1
|
Carbonnel M, Petit M, Tarantino N, Morin V, Corneau A, Tourne M, Gueguan J, Mölne J, Akouri R, Broecker V, Vinit A, Racowsky C, Brännström M, Ayoubi JM, Vieillard V. Analysis of Immunological Biomarkers Associated With Rejection After Uterus Transplantation in Human. Transplantation 2025; 109:e119-e133. [PMID: 39020469 DOI: 10.1097/tp.0000000000005126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
BACKGROUND Uterus transplantation (UTx) is an emerging therapy for women with uterine infertility. However, critical questions remain with this procedure including the mechanisms involved in graft rejection. METHODS In this study, we analyzed the immune profile of ectocervical biopsies from 5 patients after UTx before and during their first episode of rejection using RNA sequencing, quantitative polymerase chain reaction, and imaging mass cytometry. RESULTS We identified 530 upregulated and 207 downregulated genes associated with graft rejection. Enrichment databases revealed abnormalities of skin-associated genes and the immune system, in particular activation of T and B lymphocytes, and macrophages. Imaging mass cytometry confirmed these observations; in cervical biopsies of 3 women, rejection was associated with the presence of B-cell structures linked to tertiary lymphoid structures, and 2 biopsies from 1 woman with severe rejection episodes and poor prognosis of graft function (repeated miscarriage and implantation failures) were associated with an accumulation of HLA-DR - macrophages, producing granzyme B at the surface of the epithelium. CONCLUSIONS We showed that rejection of a UTx graft was associated with major alterations of immune markers including the involvement of tertiary lymphoid structures, the most organized of which may be a sign of chronic rejection, and with an increase in HLA-DR - macrophages expressing granzyme B in the case of grade 3 rejection episodes according Mölne's classification. We identified potential emerging biomarkers to predict or diagnose graft rejection (Keratin 1 granzyme B, IL1β). These findings could lead to development of improved strategies for the identification, prevention, and/or treatment of uterus graft rejection.
Collapse
Affiliation(s)
- Marie Carbonnel
- Department of Obstetrics and Gynecology, Foch Hospital, Suresnes, France
- University of Versailles-Saint-Quentin-en-Yvelines, Montigny-Le-Bretonneux, France
- Sorbonne Université, Inserm U1135, CNRS EMR 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Maxime Petit
- Pitié-Salpétrière Cytometry Platform (CyPS), UMS037-PASS, Sorbonne Université-Faculté de Médecine, Paris, France
| | - Nadine Tarantino
- Sorbonne Université, Inserm U1135, CNRS EMR 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Veronique Morin
- Sorbonne Université, Inserm U1135, CNRS EMR 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Aurélien Corneau
- Pitié-Salpétrière Cytometry Platform (CyPS), UMS037-PASS, Sorbonne Université-Faculté de Médecine, Paris, France
| | - Morgan Tourne
- Department of Pathology, Foch Hospital, Suresnes, France
| | - Justine Gueguan
- Institut du Cerveau, Bioinformatics/Biostatistics iCONICS Facility, Sorbonne Université, INSERM, Paris, France
| | - Johann Mölne
- Department of Laboratory Medicine, Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Randa Akouri
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg; Göteborg, Sweden
| | - Verena Broecker
- Department of Laboratory Medicine, Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Angélique Vinit
- Pitié-Salpétrière Cytometry Platform (CyPS), UMS037-PASS, Sorbonne Université-Faculté de Médecine, Paris, France
| | - Catherine Racowsky
- Department of Obstetrics and Gynecology, Foch Hospital, Suresnes, France
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg; Göteborg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - Jean-Marc Ayoubi
- Department of Obstetrics and Gynecology, Foch Hospital, Suresnes, France
- University of Versailles-Saint-Quentin-en-Yvelines, Montigny-Le-Bretonneux, France
| | - Vincent Vieillard
- Sorbonne Université, Inserm U1135, CNRS EMR 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
2
|
Berkane Y, Oubari H, Lupon E, Goutard M, Tawa P, Randolph MA, Cetrulo CL, Bertheuil N, Lellouch AG, Uygun K. [Advances and perspectives in vascularized composite allotransplantation preservation]. BULLETIN DE L'ACADEMIE NATIONALE DE MEDECINE 2024; 208:1299-1308. [PMID: 39906406 PMCID: PMC11790288 DOI: 10.1016/j.banm.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Vascularized composite allotransplantation (VCA) involves transplants of the face, upper limb, trachea, penis, abdominal wall and, more recently, uterus. These grafts are unique in that they comprise numerous specialized tissues derived from several embryonic layers, each with its own specific constraints. Whereas the skin component, as an immunological barrier, is a real challenge in terms of immune tolerance, the muscle is highly sensitive to ischemia, and ischemia-reperfusion injuries can lead to antigen release and eventually rejection episodes. While the gold standard for the preservation of these grafts remains static cold storage (4 °C), the emergence of dynamic perfusion techniques in solid organ transplantation suggests their adaptation to VCAs. In this review, we outline the challenges imposed by composite tissue allotransplantation, and discuss the latest advances in VCA preservation based on machine perfusion but also on static techniques at negative temperatures. Particular attention is paid to subnormothermic perfusion preservation and supercooling techniques, developed by our team in an attempt to import these optimized techniques from solid organ preservation.
