand bis-pivSATE-2'F-c-di-dAMP, which we have developed. After ligand binding, STING forms punctate foci at non-canonical ER exit sites. Unbiased proteomic screens and super-resolution microscopy show that the Golgi-resident protein ACBD3/GCP60 recognizes and concentrates ligand-bound STING at specialized ER-Golgi contact sites. Depletion of ACBD3 impairs STING ER-to-Golgi trafficking and type-I IFN responses. Our results identify the ACBD3-mediated non-canonical cargo concentration system that drives the ER exit of STING.
Collapse
|
3
|
Lee AG. The role of cholesterol binding in the control of cholesterol by the Scap-Insig system. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:385-399. [PMID: 35717507 PMCID: PMC9233655 DOI: 10.1007/s00249-022-01606-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/26/2022] [Accepted: 06/05/2022] [Indexed: 12/02/2022]
Abstract
Scap and Insig, two proteins embedded in the membrane of the endoplasmic reticulum (ER), regulate the synthesis of cholesterol in animal cells by forming a dimer in the presence of high concentrations of cholesterol. Cryo-electron microscopic structures for the Scap-Insig dimer show a sterol-binding site at the dimer interface, but none of the structures include cholesterol itself. Here, a molecular docking approach developed to characterise cholesterol binding to the transmembrane (TM) regions of membrane proteins is used to characterise cholesterol binding to sites on the TM surface of the dimer and to the interfacial binding site. Binding of cholesterol is also observed at sites on the extra-membranous luminal domains of Scap, but the properties of these sites suggest that they will be unoccupied in vivo. Comparing the structure of Scap in the dimer with that predicted by AlphaFold for monomeric Scap suggests that dimer formation could result in relocation of TM helix 7 of Scap and of the loop between TM6 and 7, and that this could be the key change on Scap that signals that there is a high concentration of cholesterol in the ER.
Collapse
Affiliation(s)
- Anthony G Lee
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
4
|
Abstract
Lipid and protein diversity provides structural and functional identity to the membrane compartments that define the eukaryotic cell. This compositional heterogeneity is maintained by the secretory pathway, which feeds newly synthesized proteins and lipids to the endomembrane systems. The precise sorting of lipids and proteins through the pathway guarantees the achievement of their correct delivery. Although proteins have been shown to be key for sorting mechanisms, whether and how lipids contribute to this process is still an open discussion. Our laboratory, in collaboration with other groups, has recently addressed the long-postulated role of membrane lipids in protein sorting in the secretory pathway, by investigating in yeast how a special class of lipid-linked cell surface proteins are differentially exported from the endoplasmic reticulum. Here we comment on this interdisciplinary study that highlights the role of lipid diversity and the importance of protein-lipid interactions in sorting processes at the cell membrane.
Collapse
Affiliation(s)
| | - Manuel Muñiz
- Dept. Cell Biology, University of Seville, Seville, 41012 Spain;,
| |
Collapse
|
5
|
Papouskova K, Moravcova M, Masrati G, Ben-Tal N, Sychrova H, Zimmermannova O. C5 conserved region of hydrophilic C-terminal part of Saccharomyces cerevisiae Nha1 antiporter determines its requirement of Erv14 COPII cargo receptor for plasma-membrane targeting. Mol Microbiol 2020; 115:41-57. [PMID: 32864748 DOI: 10.1111/mmi.14595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/23/2020] [Accepted: 08/22/2020] [Indexed: 01/03/2023]
Abstract
Erv14, a conserved cargo receptor of COPII vesicles, helps the proper trafficking of many but not all transporters to the yeast plasma membrane, for example, three out of five alkali-metal-cation transporters in Saccharomyces cerevisiae. Among them, the Nha1 cation/proton antiporter, which participates in cell cation and pH homeostasis, is a large membrane protein (985 aa) possessing a long hydrophilic C-terminus (552 aa) containing six conserved regions (C1-C6) with unknown function. A short Nha1 version, lacking almost the entire C-terminus, still binds to Erv14 but does not need it to be targeted to the plasma membrane. Comparing the localization and function of ScNha1 variants shortened at its C-terminus in cells with or without Erv14 reveals that only ScNha1 versions possessing the complete C5 region are dependent on Erv14. In addition, our broad evolutionary conservation analysis of fungal Na+ /H+ antiporters identified new conserved regions in their C-termini, and our experiments newly show C5 and other, so far unknown, regions of the C-terminus, to be involved in the functionality and substrate specificity of ScNha1. Taken together, our results reveal that also relatively small hydrophilic parts of some yeast membrane proteins underlie their need to interact with the Erv14 cargo receptor.
