1
|
Tynngård N, Alshamari A, Sandgren P, Kenny D, Vasilache AM, Abedi MR, Ramström S. High fragmentation in platelet concentrates impacts the activation, procoagulant, and aggregatory capacity of platelets. Platelets 2023; 34:2159018. [PMID: 36632714 DOI: 10.1080/09537104.2022.2159018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Platelets are transfused to patients to prevent bleeding. Since both preparation and storage can impact the hemostatic functions of platelets, we studied platelet concentrates (PCs) with different initial composition in regard to platelet fragmentation and its impact on storage-induced changes in activation potential. Ten whole blood derived PCs were assessed over 7 storage days. Using flow cytometry, platelet (CD41+) subpopulations were characterized for activation potential using activation markers (PAC-1, P-selectin, and LAMP-1), phosphatidylserine (Annexin V), and mitochondrial integrity (DiIC1(5)). Aggregation response, coagulation, and soluble activation markers (cytokines and sGPVI) were also measured. Of the CD41+ events, the PCs contained a median of 82% normal-sized platelets, 10% small platelets, and 8% fragments. The small platelets exhibited procoagulant hallmarks (increased P-selectin and Annexin V and reduced DiIC1(5)). Normal-sized platelets responded to activation, whereas activation potential was decreased for small and abolished for fragments. Five PCs contained a high proportion of small platelets and fragments (median of 28% of CD41+ events), which was significantly higher than the other five PCs (median of 9%). A high proportion of small platelets and fragments was associated with procoagulant hallmarks and decreased activation potential, but, although diminished, they still retained some activation potential throughout 7 days storage.
Collapse
Affiliation(s)
- Nahreen Tynngård
- Department of Clinical Chemistry and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Research and Development Unit in Region Östergötland and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Aseel Alshamari
- Department of Clinical Immunology and Transfusion medicine, Faculty of Medicine and Health, Örebro University, Sweden.,Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Per Sandgren
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Dermot Kenny
- Clinical Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ana Maria Vasilache
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mohammad R Abedi
- Department of Clinical Immunology and Transfusion medicine, Faculty of Medicine and Health, Örebro University, Sweden
| | - Sofia Ramström
- Department of Clinical Chemistry and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
2
|
Valsami S, Grouzi E, Mochandreou D, Pouliakis A, Piroula-Godoy M, Kokori S, Pittaras T, Raikou A, Politou M. Effect of mirasol pathogen reduction technology system on immunomodulatory molecules of apheresis platelets. Transfus Apher Sci 2023; 62:103523. [PMID: 36041977 DOI: 10.1016/j.transci.2022.103523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/28/2022] [Accepted: 08/07/2022] [Indexed: 11/28/2022]
Abstract
Pathogen inactivation for platelets by riboflavin system (MIRASOL) efficiently reduces transfusion related pathogen transmission. However little is known about its impact on platelets' immunomodulatory biochemical profile. We aimed was to assess the effects of MIRASOL treatment on platelet quality parameters and immunomodulatory molecules CD62P, RANTES, and CD40L in Single Donor Platelets (SDPs) resuspended in plasma (SDP-P) or T-PAS and additive solution (SDP-A). Twenty nine SDPs (15 SDP-P and 14 SDP-A) were included in the study. Samples were collected before, after MIRASOL treatment and just before transfusion. P-selectin (CD62P), RANTES, and CD40L were tested by ELISA. Platelet products quality assays were also performed. Platelet count/unit decreased after Mirasol treatment by 13 %. The pH of all units decreased over the 5-day storage period but remained above expected limits and the swirling test was positive throughout storage. P-selectin levels were not different between the three different time points in both SDPs-P and SDPs-A while RANTES levels were found to differ statistically significantly at the three different time points in all units and in the SPD-A subgroup. CD40L levels in all SDP products increased slightly during storage but this was not statistically significant. CD62P, RANTES, and CD40L in all time points were elevated in SDPs-A compared to SDPs-P but not at a statistically significant level. In conclusion MIRASOL treatment apart from RANTES increase does not seem to substantially affect platelets associated other cytokines and immunomodulatory molecules namely P-selectin and sCD40L which are implicated in immune transfusion reactions.