Collapse
Affiliation(s)
- Yanis Berkane
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, États-Unis
- Service de chirurgie plastique, reconstructrice et esthétique, CHU de Rennes, université de Rennes, Rennes, France
- Suivi immunologique des thérapeutiques innovantes, UMR1236, Inserm, EFS, université de Rennes, Rennes, France
| | - Haizam Oubari
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, États-Unis
- Service de chirurgie plastique, reconstructrice et esthétique, CHU de Grenoble, université de Grenoble-Alpes, Grenoble, France
| | - Elise Lupon
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, États-Unis
- Service de chirurgie plastique, reconstructrice et esthétique, hôpital Pasteur 2, université Nice Côte d’Azur, Nice, France
| | - Marion Goutard
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, États-Unis
| | - Pierre Tawa
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, États-Unis
| | - Mark A. Randolph
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, États-Unis
- Plastic Surgery Research Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis
| | - Curtis L. Cetrulo
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, États-Unis
- Plastic Surgery Research Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis
- Department of Plastic, Reconstructive and Aesthetic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, États-Unis
| | - Nicolas Bertheuil
- Service de chirurgie plastique, reconstructrice et esthétique, CHU de Rennes, université de Rennes, Rennes, France
- Suivi immunologique des thérapeutiques innovantes, UMR1236, Inserm, EFS, université de Rennes, Rennes, France
| | - Alexandre G. Lellouch
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, États-Unis
- Innovative Therapies in Haemostasis, Inserm UMR-S 1140, université de Paris, Paris, France
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, États-Unis
| |
Collapse
|
3
|
Song EY, Barrow BE, Cendales LC. Vascular changes in vascularized composite allotransplantation. Curr Opin Organ Transplant 2024; 29:363-367. [PMID: 39492790 DOI: 10.1097/mot.0000000000001184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
PURPOSE OF REVIEW Allograft vasculopathy in vascularized composite allografts (VCA) remains understudied. This review explores the vascular changes in VCA, focused on recent literature. RECENT FINDINGS Allograft vasculopathy in VCA generally includes progressive concentric myointimal thickening and luminal narrowing of arterial vessels through endothelial deterioration and proliferation of smooth muscle cells. Microvascular changes are also noted, with thrombosis and lumen narrowing in microvessels of the skin even in the absence of large vessel vasculopathy. Histopathologic reports of skin containing VCA rejection document arteriosclerosis in deep vessels that are not always reflected in skin punch biopsies. The first revision of the Banff VCA scoring system 2022 was developed to include vascular changes in VCA. The scoring system for chronic changes and antibody mediated rejection continues to be under development. SUMMARY The study of vascular changes in VCA continues to progress. Important data and advances in experimental and clinical VCA have been reported and continue to take place. Challenges ahead include capture of clinical data that will evolve beyond transient report forms and approaching on the problem of graft failure well grounded in sound scientific methodology.
Collapse
Affiliation(s)
- Ethan Y Song
- Division of Plastic, Oral, and Maxillofacial Surgery
| | | | - Linda C Cendales
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
4
|
Ruddle NH. Posttransplant Tertiary Lymphoid Organs. Transplantation 2024; 108:1090-1099. [PMID: 37917987 PMCID: PMC11042531 DOI: 10.1097/tp.0000000000004812] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 11/04/2023]
Abstract
Tertiary lymphoid organs (TLOs), also known as tertiary or ectopic lymphoid structures or tissues, are accumulations of lymphoid cells in sites other than canonical lymphoid organs, that arise through lymphoid neogenesis during chronic inflammation in autoimmunity, microbial infection, cancer, aging, and transplantation, the focus of this review. Lymph nodes and TLOs are compared regarding their cellular composition, organization, vascular components, and migratory signal regulation. These characteristics of posttransplant TLOs (PT-TLOs) are described with individual examples in a wide range of organs including heart, kidney, trachea, lung, artery, skin, leg, hand, and face, in many species including human, mouse, rat, and monkey. The requirements for induction and maintenance of TLOs include sustained exposure to autoantigens, alloantigens, tumor antigens, ischemic reperfusion, nephrotoxic agents, and aging. Several staging schemes have been put forth regarding their function in organ rejection. PT-TLOs most often are associated with organ rejection, but in some cases contribute to tolerance. The role of PT-TLOs in cancer is considered in the case of immunosuppression. Furthermore, TLOs can be associated with development of lymphomas. Challenges for PT-TLO research are considered regarding staging, imaging, and opportunities for their therapeutic manipulation to inhibit rejection and encourage tolerance.
Collapse
Affiliation(s)
- Nancy H. Ruddle
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT
| |
Collapse
|
5
|
Knoedler L, Knoedler S, Panayi AC, Lee CAA, Sadigh S, Huelsboemer L, Stoegner VA, Schroeter A, Kern B, Mookerjee V, Lian CG, Tullius SG, Murphy GF, Pomahac B, Kauke-Navarro M. Cellular activation pathways and interaction networks in vascularized composite allotransplantation. Front Immunol 2023; 14:1179355. [PMID: 37266446 PMCID: PMC10230044 DOI: 10.3389/fimmu.2023.1179355] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Vascularized composite allotransplantation (VCA) is an evolving field of reconstructive surgery that has revolutionized the treatment of patients with devastating injuries, including those with limb losses or facial disfigurement. The transplanted units are typically comprised of different tissue types, including skin, mucosa, blood and lymphatic vasculature, muscle, and bone. It is widely accepted that the antigenicity of some VCA components, such as skin, is particularly potent in eliciting a strong recipient rejection response following transplantation. The fine line between tolerance and rejection of the graft is orchestrated by different cell types, including both donor and recipient-derived lymphocytes, macrophages, and other immune and donor-derived tissue cells (e.g., endothelium). Here, we delineate the role of different cell and tissue types during VCA rejection. Rejection of VCA grafts and the necessity of life-long multidrug immunosuppression remains one of the major challenges in this field. This review sheds light on recent developments in decoding the cellular signature of graft rejection in VCA and how these may, ultimately, influence the clinical management of VCA patients by way of novel therapies that target specific cellular processes.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Adriana C. Panayi
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Catherine A. A. Lee
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sam Sadigh
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Lioba Huelsboemer
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Viola A. Stoegner
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Andreas Schroeter
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Barbara Kern
- Department of Plastic Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Vikram Mookerjee
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Christine G. Lian
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
6
|
Yousefpour P, Ni K, Irvine DJ. Targeted modulation of immune cells and tissues using engineered biomaterials. NATURE REVIEWS BIOENGINEERING 2023; 1:107-124. [PMID: 37772035 PMCID: PMC10538251 DOI: 10.1038/s44222-022-00016-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 09/30/2023]
Abstract
Therapies modulating the immune system offer the prospect of treating a wide range of conditions including infectious diseases, cancer and autoimmunity. Biomaterials can promote specific targeting of immune cell subsets in peripheral or lymphoid tissues and modulate the dosage, timing and location of stimulation, thereby improving safety and efficacy of vaccines and immunotherapies. Here we review recent advances in biomaterials-based strategies, focusing on targeting of lymphoid tissues, circulating leukocytes, tissue-resident immune cells and immune cells at disease sites. These approaches can improve the potency and efficacy of immunotherapies by promoting immunity or tolerance against different diseases.