Collapse
Affiliation(s)
- Klara Papouskova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Michaela Moravcova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Gal Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Hana Sychrova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Olga Zimmermannova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| |
Collapse
|
6
|
Diallinas G, Martzoukou O. Transporter membrane traffic and function: lessons from a mould. FEBS J 2019; 286:4861-4875. [DOI: 10.1111/febs.15078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/26/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
Affiliation(s)
- George Diallinas
- Department of Biology National and Kapodistrian University of Athens Greece
| | - Olga Martzoukou
- Department of Biology National and Kapodistrian University of Athens Greece
| |
Collapse
|
7
|
Abstract
Cell nutrition, detoxification, signalling, homeostasis and response to drugs, processes related to cell growth, differentiation and survival are all mediated by plasma membrane (PM) proteins called transporters. Despite their distinct fine structures, mechanism of function, energetic requirements, kinetics and substrate specificities, all transporters are characterized by a main hydrophobic body embedded in the PM as a series of tightly packed, often intertwined, α-helices that traverse the lipid bilayer in a zigzag mode, connected with intracellular or extracellular loops and hydrophilic N- and C-termini. Whereas longstanding genetic, biochemical and biophysical evidence suggests that specific transmembrane segments, and also their connecting loops, are responsible for substrate recognition and transport dynamics, emerging evidence also reveals the functional importance of transporter N- and C-termini, in respect to transport catalysis, substrate specificity, subcellular expression, stability and signalling. This review highlights selected prototypic examples of transporters in which their termini play important roles in their functioning.
Collapse
Affiliation(s)
- Emmanuel Mikros
- Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, 15771 Athens, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15781 Athens, Greece
| |
Collapse
|
8
|
McCaughey J, Stephens DJ. COPII-dependent ER export in animal cells: adaptation and control for diverse cargo. Histochem Cell Biol 2018; 150:119-131. [PMID: 29916038 PMCID: PMC6096569 DOI: 10.1007/s00418-018-1689-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2018] [Indexed: 12/31/2022]
Abstract
The export of newly synthesized proteins from the endoplasmic reticulum is fundamental to the ongoing maintenance of cell and tissue structure and function. After co-translational translocation into the ER, proteins destined for downstream intracellular compartments or secretion from the cell are sorted and packaged into transport vesicles by the COPII coat protein complex. The fundamental discovery and characterization of the pathway has now been augmented by a greater understanding of the role of COPII in diverse aspects of cell function. We now have a deep understanding of how COPII contributes to the trafficking of diverse cargoes including extracellular matrix molecules, developmental signalling proteins, and key metabolic factors such as lipoproteins. Structural and functional studies have shown that the COPII coat is both highly flexible and subject to multiple modes of regulation. This has led to new discoveries defining roles of COPII in development, autophagy, and tissue organization. Many of these newly emerging features of the canonical COPII pathway are placed in a context of procollagen secretion because of the fundamental interest in how a coat complex that typically generates 80-nm transport vesicles can package a cargo reported to be over 300 nm. Here we review the current understanding of COPII and assess the current consensus on its role in packaging diverse cargo proteins.
