1
|
Matsuzaki T, Fujii M, Noro H, Togo S, Watanabe M, Suganuma M, Sharma S, Kobayashi N, Kawamura R, Nakabayashi S, Yoshikawa HY. Simultaneous visualization of membrane fluidity and morphology defines adhesion signatures of cancer cells. Proc Natl Acad Sci U S A 2024; 121:e2412914121. [PMID: 39636859 DOI: 10.1073/pnas.2412914121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/27/2024] [Indexed: 12/07/2024] Open
Abstract
We developed an advanced optical microscope for the simultaneous visualization of membrane fluidity and morphology to define cell adhesion signatures. This microscope combines ratiometric spectral imaging of membrane fluidity and interferometric imaging of membrane morphology. As a preliminary demonstration, we simultaneously visualized the interface between a giant unilamellar vesicle (GUV) and a glass substrate at different temperatures. We identified more fluid regions of the membrane and membrane adhesion sites (conversely, low-fluidic, ordered membrane domains correlate with nonadhered regions). This microscopic system was applied to human breast cancer cell lines with different malignancies; then, we identified adhesion signature of cancer cells: 1) low-fluidic, ordered membrane domains at the cell periphery and 2) large fluidic deviation at the nonadhered region. Inhibition of the cholesterol synthesis pathway suppresses the ordered membrane domains at the cancer cell periphery; thus, high level of cholesterol supports the appearance. Furthermore, an inhibitor of the unsaturated lipid synthesis pathway suppressed the large fluidic deviation at the nonadhered region; variation of unsaturated lipids contributes to heterogeneity of the cancer membrane. Therefore, our advanced optical microscopy enables us to couple membrane physical properties with cell adhesion, leading to definition of adhesion signatures of broad cell types, not just for cancer cells, that regulate life phenomena.
Collapse
Affiliation(s)
- Takahisa Matsuzaki
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
- Division of Precision Engineering and Applied Physics, Center for Future Innovation, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mai Fujii
- Department of Chemistry, Saitama University, Sakura-Ku, Saitama 338-8570, Japan
| | - Hayata Noro
- Department of Chemistry, Saitama University, Sakura-Ku, Saitama 338-8570, Japan
| | - Shodai Togo
- Department of Chemistry, Saitama University, Sakura-Ku, Saitama 338-8570, Japan
| | - Mami Watanabe
- Department of Chemistry, Saitama University, Sakura-Ku, Saitama 338-8570, Japan
| | - Masami Suganuma
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, Sakura-Ku, Saitama 338-8570, Japan
| | - Shivani Sharma
- Directorate of Engineering, US National Science Foundation, Alexandria, VA 22314
| | - Naritaka Kobayashi
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, Sakura-Ku, Saitama 338-8570, Japan
| | - Ryuzo Kawamura
- Department of Chemistry, Saitama University, Sakura-Ku, Saitama 338-8570, Japan
| | - Seiichiro Nakabayashi
- Department of Chemistry, Saitama University, Sakura-Ku, Saitama 338-8570, Japan
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, Sakura-Ku, Saitama 338-8570, Japan
| | - Hiroshi Y Yoshikawa
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
2
|
Abstract
Membrane lateral heterogeneity, historically referred to as the lipid raft hypothesis, has been extensively investigated through physiochemical experiments on model membranes. Currently, the basic principles are well understood; however, the physiological relevance of these structures in living organisms is still not clear. Thus, studying membrane organization in vivo is extremely important and elucidates the role of such structures in various membrane-associated processes. This is particularly true when a whole single-celled organism can be studied rather than an isolated cell. The ordered and disordered membrane phases are characterized by the degree of acyl chain packing in the lipid bilayer. Polar water molecules can penetrate into the low-density lipid packing of the disordered phase, but are more excluded from the tightly packed ordered phase. Here, polarity-sensitive probes, embedded in the lipid bilayer, are used to report on membrane organization and to quantitate this parameter via 2-channel fluorescence microscopy. Coupling genetic approaches, which are easily accessible in yeast model organisms, with the imaging approach described here provides a great opportunity to investigate how membrane heterogeneity impacts physiology.