Collapse
Affiliation(s)
- Parisa Yousefpour
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kaiyuan Ni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
7
|
Presence of Donor Lymph Nodes Within Vascularized Composite Allotransplantation Ameliorates VEGF-C-mediated Lymphangiogenesis and Delays the Onset of Acute Rejection. Transplantation 2021; 105:1747-1759. [PMID: 34291766 DOI: 10.1097/tp.0000000000003601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The lymphatic system plays an active role in modulating inflammation in autoimmune diseases and organ rejection. In this work, we hypothesized that the transfer of donor lymph node (LN) might be used to promote lymphangiogenesis and influence rejection in vascularized composite allotransplantation (VCA). METHODS Hindlimb transplantations were performed in which (1) recipient rats received VCA containing donor LN (D:LN+), (2) recipient rats received VCA depleted of all donor LN (D:LN-), and (3) D:LN+ transplantations were followed by lymphangiogenesis inhibition using a vascular endothelial growth factor receptor-3 (VEGFR3) blocker. RESULTS Our data show that graft rejection started significantly later in D:LN+ transplanted rats as compared to the D:LN- group. Moreover, we observed a higher level of VEGF-C and a quicker and more efficient lymphangiogenesis in the D:LN+ group as compared to the D:LN- group. The presence of donor LN within the graft was associated with reduced immunoactivation in the draining LN and increased frequency of circulating and skin-resident donor T regulatory cells. Blocking of the VEGF-C pathway using a VEGFR3 blocker disrupts the lymphangiogenesis process, accelerates rejection onset, and interferes with donor T-cell migration. CONCLUSIONS This study demonstrates that VCA LNs play a pivotal role in the regulation of graft rejection and underlines the potential of specifically targeting the LN component of a VCA to control graft rejection.
Collapse
|
8
|
Moris D, Cendales LC. Sensitization and Desensitization in Vascularized Composite Allotransplantation. Front Immunol 2021; 12:682180. [PMID: 34456906 PMCID: PMC8385557 DOI: 10.3389/fimmu.2021.682180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/27/2021] [Indexed: 01/02/2023] Open
Abstract
Vascularized composite allotransplantation (VCA) is a field under research and has emerged as an alternative option for the repair of severe disfiguring defects that result from severe tissue loss in a selected group of patients. Lifelong immunosuppressive therapy, immunosuppression associated complications, and the effects of the host immune response in the graft are major concerns in this type of quality-of-life transplant. The initial management of extensive soft tissue injury can lead to the development of anti-HLA antibodies through injury-related factors, transfusion and cadaveric grafting. The role of antibody-mediated rejection, donor-specific antibody (DSA) formation and graft rejection in the context of VCA still remain poorly understood. The most common antigenic target of preexisting alloantibodies are MHC mismatches, though recognition of ABO incompatible antigens, minor histocompatibility complexes and endothelial cells has also been shown to contribute to rejection. Mechanistically, alloantibody-mediated tissue damage occurs primarily through complement fixation as well as through antibody-dependent cellular toxicity. If DSA exist, activation of complement and coagulation cascades can result in vascular thrombosis and infarction and thus rejection and graft loss. Both preexisting DSA but especially de-novo DSA are currently considered as main contributors to late allograft injury and graft failure. Desensitization protocols are currently being developed for VCA, mainly including removal of alloantibodies whereas treatment of established antibody-mediated rejection is achieved through high dose intravenous immunoglobulins. The long-term efficacy of such therapies in sensitized VCA recipients is currently unknown. The current evidence base for sensitizing events and outcomes in reconstructive transplantation is limited. However, current data show that VCA transplantation has been performed in the setting of HLA-sensitization.
Collapse
Affiliation(s)
| | - Linda C. Cendales
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
9
|
Moris D, Wang J, Selim MA, Song M, Stempora L, Parker W, Kirk AD, Cendales LC. Vascularized composite allotransplants as a mechanistic model for allograft rejection - an experimental study. Transpl Int 2021; 34:572-584. [PMID: 33453073 DOI: 10.1111/tri.13820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
Vascularized composite allotransplants (VCAs) seem to have several unique features of clinical and experimental importance, including uniquely definable lymphatic drainage that can be easily accessed at the level of ipsilateral regional node beds. Thus, VCA offers a unique opportunity to assess the relative contribution of peripheral and secondary lymphoid tissue to the process of rejection. We transplanted hind limb grafts from C3H donors to six different groups of C57BL/6 recipients: Spleen+ Map3k14-/- ; Spleen- Map3k14-/- ; Spleen+ Node- Map3k14-/- ; and Spleen- Node- Map3k14-/- . As positive controls, we used Map3k14+/- with or without spleen. Map3k14+/- mice demonstrated an average graft survival of 9.6 and 9.2 days for Spleen- and Spleen+ Map3k14+/- , respectively. Rejection in the Map3k14-/- group was considerably delayed (28.4 days, P = 0.002) in all recipients. The Spleen- Map3k14-/- mice rejected their hind limb allografts in an even more delayed fashion compared to Spleen+ Map3k14-/- (54.4 days, P = 0.02). Histological analysis of skin showed that acute rejection in both Map3k14+/- mice groups was graded as Banff III or Banff IV. In the Map3k14-/- groups, rejection was graded as Banff III. We demonstrated that in the absence of lymph nodes, grafts reject in a delayed fashion. Also, splenectomy in alymphoplastic mice further extends graft survival, but does not eliminate rejection all together.