Collapse
Affiliation(s)
- Janine McCaughey
- Cell Biology Laboratories, School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
9
|
Covarrubias-Pinto A, Acuña AI, Boncompain G, Papic E, Burgos PV, Perez F, Castro MA. Ascorbic acid increases SVCT2 localization at the plasma membrane by accelerating its trafficking from early secretory compartments and through the endocytic-recycling pathway. Free Radic Biol Med 2018; 120:181-191. [PMID: 29545069 DOI: 10.1016/j.freeradbiomed.2018.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 11/30/2022]
Abstract
Ascorbic acid (Asc) is an antioxidant molecule essential for physiological functions. The concentration of extracellular Asc increases during synaptic transmission and renal reabsorption. These phenomena induce an increase of the Sodium-dependent-Vitamin-C-transporter 2 (SVCT2) at plasma membrane (PM) localization, as we previously demonstrated in neuronal and non-neuronal cells. Hence, the aim of this study was to evaluate intracellular SVCT2 trafficking kinetics in response to Asc. We observed two peaks of SVCT2 localization and function at the PM (at 5-10 min, "acute response", and 30-60 min, "post-acute response") when cells were incubated with Asc. We defined that the post-acute response was dependent on SVCT2 located in early secretory compartments, and its trafficking was abolished with Tunicamycin and Brefeldin A treatment. Moreover, using the RUSH system to retain and synchronize cargo secretion through the secretory pathway we demonstrated that the post-acute response increases SVCT2 trafficking kinetics from the ER to the PM suggesting the retention of SVCT2 at the early secretory pathway when Asc is absent. However, these observations do not explain the increased SVCT2 levels at the PM during the "acute" response, suggesting the involvement of a faster mechanism in close proximity with the PM. To investigate the possible role of endosomal compartments, we tested the effect of endocytosis inhibition. Expression of dominant-negative (DN) versions of the GTPase-dynamin II and clathrin-accessory protein AP180 showed a significant increase in SVCT2 levels at the PM. Moreover, expression of Rab11-DN, a GTPase implicated in cargo protein recycling from endosomes to the PM showed a similar outcome, strongly indicating that Asc impacts SVCT2 trafficking during the acute response. Therefore, our results revealed two mechanisms by which Asc modulates SVCT2 levels at the PM, one at the early secretory pathway and another at the endocytic compartments. We propose that these two mechanisms have key protective implications in the homeostasis of metabolically active and specialized tissues.
Collapse
Affiliation(s)
- A Covarrubias-Pinto
- Biochemistry and Microbiology Institute, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - A I Acuña
- Biochemistry and Microbiology Institute, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - G Boncompain
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - E Papic
- Biochemistry and Microbiology Institute, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - P V Burgos
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile; Center for Cell Biology and Biomedicine, School of Sciences and School of Medicine, Universidad San Sebastián, Santiago, Chile
| | - F Perez
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - M A Castro
- Biochemistry and Microbiology Institute, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile; Research Initiative for Brain Rejuvenation (ReBrain), Chile.
| |
Collapse
|
10
|
Transporter oligomerization: form and function. Biochem Soc Trans 2017; 44:1737-1744. [PMID: 27913684 PMCID: PMC5134999 DOI: 10.1042/bst20160217] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 12/22/2022]
Abstract
Transporters are integral membrane proteins with central roles in the efficient movement of molecules across biological membranes. Many transporters exist as oligomers in the membrane. Depending on the individual transport protein, oligomerization can have roles in membrane trafficking, function, regulation and turnover. For example, our recent studies on UapA, a nucleobase ascorbate transporter, from Aspergillus nidulans, have revealed both that dimerization of this protein is essential for correct trafficking to the membrane and the structural basis of how one UapA protomer can affect the function of the closely associated adjacent protomer. Here, we review the roles of oligomerization in many particularly well-studied transporters and transporter families.