Collapse
Affiliation(s)
- S Valsami
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - E Grouzi
- Department of Transfusion Service and Clinical Hemostasis, "Agios Savvas" Regional Cancer Hospital, Athens, Greece
| | - D Mochandreou
- Department of Transfusion Service and Clinical Hemostasis, "Agios Savvas" Regional Cancer Hospital, Athens, Greece
| | - A Pouliakis
- Department of Cytopathology, University of Athens, "ATTIKON" University Hospital, Athens, Greece
| | - M Piroula-Godoy
- Masters of Science Programme "Thrombosis-Haemorrhage-Transfusion Medicine" of the National and Kapodistrian University of Athens, Greece
| | - S Kokori
- Laboratory of Haematology & Blood Bank Unit, "Attikon" University Hospital, National and Kapodistrian Athens, Athens, Greece
| | - T Pittaras
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - A Raikou
- Department of Transfusion Service and Clinical Hemostasis, "Agios Savvas" Regional Cancer Hospital, Athens, Greece
| | - M Politou
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece; Masters of Science Programme "Thrombosis-Haemorrhage-Transfusion Medicine" of the National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
3
|
Winskel-Wood B, Padula MP, Marks DC, Johnson L. Cold storage alters the immune characteristics of platelets and potentiates bacterial-induced aggregation. Vox Sang 2022; 117:1006-1015. [PMID: 35579630 DOI: 10.1111/vox.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Cold-stored platelets are currently under clinical evaluation and have been approved for limited clinical use in the United States. Most studies have focused on the haemostatic functionality of cold-stored platelets; however, limited information is available examining changes to their immune function. MATERIALS AND METHODS Two buffy-coat-derived platelet components were combined and split into two treatment arms: room temperature (RT)-stored (20-24°C) or refrigerated (cold-stored, 2-6°C). The concentration of select soluble factors was measured in the supernatant using commercial ELISA kits. The abundance of surface receptors associated with immunological function was assessed by flow cytometry. Platelet aggregation was assessed in response to Escherichia coli and Staphylococcus aureus, in the presence and absence of RGDS (blocks active conformation of integrin α2 β3 ). RESULTS Cold-stored platelet components contained a lower supernatant concentration of C3a, RANTES and PF4. The abundance of surface-bound P-selectin and integrin α2 β3 in the activated conformation increased during cold storage. In comparison, the abundance of CD86, CD44, ICAM-2, CD40, TLR1, TLR2, TLR4, TLR3, TLR7 and TLR9 was lower on the surface membrane of cold-stored platelets compared to RT-stored components. Cold-stored platelets exhibited an increased responsiveness to E. coli- and S. aureus-induced aggregation compared to RT-stored platelets. Inhibition of the active conformation of integrin α2 β3 using RGDS reduced the potentiation of bacterial-induced aggregation in cold-stored platelets. CONCLUSION Our data highlight that cold storage changes the in vitro immune characteristics of platelets, including their sensitivity to bacterial-induced aggregation. Changes in these immune characteristics may have clinical implications post transfusion.
Collapse
Affiliation(s)
- Ben Winskel-Wood
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Matthew P Padula
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Lacey Johnson
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Cognasse F, Hally K, Fauteux-Daniel S, Eyraud MA, Arthaud CA, Fagan J, Mismetti P, Hamzeh-Cognasse H, Laradi S, Garraud O, Larsen P. Effects and Side Effects of Platelet Transfusion. Hamostaseologie 2021; 41:128-135. [PMID: 33711849 DOI: 10.1055/a-1347-6551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aside from their canonical role in hemostasis, it is increasingly recognized that platelets have inflammatory functions and can regulate both adaptive and innate immune responses. The main topic this review aims to cover is the proinflammatory effects and side effects of platelet transfusion. Platelets prepared for transfusion are subject to stress injury upon collection, preparation, and storage. With these types of stress, they undergo morphologic, metabolic, and functional modulations which are likely to induce platelet activation and the release of biological response modifiers (BRMs). As a consequence, platelet concentrates (PCs) accumulate BRMs during processing and storage, and these BRMs are ultimately transfused alongside platelets. It has been shown that BRMs present in PCs can induce immune responses and posttransfusion reactions in the transfusion recipient. Several recent reports within the transfusion literature have investigated the concept of platelets as immune cells. Nevertheless, current and future investigations will face the challenge of encompassing the immunological role of platelets in the scope of transfusion.