Collapse
Affiliation(s)
- Dimitrios Moris
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Jun Wang
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | - Mingqing Song
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Linda Stempora
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - William Parker
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Allan D Kirk
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Linda C Cendales
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
10
|
Abstract
AbstractPurpose of ReviewSkin provides a window into the health of an individual. Using transplanted skin as a monitor can provide a powerful tool for surveillance of rejection in a transplant. The purpose of this review is to provide relevant background to the role of skin in vascularized transplantation medicine.Recent FindingsDiscrete populations of T memory cells provide distributed immune protection in skin, and cycle between skin, lymph nodes, and blood. Skin-resident TREGcells proliferate in response to inflammation and contribute to long-term VCA survival in small animal models. Early clinical studies show sentinel flap rejection to correlate well with facial VCA skin rejection, and abdominal wall rejection demonstrates concordance with visceral rejection, but further studies are required.SummaryThis review focuses on the immunology of skin, skin rejection in vascularized composite allografts, and the recent advances in monitoring the health of transplanted tissues using distant “sentinel” flaps.
Collapse
|
11
|
Petruzzo P, Luong S, Kanitakis J, Sardu C, Feugier P, Danjou F, Gazarian A, Badet L, Morelon E. Graft vasculopathy in upper extremity allotransplantation: Results of a retrospective high-resolution ultrasonographic study. Clin Transplant 2020; 35:e14130. [PMID: 33099801 DOI: 10.1111/ctr.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/14/2020] [Accepted: 10/17/2020] [Indexed: 11/29/2022]
Abstract
Graft vasculopathy (GV) is the most severe pathologic change of chronic rejection in vascularized composite allotransplantation. Since 2012, the intimal media thickness (IMT) of radial and ulnar arteries was annually monitored by high-resolution ultrasonography in seven bilateral upper extremity transplant (UET) patients. We also investigated the IMT of seven matched healthy subjects (controls). No significant difference between IMT values of controls and UET patients was found. The median IMT values of recipient radial and ulnar arteries were 0.23 mm and 0.25 mm, respectively, while the median IMT values of grafted radial and ulnar arteries were 0.27 mm and 0.30 mm, respectively. There was a statistically significant difference in the IMT values of the grafted and recipient ulnar arteries (p = .043), but this difference was no longer significant when patient #2 was excluded. He showed a significant difference between recipient and grafted arteries and significantly higher IMT values (p = .001) of his grafted arteries compared with those of all transplanted patients. This patient developed GV leading to graft loss 11 years after the transplantation. In conclusion, this study showed a significant IMT increase in an UET recipient who developed GV.
Collapse
Affiliation(s)
- Palmina Petruzzo
- Department of Transplantation, Hôpital Edouard Herriot, HCL, Lyon, France.,Department of Surgery, University of Cagliari, Cagliari, Italy
| | - Stephane Luong
- Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, HCL, Lyon, France
| | - Jean Kanitakis
- Department of Dermatology, Hôpital Edouard Herriot, HCL, Lyon, France
| | - Claudia Sardu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Patrick Feugier
- Vascular Surgery Unit, Groupement Hospitalo-Universitaire Lyon Sud, HCL, Lyon, France.,Université Claude Bernard, Lyon1, Lyon, France
| | - Fabrice Danjou
- Département d'Information Médicale, Hôpital Saint Camille, Bry-sur-Marne, France
| | - Aram Gazarian
- Chirurgie de la Main et du Membre Supérieur, Hôpital Edouard Herriot, HCL, Lyon, France.,Chirurgie de la Main et du Membre Supérieur, Polyclinique Orthopédique de Lyon, Lyon, France
| | - Lionel Badet
- Department of Transplantation, Hôpital Edouard Herriot, HCL, Lyon, France.,Université Claude Bernard, Lyon1, Lyon, France
| | - Emmanuel Morelon
- Department of Transplantation, Hôpital Edouard Herriot, HCL, Lyon, France.,Université Claude Bernard, Lyon1, Lyon, France
| |
Collapse
|
12
|
Kaufman CL, Kanitakis J, Weissenbacher A, Brandacher G, Mehra MR, Amer H, Zelger BG, Zelger B, Pomahac B, McDiarmid S, Cendales L, Morelon E. Defining chronic rejection in vascularized composite allotransplantation-The American Society of Reconstructive Transplantation and International Society of Vascularized Composite Allotransplantation chronic rejection working group: 2018 American Society of Reconstructive Transplantation meeting report and white paper Research goals in defining chronic rejection in vascularized composite allotransplantation. SAGE Open Med 2020; 8:2050312120940421. [PMID: 32704373 PMCID: PMC7361482 DOI: 10.1177/2050312120940421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives: This report summarizes a collaborative effort between the American Society of Reconstructive Transplantation and the International Society of Vascularized Composite Allotransplantation to establish what is known about chronic rejection in recipients of vascularized composite allografts, with an emphasis on upper extremity and face transplants. As a picture of chronic rejection in hand and face vascularized composite allografts emerges, the results will be applied to other types of vascularized composite allografts, such as uterine transplantation. Methods: The overall goal is to develop a definition of chronic rejection in vascularized composite allografts so that we can establish longitudinal correlates of factors such as acute rejection, immunosuppressive therapy, de novo donor-specific antibody and trauma/infection and other external factors on the development of chronic rejection. As Dr Kanitakis eloquently stated at the 2017 International Society of Vascularized Composite Allotransplantation meeting in Salzburg, “Before we can correlate causative factors of chronic rejection, we have to define what chronic rejection in VCA is.” Results: The first meeting report was presented at the sixth Biennial meeting of the American Society of Reconstructive Transplantation in November 2018. Based on collaborative efforts and descriptions of clinical cases of chronic rejection in vascularized composite allograft recipients, a working definition of chronic rejection in vascularized composite allografts with respect to overt functional decline, subclinical functional decline, histologic evidence without functional decline, and normal allograft function in the absence of histologic evidence of chronic rejection is proposed. Conclusions: It is the intent of this collaborative working group that these working definitions will help to focus ongoing research to define the incidence, risk factors and treatment regimens that will identify mechanisms of chronic rejection in vascularized composite allografts. As with all good research, our initial efforts have generated more questions than answers. We hope that this is the first of many updates.