Collapse
|
11
|
Cabukusta B, Kol M, Kneller L, Hilderink A, Bickert A, Mina JGM, Korneev S, Holthuis JCM. ER residency of the ceramide phosphoethanolamine synthase SMSr relies on homotypic oligomerization mediated by its SAM domain. Sci Rep 2017; 7:41290. [PMID: 28120887 PMCID: PMC5264588 DOI: 10.1038/srep41290] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022] Open
Abstract
SMSr/SAMD8 is an ER-resident ceramide phosphoethanolamine synthase with a critical role in controlling ER ceramides and suppressing ceramide-induced apoptosis in cultured cells. SMSr-mediated ceramide homeostasis relies on the enzyme's catalytic activity as well as on its N-terminal sterile α-motif or SAM domain. Here we report that SMSr-SAM is structurally and functionally related to the SAM domain of diacylglycerol kinase DGKδ, a central regulator of lipid signaling at the plasma membrane. Native gel electrophoresis indicates that both SAM domains form homotypic oligomers. Chemical crosslinking studies show that SMSr self-associates into ER-resident trimers and hexamers that resemble the helical oligomers formed by DGKδ-SAM. Residues critical for DGKδ-SAM oligomerization are conserved in SMSr-SAM and their substitution causes a dissociation of SMSr oligomers as well as a partial redistribution of the enzyme to the Golgi. Conversely, treatment of cells with curcumin, a drug disrupting ceramide and Ca2+ homeostasis in the ER, stabilizes SMSr oligomers and promotes retention of the enzyme in the ER. Our data provide first demonstration of a multi-pass membrane protein that undergoes homotypic oligomerization via its SAM domain and indicate that SAM-mediated self-assembly of SMSr is required for efficient retention of the enzyme in the ER.
Collapse
Affiliation(s)
- Birol Cabukusta
- Molecular Cell Biology Division, Faculty of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Matthijs Kol
- Molecular Cell Biology Division, Faculty of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Laura Kneller
- Molecular Cell Biology Division, Faculty of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Angelika Hilderink
- Molecular Cell Biology Division, Faculty of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Andreas Bickert
- Molecular Genetics, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - John G. M. Mina
- Molecular Cell Biology Division, Faculty of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Sergei Korneev
- Molecular Cell Biology Division, Faculty of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Joost C. M. Holthuis
- Molecular Cell Biology Division, Faculty of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
12
|
Hayashi Y, Nemoto-Sasaki Y, Matsumoto N, Tanikawa T, Oka S, Tanaka Y, Arai S, Wada I, Sugiura T, Yamashita A. Carboxyl-terminal Tail-mediated Homodimerizations of Sphingomyelin Synthases Are Responsible for Efficient Export from the Endoplasmic Reticulum. J Biol Chem 2016; 292:1122-1141. [PMID: 27927984 DOI: 10.1074/jbc.m116.746602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/16/2016] [Indexed: 11/06/2022] Open
Abstract
Sphingomyelin synthase (SMS) is the key enzyme for cross-talk between bioactive sphingolipids and glycerolipids. In mammals, SMS consists of two isoforms: SMS1 is localized in the Golgi apparatus, whereas SMS2 is localized in both the Golgi and plasma membranes. SMS2 seems to exert cellular functions through protein-protein interactions; however, the existence and functions of quaternary structures of SMS1 and SMS2 remain unclear. Here we demonstrate that both SMS1 and SMS2 form homodimers. The SMSs have six membrane-spanning domains, and the N and C termini of both proteins face the cytosolic side of the Golgi apparatus. Chemical cross-linking and bimolecular fluorescence complementation revealed that the N- and/or C-terminal tails of the SMSs were in close proximity to those of the other SMS in the homodimer. Homodimer formation was significantly decreased by C-terminal truncations, SMS1-ΔC22 and SMS2-ΔC30, indicating that the C-terminal tails of the SMSs are primarily responsible for homodimer formation. Moreover, immunoprecipitation using deletion mutants revealed that the C-terminal tail of SMS2 mainly interacted with the C-terminal tail of its homodimer partner, whereas the C-terminal tail of SMS1 mainly interacted with a site other than the C-terminal tail of its homodimer partner. Interestingly, homodimer formation occurred in the endoplasmic reticulum (ER) membrane before trafficking to the Golgi apparatus. Reduced homodimerization caused by C-terminal truncations of SMSs significantly reduced ER-to-Golgi transport. Our findings suggest that the C-terminal tails of SMSs are involved in homodimer formation, which is required for efficient transport from the ER.