Collapse
Affiliation(s)
- Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Kathryn Hally
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Wellington Cardiovascular Research Group, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Sebastien Fauteux-Daniel
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Marie-Ange Eyraud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Charles-Antoine Arthaud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Jocelyne Fagan
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Patrick Mismetti
- SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Hind Hamzeh-Cognasse
- SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Sandrine Laradi
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Olivier Garraud
- SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Peter Larsen
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Wellington Cardiovascular Research Group, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
5
|
Wood B, Padula MP, Marks DC, Johnson L. The immune potential of ex vivo stored platelets: a review. Vox Sang 2020; 116:477-488. [PMID: 33326606 DOI: 10.1111/vox.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/14/2020] [Accepted: 12/02/2020] [Indexed: 11/30/2022]
Abstract
Platelets are now acknowledged as key regulators of the immune system, as they are capable of mediating inflammation, leucocyte recruitment and activation. This activity is facilitated through platelet activation, which induces significant changes in the surface receptor profile and triggers the release of a range of soluble biological response modifiers (BRMs). In the field of transfusion medicine, the immune function of platelets has gained considerable attention as this may be linked to the development of adverse transfusion reactions. Further, component manufacturing and storage methodologies may impact the immunoregulatory role of platelets, and an understanding of this impact is crucial and should be considered alongside their haemostatic characteristics. This review highlights the key interactions between platelets and traditional immune modulators. Further, the potential impact of current and novel component storage methodologies, such as refrigeration and cryopreservation, on this functional capacity is examined, highlighting why further knowledge in this area would be of benefit.
Collapse
Affiliation(s)
- Ben Wood
- Research & Development, Australian Red Cross Lifeblood, Alexandria, NSW, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Matthew P Padula
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Denese C Marks
- Research & Development, Australian Red Cross Lifeblood, Alexandria, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Lacey Johnson
- Research & Development, Australian Red Cross Lifeblood, Alexandria, NSW, Australia
| |
Collapse
|
6
|
Saris A, Pavenski K. Human Leukocyte Antigen Alloimmunization and Alloimmune Platelet Refractoriness. Transfus Med Rev 2020; 34:250-257. [PMID: 33127210 DOI: 10.1016/j.tmrv.2020.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Despite significant advancements in the production of platelet products, storage, and transfusion, transfusion refractoriness remains a significant clinical problem, affecting up to 14% of hematological patients receiving platelet transfusions. Human leukocyte antigen (HLA) alloimmunization is a major cause of immune platelet refractoriness, and its rate can be significantly reduced by implementation of leukoreduction. Despite promising preclinical results, pathogen reduction does not reduce HLA alloimmunization. Patients with HLA alloimmune refractoriness are usually managed with HLA-selected platelet transfusions. In this review, we describe the pathophysiology of HLA alloimmunization and alloimmune refractoriness, as well as options to prevent and treat these transfusion complications. We discuss the evidence supporting these options and point out the outstanding gaps. Finally, we review the possible future directions for prevention and treatment of alloimmune refractoriness.
Collapse
Affiliation(s)
- Anno Saris
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, the Netherlands.
| | - Katerina Pavenski
- Departments of Medicine and Laboratory Medicine, St. Michael's Hospital and University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Lu M, Dai T, Hu S, Zhang Q, Bhayana B, Wang L, Wu MX. Antimicrobial blue light for decontamination of platelets during storage. JOURNAL OF BIOPHOTONICS 2020; 13:e201960021. [PMID: 31407467 PMCID: PMC7083650 DOI: 10.1002/jbio.201960021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 05/28/2023]
Abstract
Platelet (PLT) storage is currently limited to 5 days in clinics in the United States, in part, due to an increasing risk for microbial contamination over time. In light of well-documented antimicrobial activity of blue light (405-470 nm), we investigated potentials to decontaminate microbes during PLT storage by antimicrobial blue light (aBL). We found that PLTs produced no detectable levels of porphyrins or their derivatives, the chromophores that specifically absorb blue light, in marked contrast to microbes that generated porphyrins abundantly. The difference formed a basis with which aBL selectively inactivated contaminated microbes prior to and during the storage, without incurring any harm to PLTs. In accordance with this, when contamination with representative microbes was simulated in PLT concentrates supplemented with 65% of PLT additive solution in a standard storage bag, all "contaminated" microbes tested were completely inactivated after exposure of the bag to 405 nm aBL at 75 J/cm2 only once. While killing microbes efficiently, this dose of aBL irradiation exerted no adverse effects on the viability, activation or aggregation of PLTs ex vivo and could be used repeatedly during PLT storage. PLT survival in vivo was also unaltered by aBL irradiation after infusion of aBL-irradiated mouse PLTs into mice. The study provides proof-of-concept evidence for a potential of aBL to decontaminate PLTs during storage.