Collapse
Affiliation(s)
| | - Jean Kanitakis
- Department of Dermatology, Ed. Herriot Hospital, Lyon, France
| | | | | | | | | | | | | | | | - Sue McDiarmid
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | | | - Emmanuel Morelon
- Department of Transplantation, Nephrology and Clinical Immunology, Ed. Herriot Hospital, Lyon, France
| |
Collapse
|
13
|
Matsubara S, Seki M, Suzuki S, Komori T, Takamori M. Tertiary lymphoid organs in the inflammatory myopathy associated with PD-1 inhibitors. J Immunother Cancer 2019; 7:256. [PMID: 31533865 PMCID: PMC6751882 DOI: 10.1186/s40425-019-0736-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/11/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Programmed cell death 1 inhibitors have revolutionized therapy for cancer by their outstanding effectiveness. However, they may cause adverse effects, among which inflammatory myopathy is one of the most disabling. To elucidate its mechanism, we analysed muscle biopsies and compared them with other inflammatory myopathies. METHODS Muscle biopsies from three patients with inflammatory myopathy after treatment with PD-1 inhibitors for cancer were subjected to immunohistochemical and ultrastructural analyses to localize CD8+ cytotoxic cells and markers of lymphoid follicles. For comparison, two cases of polymyositis and one of juvenile dermatomyositis were examined. RESULTS Nearly identical pathological features were observed in the three cases. In the island-like foci of inflammation, muscle fibers were undergoing degeneration. CD8+ cytotoxic T cells, macrophages, CD4+ cells, and B cells were observed in the foci. CD8+ cells were seen outside and inside the basal lamina of non-necrotic muscle fibers. Lymphoid follicle-like structures with CD21+ follicular dendritic cells were present. The blood vessels in the foci showed features consistent with the high endothelial venules, on which their markers, PNAd and CCL21, were expressed. In polymyositis, blood vessels stained only faintly for PNAd and CCL21, while in juvenile dermatomyositis, in which tertiary lymphoid follicle-like structure was reported in the past, they stained positively. CONCLUSIONS In inflammatory myopathy associated with PD-1 inhibitors, CD8+ cells appear to predominantly destruct muscle fibers. The presence of lymphoid follicle-like structures and expression of PNAd and CCL21 on the endothelial cells suggest the tertiary lymphoid organs are formed, and involved in the leakage of lymphocytes. Thus, in the three cases examined, formation of the tertiary lymphoid organs is likely to play an important role in genesis of the PD-1 myopathy.
Collapse
Affiliation(s)
- Shiro Matsubara
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042 Japan
| | - Morinobu Seki
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Shigeaki Suzuki
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Takashi Komori
- Department of Neuropathology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042 Japan
| | - Mikio Takamori
- Respiratory / Medical Oncology Department, Tokyo Metropolitan Tama Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-0042 Japan
| |
Collapse
|
14
|
Kollar B, Kamat P, Klein H, Waldner M, Schweizer R, Plock J. The Significance of Vascular Alterations in Acute and Chronic Rejection for Vascularized Composite Allotransplantation. J Vasc Res 2019; 56:163-180. [DOI: 10.1159/000500958] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/14/2019] [Indexed: 11/19/2022] Open
|
15
|
Iske J, Nian Y, Maenosono R, Maurer M, Sauer IM, Tullius SG. Composite tissue allotransplantation: opportunities and challenges. Cell Mol Immunol 2019; 16:343-349. [PMID: 30842628 PMCID: PMC6462029 DOI: 10.1038/s41423-019-0215-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/24/2022] Open
Abstract
Vascularized composite allotransplants (VCAs) have unique properties because of diverse tissue components transplanted en mass as a single unit. In addition to surgery, this type of transplant also faces enormous immunological challenges that demand a detailed analysis of all aspects of alloimmune responses, organ preservation, and injury, as well as the immunogenicity of various tissues within the VCA grafts to further improve graft and patient outcomes. Moreover, the side effects of long-term immunosuppression for VCA patients need to be carefully balanced with the potential benefit of a non-life-saving procedure. In this review article, we provide a comprehensive update on limb and face transplantation, with a specific emphasis on the alloimmune responses to VCA, established and novel immunosuppressive treatments, and patient outcomes.