Collapse
Affiliation(s)
- Yasuhiro Hayashi
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Yoko Nemoto-Sasaki
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Naoki Matsumoto
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Takashi Tanikawa
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Saori Oka
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Yusuke Tanaka
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Seisuke Arai
- the Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Hikarigaoka-1, Fukushima City, Fukushima 960-1295, Japan
| | - Ikuo Wada
- the Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Hikarigaoka-1, Fukushima City, Fukushima 960-1295, Japan
| | - Takayuki Sugiura
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Atsushi Yamashita
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| |
Collapse
|
13
|
Borgese N. Getting membrane proteins on and off the shuttle bus between the endoplasmic reticulum and the Golgi complex. J Cell Sci 2016; 129:1537-45. [PMID: 27029344 DOI: 10.1242/jcs.183335] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Secretory proteins exit the endoplasmic reticulum (ER) in coat protein complex II (COPII)-coated vesicles and then progress through the Golgi complex before delivery to their final destination. Soluble cargo can be recruited to ER exit sites by signal-mediated processes (cargo capture) or by bulk flow. For membrane proteins, a third mechanism, based on the interaction of their transmembrane domain (TMD) with lipid microdomains, must also be considered. In this Commentary, I review evidence in favor of the idea that partitioning of TMDs into bilayer domains that are endowed with distinct physico-chemical properties plays a pivotal role in the transport of membrane proteins within the early secretory pathway. The combination of such self-organizational phenomena with canonical intermolecular interactions is most likely to control the release of membrane proteins from the ER into the secretory pathway.
Collapse
Affiliation(s)
- Nica Borgese
- CNR Institute of Neuroscience, Milan 20129, Italy
| |
Collapse
|
14
|
Derganc J, Čopič A. Membrane bending by protein crowding is affected by protein lateral confinement. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1152-9. [PMID: 26969088 DOI: 10.1016/j.bbamem.2016.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/24/2016] [Accepted: 03/01/2016] [Indexed: 02/02/2023]
Abstract
Crowding of asymmetrically-distributed membrane proteins has been recently recognized as an important factor in remodeling of biological membranes, for example during transport vesicle formation. In this paper, we theoretically analyze the effect of protein crowding on membrane bending and examine its dependence on protein size, shape, transmembrane asymmetry and lateral confinement. We consider three scenarios of protein lateral organization, which are highly relevant for cellular membranes in general: freely diffusing membrane proteins without lateral confinement, the presence of a diffusion barrier and interactions with a vesicular coat. We show that protein crowding affects vesicle formation even if the proteins are distributed symmetrically across the membrane and that this effect depends significantly on lateral confinement. The largest crowding effect is predicted for the proteins that are confined to the forming vesicle by a diffusion barrier. We calculate the bending properties of a crowded membrane and find that its spontaneous curvature depends primarily on the degree of transmembrane asymmetry, and its effective bending modulus on the type of lateral confinement. Using the example of COPII vesicle formation from the endoplasmic reticulum, we analyze the energetic cost of vesicle formation. The results provide a novel insight into the effects of lateral and transmembrane organization of membrane proteins, and can guide data interpretation and future experimental approaches.
Collapse
Affiliation(s)
- Jure Derganc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Alenka Čopič
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France.
| |
Collapse
|
15
|
Pan Y, Laird JG, Yamaguchi DM, Baker SA. An N-Terminal ER Export Signal Facilitates the Plasma Membrane Targeting of HCN1 Channels in Photoreceptors. Invest Ophthalmol Vis Sci 2015; 56:3514-21. [PMID: 26030105 DOI: 10.1167/iovs.15-16902] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels are widely expressed in the retina. In photoreceptors, the hyperpolarization-activated current (Ih) carried by HCN1 is important for shaping the light response. It has been shown in multiple systems that trafficking HCN1 channels to specific compartments is key to their function. The localization of HCN1 in photoreceptors is concentrated in the plasma membrane of the inner segment (IS). The mechanisms controlling this localization are not understood. We previously identified a di-arginine endoplasmic reticulum (ER) retention motif that negatively regulates the surface targeting of HCN1. In this study, we sought to identify a forward trafficking signal that could counter the function of the ER retention signal. METHODS We studied trafficking of HCN1 and several mutants by imaging their subcellular localization in transgenic X. laevis photoreceptors. Velocity sedimentation was used to assay the assembly state of HCN1 channels. RESULTS We found the HCN1 N-terminus can redirect a membrane reporter from outer segments (OS) to the plasma membrane of the IS. The sequence necessary for this behavior was mapped to a 20 amino acid region containing a leucine-based ER export motif. The ER export signal is necessary for forward trafficking but not channel oligomerization. Moreover, this ER export signal alone counteracted the di-arginine ER retention signal. CONCLUSIONS We identified an ER export signal in HCN1 that functions with the ER retention signal to maintain equilibrium of HCN1 between the endomembrane system and the plasma membrane.