Collapse
Affiliation(s)
- Maria Makarova
- School of Biosciences, University of Birmingham, Birmingham, UK.
| | - Dylan M Owen
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- School of Mathematics, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Andreana M, Sturtzel C, Spielvogel CP, Papp L, Leitgeb R, Drexler W, Distel M, Unterhuber A. Toward Quantitative in vivo Label-Free Tracking of Lipid Distribution in a Zebrafish Cancer Model. Front Cell Dev Biol 2021; 9:675636. [PMID: 34277618 PMCID: PMC8280786 DOI: 10.3389/fcell.2021.675636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/04/2021] [Indexed: 11/26/2022] Open
Abstract
Cancer cells often adapt their lipid metabolism to accommodate the increased fatty acid demand for membrane biogenesis and energy production. Upregulation of fatty acid uptake from the environment of cancer cells has also been reported as an alternative mechanism. To investigate the role of lipids in tumor onset and progression and to identify potential diagnostic biomarkers, lipids are ideally imaged directly within the intact tumor tissue in a label-free way. In this study, we investigated lipid accumulation and distribution in living zebrafish larvae developing a tumor by means of coherent anti-Stokes Raman scattering microscopy. Quantitative textural features based on radiomics revealed higher lipid accumulation in oncogene-expressing larvae compared to healthy ones. This high lipid accumulation could reflect an altered lipid metabolism in the hyperproliferating oncogene-expressing cells.
Collapse
Affiliation(s)
- Marco Andreana
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Caterina Sturtzel
- Innovative Cancer Models, St. Anna Children's Cancer Research Institute, Vienna, Austria.,Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), Vienna, Austria
| | - Clemens P Spielvogel
- Division of Nuclear Medicine, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
| | - Laszlo Papp
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Martin Distel
- Innovative Cancer Models, St. Anna Children's Cancer Research Institute, Vienna, Austria.,Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), Vienna, Austria
| | - Angelika Unterhuber
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Abu-Siniyeh A, Al-Zyoud W. Highlights on selected microscopy techniques to study zebrafish developmental biology. Lab Anim Res 2020; 36:12. [PMID: 32346532 PMCID: PMC7178987 DOI: 10.1186/s42826-020-00044-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Bio-imaging is a tedious task when it concerns exploring cell functions, developmental mechanisms, and other vital processes in vivo. Single-cell resolution is challenging due to different issues such as sample size, the scattering of intact and opaque tissue, pigmentation in untreated animals, the movement of living organs, and maintaining the sample under physiological conditions. These factors might lead researchers to implement microscopy techniques with a suitable animal model to mimic the nature of the living cells. Zebrafish acquired its prestigious reputation in the biomedical research field due to its transparency under advanced microscopes. Therefore, various microscopy techniques, including Multi-Photon, Light-Sheet Microscopy, and Second Harmonic Generation, simplify the discovery of different types of internal functions in zebrafish. In this review, we briefly discuss three recent microscopy techniques that are being utilized because they are non-invasive in investigating developmental events in zebrafish embryo and larvae.
Collapse
Affiliation(s)
- Ahmed Abu-Siniyeh
- 1Clinical Laboratory Sciences Department, College of Applied Medical Science, Taif University, Taif, Kingdom of Saudi Arabia
| | - Walid Al-Zyoud
- 2Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman, Jordan
| |
Collapse
|
5
|
Wu X, Zuo W, Liu H, Wang Z, Xu C. Decreased expression of cell polarity protein Scribble correlated with altered subcellular localization of the Crumbs homologue 3 protein in human adenomyotic endometrial cells. J Obstet Gynaecol Res 2019; 45:1148-1159. [PMID: 30912223 DOI: 10.1111/jog.13952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/15/2019] [Indexed: 01/10/2023]
Abstract
AIM Previous studies have revealed that loss of cell apical-basal polarity contributed to the early stages of tumorigenesis. Adenomyosis involves a down-growth and aberrant implantation of the endometrial basalis into the myometrium. This study discovered aberrant expression of polarity protein Scribble (Scrib) and Crumbs homologue 3 protein (CRB3) in epithelial cells of diffuse adenomyosis. METHODS This was a case-controlled study, including 39 patients with histologic evidence of adenomyosis, and 48 patients with carcinoma in situ of the uterine cervix without adenomyosis or endometriosis as control. Adenomyotic foci, eutopic endometrium of adenomyotic patients as well as normal endometrium were collected. Reverse Transcription Polymerase Chain Reaction (RT-PCR), Immunoreactivity, confocal microscopy and immune electron microscopy were conducted to evaluate Scribble expression and localization of Scribble and CRB3. RESULTS Scrib was screen out as an abnormally expressed polarity protein in adenomyotic eutopic endometrium (ADM-EU) at messenger RNA (mRNA) level. The ADM-EU and adenomyotic ectopic endometrium showed a significantly decreased expression of Scrib compared with normal endometrium (all P-values <0.05). Scrib decreased significantly in ADM-EU than normal endometrium only in patients at proliferative phase and with severe dysmenorrhea (P-values <0.01, P-values <0.001 respectively). In ADM-EU, Scrib expression significantly lowered in patients with severe dysmenorrhea than mild dysmenorrhea (P-values <0.05). Aberrant redistribution of CRB3 from apical to basal lateral membrane portion was also detected in experiments by confocal microscopy immune electron microscopy (all P-values <0.01). CONCLUSION Basolateral polarity protein Scrib was found decreased significantly in endometrial cells of adenomyosis at mRNA and protein level, compared with normal endometrium. Menstrual phase and severity of dysmenorrhea has an impact on Scrib expression. Scrib decrease was accompanied by aberrant redistribution of CRB3 from apical to basal lateral membrane portion.