Collapse
Affiliation(s)
- Jasper Iske
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Transplant Immunology, Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Yeqi Nian
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryoichi Maenosono
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Max Maurer
- Department of Surgery, Charité - Universitätsmedizin Berlin, Campus Charité Mitte and Virchow-Klinikum, Berlin, Germany
| | - Igor M Sauer
- Department of Surgery, Charité - Universitätsmedizin Berlin, Campus Charité Mitte and Virchow-Klinikum, Berlin, Germany
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Einstein-BIH Visiting Fellow, Department of Surgery, Charité-Universitätsmedizin Berlin, Campus Charité Mitte and Virchow-Klinikumc, Berlin, Germany.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW For patients with devastating injuries in whom standard reconstruction is not an option, vascularized composite allotransplantation (VCA) has become a viable means of restoring form and function. However, immunological rejection continues to be a problem in VCA and has not yet been fully characterized. As the field is relatively new, much of the data on rejection and immunosuppression have been extrapolated from that of solid organ transplantation. In this review, we cover the basic mechanisms of rejection as they relate specifically to VCA with analysis of recent literature and future directions. RECENT FINDINGS Recent clinical studies have supported previously postulated T-cell-mediated mechanism of acute rejection and have also made strides in differentiating rejection from inflammation from other skin conditions and with different treatment regimens. Antibody-mediated rejection has been described in recent cases as well as treatment of presensitized patients receiving VCAs. With more long-term grafts, chronic changes, including vasculopathy, are being reported. SUMMARY Clinically observed types of rejection in VCA include mainly cell-mediated, antibody-mediated and chronic rejection. Advances in diagnosis and treatment of rejection have been made, but there is still much to be learned about VCA-specific rejection.
Collapse
|
17
|
Increased levels of circulating MMP3 correlate with severe rejection in face transplantation. Sci Rep 2018; 8:14915. [PMID: 30297859 PMCID: PMC6175842 DOI: 10.1038/s41598-018-33272-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022] Open
Abstract
Face transplantation is a viable treatment option for carefully selected patients with devastating injuries to the face. However, acute rejection episodes occur in more than 80% of recipients in the first postoperative year. Unfortunately, neither a correlation between histological grades of rejection and anti-rejection treatment nor systemic surrogate markers of rejection in face transplantation are established in clinical routine. Therefore, we utilized next generation aptamer-based SOMAscan proteomics platform for non-invasive rejection biomarker discovery. Longitudinal serum samples from face transplant recipients with long-term follow-up were included in this study. From the 1,310 proteins analyzed by SOMAscan, a 5-protein signature (MMP3, ACY1, IL1R2, SERPINA4, CPB2) was able to discriminate severe rejection from both no-rejection and nonsevere rejection samples. Technical validation on ELISA platform showed high correlation with the SOMAscan data for the MMP3 protein (rs = 0.99). Additionally, MMP3 levels were significantly increased during severe rejection as compared to no-rejection (p = 0.0009) and nonsevere rejection (p = 0.0173) episodes. Pathway analyses revealed significant activation of the metallopeptidase activity during severe face transplant rejection. This pilot study demonstrates the feasibility of SOMAscan to identify non-invasive candidate biomarkers of rejection in face transplantation. Further validation in a larger independent patient cohort is needed.
Collapse
|
18
|
|
19
|
Local Injections of Tacrolimus-loaded Hydrogel Reduce Systemic Immunosuppression-related Toxicity in Vascularized Composite Allotransplantation. Transplantation 2018; 102:1684-1694. [DOI: 10.1097/tp.0000000000002283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Abstract
BACKGROUND The purpose of this study was to investigate whether lymphatic reconstitution and regeneration occurs after clinical facial transplantation using indocyanine green lymphography and immunohistochemical markers. METHODS Allograft skin biopsies at multiple posttransplant time points were stained with Lyve1 lymphatic antibody and other endothelial antibodies. Staining intensity was interpreted on a scale of none, mild, moderate, and strong by 2 investigators and consolidated by a third party for final interpretation. Standardized real-time lymphography was performed at various posttransplant time points to evaluate lymphatic reconstitution and regeneration. RESULTS Forty-two biopsies were evaluated at 15 different time points from posttransplant days 7 to 420. Strong Lyve1 staining was observed in 52.4%, moderate staining in 14.3%, and weak staining in 33.3% of biopsies. Strong staining was present on days 7, 10, 44, 79, 269, 402, and 420. Three lymphographic studies were conducted at 8.5, 30, and 35 months posttransplant. Initial drainage via distinct lymphatic channels with abrupt dermal splash and lymphostasis was observed at 8.5-month posttransplant. At 30- and 35-month posttransplant, communication of multiple lymphatic channels between donor tissue and recipient tissue was evident with distinct drainage into native recipient cervical lymph nodes. This correlated with ongoing clinical resolution of facial edema and was unaffected by 3 episodes of acute rejection. CONCLUSIONS These findings support ongoing lymphatic reconstitution between the donor facial allograft and recipient native tissue. Donor lymphatic regeneration begins after facial transplantation and continues long term. This mechanism may be responsible for the temporal and spatial process of lymphatic reconstitution with recipient lymphatic channels.