Collapse
Affiliation(s)
- Min Lu
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - TianHong Dai
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - SiSi Hu
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Qi Zhang
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Brijesh Bhayana
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Li Wang
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Mei X. Wu
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
8
|
Haemostatic responsiveness and release of biological response modifiers following cryopreservation of platelets treated with amotosalen and ultraviolet A light. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 18:191-199. [PMID: 31403931 DOI: 10.2450/2019.0061-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/17/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Due to the risk of replication of contaminating pathogens, platelets have a limited storage time of 5 days, which can be prolonged to 7 days by the use of pathogen inactivation technologies. Cryopreservation (CP) may be an alternative to permit longer storage periods and increased availability. However, the preparation of platelets can result in secretion of biological response modifiers (BRM), which can cause adverse transfusion reactions in the recipient. We investigated the impact of CP on platelet function and release of BRM in untreated (conventional) and pathogen-inactivated (PI) platelet concentrates. MATERIALS AND METHODS Twelve buffy coat-derived platelet units were treated with amotosalen and ultraviolet A light to inactivate pathogens. Twelve untreated units were used as controls. The 24 units were cryopreserved and in vitro variables were analysed before and after CP. The in vitro variables investigated included platelet surface receptors and activation markers by flow cytometry, and coagulation time by viscoelastography. A panel of BRM, including cytokines, was investigated. RESULTS CP of both conventional and PI platelets resulted in a significant increase of BRM with similar increases of most of the BRM after CP of conventional and PI platelet concentrates. The increase in some of the BRM correlated significantly with shortened coagulation time, increased P-selectin expression, reduced mitochondrial transmembrane potential, and reduced capacity to respond to stimulation with ADP and collagen. DISCUSSION Cryopreservation of both conventional and PI platelets results in secretion of BRM. The increase in some of the BRM correlated with changes in platelet function variables and suggests that BRM release is affected, in part, in a similar way by CP as are changes in platelet function variables. PI with amotosalen and ultraviolet A light in combination with CP did not affect the release of immunomodulatory factors more than CP alone did.
Collapse
|
9
|
Saris A, Kerkhoffs JL, Norris PJ, van Ham SM, Ten Brinke A, Brand A, van der Meer PF, Zwaginga JJ. The role of pathogen-reduced platelet transfusions on HLA alloimmunization in hemato-oncological patients. Transfusion 2018; 59:470-481. [PMID: 30499599 DOI: 10.1111/trf.15056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Platelet transfusions can induce alloimmunization against HLA antigens. The use of pathogen-reduced platelet concentrates (PCs) was suggested to reduce HLA alloimmunization and concomitant transfusion refractoriness. METHODS This study investigated HLA alloimmunization in available samples from 448 hemato-oncological patients who were randomized for the Pathogen Reduction Evaluation and Predictive Analytical Rating Score (PREPAReS) trial to receive either untreated or pathogen-reduced PCs (Mirasol, Terumo BCT Inc.). Anti-HLA Class I and II antibodies were determined before the first platelet transfusion and weekly thereafter using multiplex assay with standard cutoffs to detect low- as well as high-level antibodies. RESULTS When using the lower cutoff, in patients who were antibody negative at enrollment, 5.4% (n = 12) developed anti-HLA Class I antibodies after receiving untreated PCs, while this was significantly higher in patients receiving pathogen-reduced PCs, 12.8% (n = 29; p = 0.009, intention-to-treat [ITT] analysis). A similar but nonsignificant trend was observed in the per-protocol (PP) analysis (5.4% vs. 10.1%; p = 0.15). HLA class II antibody formation was similar between both types of PCs in the ITT analysis, while the PP analysis showed a trend toward lower immunization after receiving pathogen-reduced PCs. Multivariate analysis identified receiving pathogen-reduced platelets as an independent risk factor for HLA Class I alloimmunization (ITT: odds ratio [95% confidence interval] = 3.02 [1.42-6.51], PP: odds ratio [95% confidence interval] = 2.77 [1.00-5.40]), without affecting HLA Class II alloimmunization. When using the high cutoff value, the difference in HLA Class I alloimmunization between study arms remained significant in the ITT analysis and again was not significant in the PP analysis. CONCLUSION Our data clearly indicate that Mirasol pathogen inactivation does not prevent HLA Class I or II alloimmunization after platelet transfusions.