Collapse
Affiliation(s)
- Xiaoyi Wu
- Department of Obstetrics and Gynecology of Shanghai Medical School, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Weiwen Zuo
- Department of Obstetrics and Gynecology of Shanghai Medical School, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Haiou Liu
- Department of Obstetrics and Gynecology of Shanghai Medical School, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People's Republic of China
| | - Zehua Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People's Republic of China
| | - Congjian Xu
- Department of Obstetrics and Gynecology of Shanghai Medical School, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Ng XW, Teh C, Korzh V, Wohland T. The Secreted Signaling Protein Wnt3 Is Associated with Membrane Domains In Vivo: A SPIM-FCS Study. Biophys J 2017; 111:418-429. [PMID: 27463143 DOI: 10.1016/j.bpj.2016.06.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022] Open
Abstract
Wnt3 is a morphogen that activates the Wnt signaling pathway and regulates a multitude of biological processes ranging from cell proliferation and cell fate specification to differentiation over embryonic induction to neural patterning. Recent studies have shown that the palmitoylation of Wnt3 by Porcupine, a membrane-bound O-acyltransferase, plays a significant role in the intracellular membrane trafficking of Wnt3 and subsequently, its secretion in live zebrafish embryos, where chemical inhibition of Porcupine reduced the membrane-bound and secreted fractions of Wnt3 and eventually led to defective brain development. However, the membrane distribution of Wnt3 in cells remains not fully understood. Here, we determine the membrane organization of functionally active Wnt3-EGFP in cerebellar cells of live transgenic zebrafish embryos and the role of palmitoylation in its organization using single plane illumination microscopy-fluorescence correlation spectroscopy (SPIM-FCS), a multiplexed modality of FCS, which generates maps of molecular dynamics, concentration, and interaction of biomolecules. The FCS diffusion law was applied to SPIM-FCS data to study the subresolution membrane organization of Wnt3. We find that at the plasma membrane in vivo, Wnt3 is associated with cholesterol-dependent domains. This association reduces with increasing concentrations of Porcupine inhibitor (C59), confirming the importance of palmitoylation of Wnt3 for its association with cholesterol-dependent domains. Reduction of membrane cholesterol also results in a decrease of Wnt3 association with cholesterol-dependent domains in live zebrafish. This demonstrates for the first time, to our knowledge, in live vertebrate embryos that Wnt3 is associated with cholesterol-dependent domains.
Collapse
Affiliation(s)
- Xue Wen Ng
- Department of Chemistry, National University of Singapore, Singapore, Singapore; Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Thorsten Wohland
- Department of Chemistry, National University of Singapore, Singapore, Singapore; Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Ciesielska A, Sas-Nowosielska H, Kwiatkowska K. Bis(monoacylglycero)phosphate inhibits TLR4-dependent RANTES production in macrophages. Int J Biochem Cell Biol 2016; 83:15-26. [PMID: 27939812 DOI: 10.1016/j.biocel.2016.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/14/2016] [Accepted: 12/06/2016] [Indexed: 01/10/2023]
Abstract
Toll-like receptor 4 (TLR4) is the receptor for bacterial lipopolysaccharide (LPS) triggering production of pro-inflammatory cytokines which help eradicate the bacteria but could also be harmful when overproduced. The signaling activity of TLR4 is modulated by cholesterol level in cellular membranes, which in turn is affected by bis(monoacylglycero)phosphate (BMP), a phospholipid enriched in late endosomes. We found that exogenously added BMP isomers become incorporated into the plasma membrane and intracellular vesicles of macrophages and strongly reduced LPS-stimulated production of a chemokine RANTES, which was correlated with inhibition of interferon regulatory factor 3 (IRF3) controlling Rantes expression. To investigate the mechanism underlying the influence of BMP on TLR4 signaling we applied Laurdan and studied the impact of BMP incorporation on lipid packing, a measure for membrane order. Enrichment of model and cellular membranes with BMP significantly reduced their order and the reduction was maintained during stimulation of cells with LPS. This effect of BMP was abolished by enrichment of macrophages with cholesterol. In parallel, the inhibitory effect of BMP exerted on the TLR4-dependent phosphorylation of IRF3 was also reversed. Taken together our results indicate that BMP reduces the order of macrophage membranes which contributes to the inhibition of TLR4-dependent RANTES production.
Collapse
Affiliation(s)
- Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Hanna Sas-Nowosielska
- Laboratory for Imaging Tissue Structure and Function, Neurobiology Center, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|