Collapse
|
16
|
Martzoukou O, Karachaliou M, Yalelis V, Leung J, Byrne B, Amillis S, Diallinas G. Oligomerization of the UapA Purine Transporter Is Critical for ER-Exit, Plasma Membrane Localization and Turnover. J Mol Biol 2015; 427:2679-96. [DOI: 10.1016/j.jmb.2015.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/29/2022]
|
17
|
Fritzsche S, Abualrous ET, Borchert B, Momburg F, Springer S. Release from endoplasmic reticulum matrix proteins controls cell surface transport of MHC class I molecules. Traffic 2015; 16:591-603. [PMID: 25753898 DOI: 10.1111/tra.12279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 01/12/2015] [Accepted: 01/30/2015] [Indexed: 02/01/2023]
Abstract
The anterograde transport of secretory proteins from the endoplasmic reticulum (ER) to the plasma membrane is a multi-step process. Secretory proteins differ greatly in their transport rates to the cell surface, but the contribution of each individual step to this difference is poorly understood. Transport rates may be determined by protein folding, chaperone association in the ER, access to ER exit sites (ERES) and retrieval from the ER-Golgi intermediate compartment or the cis-Golgi to the ER. We have used a combination of folding and trafficking assays to identify the differential step in the cell surface transport of two natural allotypes of the murine major histocompatibility complex (MHC) class I peptide receptor, H-2D(b) and H-2K(b) . We find that a novel pre-ER exit process that acts on the folded lumenal part of MHC class I molecules and that drastically limits their access to ERES accounts for the transport difference of the two allotypes. Our observations support a model in which the cell surface transport of MHC class I molecules and other type I transmembrane proteins is governed by the affinity of all their folding and maturation states to the proteins of the ER matrix.
Collapse
Affiliation(s)
- Susanne Fritzsche
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Esam T Abualrous
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Britta Borchert
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Frank Momburg
- Department of Translational Immunology, German Cancer Research Center/NCT, Heidelberg, Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
18
|
Chevalier AS, Bienert GP, Chaumont F. A new LxxxA motif in the transmembrane Helix3 of maize aquaporins belonging to the plasma membrane intrinsic protein PIP2 group is required for their trafficking to the plasma membrane. PLANT PHYSIOLOGY 2014; 166:125-38. [PMID: 24989232 PMCID: PMC4149701 DOI: 10.1104/pp.114.240945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Aquaporins play important roles in maintaining plant water status under challenging environments. The regulation of aquaporin density in cell membranes is essential to control transcellular water flows. This work focuses on the maize (Zea mays) plasma membrane intrinsic protein (ZmPIP) aquaporin subfamily, which is divided into two sequence-related groups (ZmPIP1s and ZmPIP2s). When expressed alone in mesophyll protoplasts, ZmPIP2s are efficiently targeted to the plasma membrane, whereas ZmPIP1s are retained in the endoplasmic reticulum (ER). A protein domain-swapping approach was utilized to demonstrate that the transmembrane domain3 (TM3), together with the previously identified N-terminal ER export diacidic motif, account for the differential localization of these proteins. In addition to protoplasts, leaf epidermal cells transiently transformed by biolistic particle delivery were used to confirm and refine these results. By generating artificial proteins consisting of a single transmembrane domain, we demonstrated that the TM3 of ZmPIP1;2 or ZmPIP2;5 discriminates between ER and plasma membrane localization, respectively. More specifically, a new LxxxA motif in the TM3 of ZmPIP2;5, which is highly conserved in plant PIP2s, was shown to regulate its anterograde routing along the secretory pathway, particularly its export from the ER.
Collapse
Affiliation(s)
- Adrien S Chevalier
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Gerd Patrick Bienert
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|