Collapse
|
21
|
Lymphangiogenesis is a feature of acute GVHD, and VEGFR-3 inhibition protects against experimental GVHD. Blood 2017; 129:1865-1875. [PMID: 28096093 DOI: 10.1182/blood-2016-08-734210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023] Open
Abstract
Lymph vessels play a crucial role in immune reactions in health and disease. In oncology the inhibition of lymphangiogenesis is an established therapeutic concept for reducing metastatic spreading of tumor cells. During allogeneic tissue transplantation, the inhibition of lymphangiogenesis has been successfully used to attenuate graft rejection. Despite its critical importance for tumor growth, alloimmune responses, and inflammation, the role of lymphangiogenesis has not been investigated during allogeneic hematopoietic stem cell transplantation (allo-HSCT). We found that acute graft-versus-host disease (aGVHD) is associated with lymphangiogenesis in murine allo-HSCT models as well as in patient intestinal biopsies. Inhibition of aGVHD-associated lymphangiogenesis by monoclonal antibodies against vascular endothelial growth factor receptor 3 (VEGFR-3) ameliorated aGVHD and improved survival in murine models. The administration of anti-VEGFR-3 antibodies did not interfere with hematopoietic engraftment and improved immune reconstitution in allo-HSCT recipients with aGVHD. Anti-VEGFR-3 therapy had no significant impact on growth of malignant lymphoma after allo-HSCT. We conclude that aGVHD is associated with lymphangiogenesis in intestinal lesions and in lymph nodes. Our data show that anti-VEGFR-3 treatment ameliorates lethal aGVHD and identifies the lymphatic vasculature as a novel therapeutic target in the setting of allo-HSCT.
Collapse
|
22
|
Koenig A, Thaunat O. Lymphoid Neogenesis and Tertiary Lymphoid Organs in Transplanted Organs. Front Immunol 2016; 7:646. [PMID: 28082981 PMCID: PMC5186756 DOI: 10.3389/fimmu.2016.00646] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/13/2016] [Indexed: 01/28/2023] Open
Abstract
The progressive organization of immune effectors into functional ectopic lymphoid structures, named tertiary lymphoid organs (TLO), has been observed in many conditions in which target antigens fail to be eliminated by the immune system. Not surprisingly, TLO have been recurrently identified in chronically rejected allografts. Although significant progress has been made over the last decades in understanding the molecular mechanisms involved in TLO development (a process named lymphoid neogenesis), the role of intragraft TLO (if any) in chronic rejection remains elusive. The prevailing dogma is that TLO contribute to graft rejection by generating and propagating local humoral and cellular alloimmune responses. However, TLO have been recently observed in long-term accepting allografts, suggesting that they might also be able to regulate alloimmune responses. In this review, we discuss our current understanding of how TLO are induced and propose a unified model in which TLO can play deleterious or regulatory roles and therefore actively modulate the kinetics of chronic rejection.
Collapse
Affiliation(s)
- Alice Koenig
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France; INSERM UMR1111, Lyon, France; Université de Lyon, Lyon, France
| | - Olivier Thaunat
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France; INSERM UMR1111, Lyon, France; Université de Lyon, Lyon, France
| |
Collapse
|
23
|
Chronic Rejection in Human Vascularized Composite Allotransplantation (Hand and Face Recipients). Transplantation 2016; 100:2053-61. [DOI: 10.1097/tp.0000000000001248] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Hsao HM, Li W, Gelman AE, Krupnick AS, Kreisel D. The Role of Lymphoid Neogenesis in Allografts. Am J Transplant 2016; 16:1079-85. [PMID: 26614734 PMCID: PMC4803576 DOI: 10.1111/ajt.13645] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/22/2015] [Accepted: 11/22/2015] [Indexed: 01/25/2023]
Abstract
De novo induction of organized lymphoid aggregates at nonlymphoid sites has been observed in many chronic inflammatory conditions where foreign antigens such as infectious agents, autoantigens or alloantigens, persist. The prevailing opinion in the field of transplantation is that lymphoid neogenesis within allografts is detrimental to the establishment of immune tolerance. These structures, commonly referred to as tertiary lymphoid organs (TLOs), are thought to contribute to graft rejection by generating and propagating local alloimmune responses. However, recent studies have shown that TLOs rich in regulatory Foxp3(+) cells are present in long-term accepting allografts. The notion that TLOs can contribute to the local downregulation of immune responses has been corroborated in other chronic inflammation models. These findings suggest that contrary to previous suggestions that the induction of TLOs in allografts is necessarily harmful, the induction of "tolerogenic" TLOs may prove advantageous. In this review, we discuss our current understanding of how TLOs are induced and how they regulate immune responses with a particular focus on alloimmunity.
Collapse
Affiliation(s)
- Hsi-Min Hsao
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Wenjun Li
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Alexander S. Krupnick
- Department of Surgery, Washington University School of Medicine, St. Louis, MO,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO,Correspondence to: Daniel Kreisel, MD PhD, Professor of Surgery, Pathology & Immunology, Campus Box 8234, 660 South Euclid Avenue, Washington University School of Medicine, St. Louis, MO 63110, Tel: (314) 362-6021, Fax: (314) 367-8459,
| |
Collapse
|
25
|
Kaufman CL, Marvin MR, Chilton PM, Hoying JB, Williams SK, Tien H, Ozyurekoglu T, Ouseph R. Immunobiology in VCA. Transpl Int 2016; 29:644-54. [PMID: 26924305 DOI: 10.1111/tri.12764] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/23/2015] [Accepted: 02/23/2016] [Indexed: 01/09/2023]
Abstract
Transplantation of vascularized composite tissue is a relatively new field that is an amalgamation of experience in solid organ transplantation and reconstructive plastic and orthopedic surgery. What is novel about the immunobiology of VCA is the addition of tissues with unique immunologic characteristics such as skin and vascularized bone, and the nature of VCA grafts, with direct exposure to the environment, and external forces of trauma. VCAs are distinguished from solid organ transplants by the requirement of rigorous physical therapy for optimal outcomes and the fact that these procedures are not lifesaving in most cases. In this review, we will discuss the immunobiology of these systems and how the interplay can result in pathology unique to VCA as well as provide potential targets for therapy.