Collapse
Affiliation(s)
- Anno Saris
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Jean Louis Kerkhoffs
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands.,Jon J. van Rood Center for Clinical Transfusion Science, Leiden University Medical Center, Leiden, The Netherlands
| | - Philip J Norris
- Blood Systems Research Institute, San Francisco, California.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Anneke Brand
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands.,Jon J. van Rood Center for Clinical Transfusion Science, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter F van der Meer
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands.,Jon J. van Rood Center for Clinical Transfusion Science, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap Jan Zwaginga
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands.,Jon J. van Rood Center for Clinical Transfusion Science, Leiden University Medical Center, Leiden, The Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Saris A, Peyron I, van der Meer PF, Stuge TB, Zwaginga JJ, van Ham SM, ten Brinke A. Storage-Induced Platelet Apoptosis Is a Potential Risk Factor for Alloimmunization Upon Platelet Transfusion. Front Immunol 2018; 9:1251. [PMID: 29951051 PMCID: PMC6008548 DOI: 10.3389/fimmu.2018.01251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/18/2018] [Indexed: 12/21/2022] Open
Abstract
Platelet transfusion can elicit alloimmune responses leading to alloantibody formation against donor-specific polymorphic residues, ultimately resulting in platelet transfusion refractoriness. Universal leukoreduction significantly reduced the frequency of alloimmunization after platelet transfusion, thereby showing the importance of white blood cells (WBCs) in inducing this alloresponse. It is, however, unknown if the residual risk for alloimmunization is caused by WBCs remaining after leukoreduction or if alloimmunization can be induced by platelets themselves. This study investigated the capacity of platelets to induce alloimmunization and identified potential product-related risk factors for alloimmunization. First, internalization of allogeneic platelets by dendritic cells (DCs) was demonstrated by confocal microscopy. Second, after internalization, presentation of platelet-derived peptides was shown by mass spectrometry analysis of human leukocytes antigen (HLA)-DR eluted peptides. Third, platelet-loaded DCs induced platelet-specific CD4 T cell responses. Altogether, this indicates a platelet-specific ability to induce alloimmunization. Therefore, factors enhancing platelet internalization may be identified as risk factor for alloimmunization by platelet concentrates. To investigate if storage of platelets is such a risk factor, internalization of stored platelets was compared with fresh platelets and showed enhanced internalization of stored platelets. Storage-induced apoptosis and accompanied phosphatidylserine exposure seemed to be instrumental for this. Indeed, DCs pre-incubated with apoptotic platelets induced the strongest IFN-γ production by CD4 T cells compared with pre-incubation with untreated or activated platelets. In conclusion, this study shows the capacity of platelets to induce platelet-specific alloimmune responses. Furthermore, storage-induced apoptosis of platelets is identified as potential risk factor for alloimmunization after platelet transfusions.
Collapse
Affiliation(s)
- Anno Saris
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Ivan Peyron
- Department of Plasma Proteins, Sanquin Research, Amsterdam, Netherlands
| | | | - Tor B. Stuge
- Immunology Research Group, Department of Medical Biology, University of Tromsø – The Arctic University of Norway, Tromso, Norway
| | - Jaap Jan Zwaginga
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - S. Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Anja ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
11
|
Schubert P, Johnson L, Marks DC, Devine DV. Ultraviolet-Based Pathogen Inactivation Systems: Untangling the Molecular Targets Activated in Platelets. Front Med (Lausanne) 2018; 5:129. [PMID: 29868586 PMCID: PMC5949320 DOI: 10.3389/fmed.2018.00129] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Transfusions of platelets are an important cornerstone of medicine; however, recipients may be subject to risk of adverse events associated with the potential transmission of pathogens, especially bacteria. Pathogen inactivation (PI) technologies based on ultraviolet illumination have been developed in the last decades to mitigate this risk. This review discusses studies of platelet concentrates treated with the current generation of PI technologies to assess their impact on quality, PI capacity, safety, and clinical efficacy. Improved safety seems to come with the cost of reduced platelet functionality, and hence transfusion efficacy. In order to understand these negative impacts in more detail, several molecular analyses have identified signaling pathways linked to platelet function that are altered by PI. Because some of these biochemical alterations are similar to those seen arising in the context of routine platelet storage lesion development occurring during blood bank storage, we lack a complete picture of the contribution of PI treatment to impaired platelet functionality. A model generated using data from currently available publications places the signaling protein kinase p38 as a central player regulating a variety of mechanisms triggered in platelets by PI systems.
Collapse
Affiliation(s)
- Peter Schubert
- Canadian Blood Services, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Lacey Johnson
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Dana V Devine
- Canadian Blood Services, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Platelet soluble CD40-ligand level is associated with transfusion adverse reactions in a mixed threshold-and-hit model. Blood 2017; 130:1380-1383. [PMID: 28720587 DOI: 10.1182/blood-2017-03-773945] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|