Collapse
Affiliation(s)
| | | | | | - James B Hoying
- Cardiovascular Innovation Institute, Louisville, KY, USA
| | | | - Huey Tien
- Christine M. Kleinert Institute, Louisville, KY, USA
| | | | - Rosemary Ouseph
- Kidney Disease Program, University of Louisville, Louisville, KY, USA
| |
Collapse
|
26
|
Issa F. Vascularized composite allograft-specific characteristics of immune responses. Transpl Int 2016; 29:672-81. [PMID: 26927941 DOI: 10.1111/tri.12765] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/03/2015] [Accepted: 02/24/2016] [Indexed: 01/31/2023]
Abstract
Vascularized composite allograft (VCA) transplantation, or reconstructive transplantation, has revolutionized the treatment of complex tissue and functional defects. Despite arriving during an age in which the immunology of solid organ transplant rejection has been investigated in much detail, these transplants have offered new perspectives from which to explore the immunobiology of transplantation. VCAs have a number of unique molecular, cellular, and architectural features which alter the character and intensity of the rejection response. While much is yet to be clarified, an understanding of these distinct mechanisms affords new possibilities for the control of immune responses in an effort to improve outcomes after VCA transplantation.
Collapse
Affiliation(s)
- Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
The unique immunobiology of the skin: implications for tolerance of vascularized composite allografts. Curr Opin Organ Transplant 2015; 19:566-72. [PMID: 25333830 DOI: 10.1097/mot.0000000000000136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Vascularized composite allograft (VCA) transplantation restores function and form following major soft tissue and musculoskeletal injury. Lifelong immunosuppression is necessary for graft function and survival but acute skin-targeted rejection episodes remain common. We review recent advances in skin immunobiology, emphasizing findings in clinical and experimental VCAs. We also highlight advances in immunotherapy and tolerance protocols with implications for the prevention of VCA rejection, and ultimately, induction of clinically applicable strategies for VCA tolerance. RECENT FINDINGS There is now an increasing appreciation for the role of skin-specific mechanisms, including lymphoid neogenesis, in VCA rejection. In contrast, expression of the regulatory master-switch FOXP3 was demonstrated to be significantly upregulated in the skin of tolerant VCAs in large animal models compared with normal skin and rejecting controls. SUMMARY Most VCA transplant centers continue to utilize antibody-mediated induction therapy and triple agent maintenance immunosuppression. Skin remains the primary target of rejection in VCAs, and current multicenter studies hope to elucidate the mechanisms involved. Proposed standardized procedures for skin biopsies, and diligent reporting of clinical data to the international registry, will be important to maximize the strength of these studies.
Collapse
|
28
|
The potential role for regulatory T-cell therapy in vascularized composite allograft transplantation. Curr Opin Organ Transplant 2015; 19:558-65. [PMID: 25333829 DOI: 10.1097/mot.0000000000000139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Vascularized composite allograft (VCA) transplantation restores defects to a degree not possible by conventional techniques. However, it is limited by the need for long-term immunosuppression and high rates of acute rejection directed against skin. There is therefore a need for a therapy that may shift the risk-benefit ratio in favour of VCA transplantation. Regulatory T cells (Tregs) are a subset of T cells with potent immunoregulatory properties and the potential to promote immunosuppression-free allograft survival. In this review, we consider the evidence for Treg therapy in VCA transplantation. RECENT FINDINGS CD4 Tregs are the best-studied immunoregulatory cell type, and a large amount of experimental and clinical data is emerging to endorse their use in VCA transplantation. Data from animal and humanized models are particularly encouraging and demonstrate the potent efficacy of Treg at preventing skin allograft rejection. Moreover, central tolerance induction techniques in VCA transplantation models are demonstrating a dependence on Tregs for graft survival. SUMMARY An improvement in outcomes after VCA transplantation has the potential to revolutionize the field. Several effective therapeutic strategies have demonstrated great promise experimentally, and there is now a need to assess their safety and efficacy in a clinical setting.
Collapse
|
29
|
Kant CD, Akiyama Y, Tanaka K, Shea S, Yamada Y, Connolly SE, Marino J, Tocco G, Benichou G. Both rejection and tolerance of allografts can occur in the absence of secondary lymphoid tissues. THE JOURNAL OF IMMUNOLOGY 2014; 194:1364-71. [PMID: 25535285 DOI: 10.4049/jimmunol.1401157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, we showed that aly/aly mice, which are devoid of lymph nodes and Peyer's patches, acutely rejected fully allogeneic skin and heart grafts. They mounted potent inflammatory direct alloresponses but failed to develop indirect alloreactivity after transplantation. Remarkably, skin allografts also were rejected acutely by splenectomized aly/aly (aly/aly-spl(-)) mice devoid of all secondary lymphoid organs. In these recipients, the rejection was mediated by alloreactive CD8(+) T cells presumably primed in the bone marrow. In contrast, cardiac transplants were not rejected by aly/aly-spl(-) mice. Actually, aly/aly-spl(-) mice that spontaneously accepted a heart allotransplant and displayed donor-specific tolerance also accepted skin grafts from the same, but not a third-party, donor via a mechanism involving CD4(+) regulatory T cells producing IL-10 cytokine. Therefore, direct priming of alloreactive T cells, as well as rejection and regulatory tolerance of allogeneic transplants, can occur in recipient mice lacking secondary lymphoid organs.
Collapse
Affiliation(s)
- Cavit D Kant
- Transplantation Research Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Yoshinobu Akiyama
- Transplantation Research Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Katsunori Tanaka
- Transplantation Research Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Susan Shea
- Transplantation Research Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Yohei Yamada
- Transplantation Research Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Sarah E Connolly
- Transplantation Research Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Jose Marino
- Transplantation Research Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Georges Tocco
- Transplantation Research Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Gilles Benichou
- Transplantation Research Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| |
Collapse
|